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CHAPTER |
INTRODUCTION

Several explications of multiple comparisons are available for the
usual one-way analysis of variance (ANOVA) situation; Miller's (1966) text
might be the most definitive. Most standard texts on statistical analysis
typically present one or more methods for the one-way ANOVA situation. .A‘
presentation of multiple comparisons in a regression framework was made by
Witliams (1976) wherein most of the more common multiple comparison pro-
cedures were considered,

For researéh situations more complex than the simple one-way ANOVA,
most texts are silent. This silence is understandable; the issues, equa-
tions and other considerations become much more complex. Further, if the
uncertainties of two or more issues are compounded, the morass of detail
can be more than most authors wish to attempt a resolution for general
readership, Winer (1971) presents some detail for more complex research
situations that might shed 11ght on the reluctance of traditional re-
searchers to address the fssue. The computations are often sufficient to
ward off all but the most hardy. Perhaps the lack of writing regarding
multiple comparisons in more complex situations than one-way ANOVA should
serve as a warning, but "fools rush in where angels fear to tread"; 1Qck1ng

wings, we'll rush right in.

Background of the Reader

At this point, 1t is necessary to give some indication of the expec-

tancies regarding readers of this monograph.

Some prior exposure to multiple




' tomparisons would be necessary, though no specific exposure is mandated.
Hopefully, the reader is familiar with at least some of these tests:
Dunnett's (1955) test for comparing one group to all other groups; Tukey'
(1953) tests; Scheffé's (1959) test; Dunn's (1960) test; orthogonal com-
parisons; the Newman-Keuls test (Newman, 1939; Keuls, 1952); and Duncan's
(1955) multiple range test. A1l of the foregoing tests are shown in a
regression format. by Williams (1976). For those whose exposure to
multiple comparisons is minimal, articles by Ryan (1959, 1962) and Sparks
(1963) would be useful.

In that the technique employed in this monograph 1s multiple linear
regression, prior exposure to the use of this technique is helpful. Use-
ful sources on multiple 1linear regression would include any of the fol-
lowing: Bottenberg ana Ward (1963); Kelly, Beggs and McNeil (1969);
Mendenhall (1976); Searle (1971); Ward and Jennings (1973); Williams (197
Kerlinger and Pedhazur (1974); McNeil, Kelly and McNeil (1975); and Cohen

and Cohen (1975), among many others.
Error Rates for Multiple Comparisons

In that several different kinds of error rates are used by varifous
authors, 1t is useful to remind the reader of the more common error rate

Five of these are defined as

No. of comparisons incorrectly called significant.

Per comparison =
conparts total number of comparisons

No. of comparisons incorrectly called significant.

Per experiment =
P total number of experiments

No. of experiments containing erroneous statements
of significance
total number of experiments

Experimentwise =




S

Per family = No. of comparisons 1ncorrect1y calied s1gn1f1cant

total number fo statements in the family (1.4)
Familywise = No. of experiments containing erroneous statements
of significance . {1.5)

total number of statements in the family

Additional detail on error rates and concerns of a priori and a poste-

riori tests can be found in Williams (1976, 2-5).
The Use of Binary Coding and Dunnett's Test

In that the technique employed in this monograph is to utilize Dunnett's
test with binary coding, a complete example is shown. Because repeated use
of the test is employed, it should be recognized fhat the test is, except
when Dunnett's test is being specifically employed, only a quasi-Dunnett's
test. That is, Dunnett's test is used as a simple method to arrive at a
solution. The test (actually, the table used to judge significance) remains

a judgement left to the researcher.

Dunnett's Test for Comparisons of Several Treatment Groups

with a Control

Dunnett (1955, 1964) devised a test that would allow the comparisons
of several treatment groups with a control group and still retain an ex-
perimentwise error rate. This test could also be used whenever an experi-
menter wished to test a group which might be called the "experimental group"
against ﬁeveral existing (but different) groups. 7

For example, a business educator may have, devised a new approach to
teaching beginning typewriting. The business educator may find that in-
stead of finding one typical approach to teaching typewriting there may be




severaf methods being used. Rather than lumping all of the existing meth

j§QSffogether and calling them a control group, it would seem more logical
| ta test the new approach against each existing group separately, but in a
single experiment. Dunnett's test is appropriate for this situation. So

“that the various tests can be compared to one another, a single data set

is used several times in this monograph. That data set is

TABLE 1.1
DATA FOR DUNNETT'S TEST

Control Group

Group One Group Two Group Three Group Four
9 8 13 15
8 7 10 12
6 8 12 10
3 6 11 i 17
4 6 14 ‘ 11

Yi = 6.0, Yé = 7.0, Vé = 12.0, Vh = 13.0.

Suppose the interest 1s in comparing the Control Group to Groups Two, Thr
and Four,
Viewing the problem from a regression viewpoint, 1t 15 helpful to de

fine four binary predictors:

>
—
»

1 1f the score 1s from a member of the control group

(Group One); and 0 otherwise,

>
»

2 1 1f.the score 1s from a member of Group Two; and 0 otherwise,

1 1f the score {s from a member of Group Three; and 0 otherwise

1 1f the score 1s from a member of Group Four; and 0 otherwise.




5
A linear model can be written for this situation:
Y = bo + b2X2 + b3X3 + b4X4 + e (1.6)

where

1}

bO the Y-intercept,

bp = the regression coefficient for Group Two,

o
i

3° the regression coefficient for Group Three,

o
£
1

= the regression coefficient for Group Four and

4]
—
i

= the error involved in prediction.

It can be noticed that the control group has seemingly been Jeft out.

However, 1f equation 1.6 1s solved for the expected value for a member of
the control group,
E(Y)
E(Y)

n>

by + by(0) + by(0) + by(0),

b

>3

The expectancy for a member of the contro) group is by definition Vl' Thus,
a least squares solution for bo is 71, the mean of the control group.

For a member in Group Two, the expected value 1is

E(Y) @ by + by(1) + b(0) + by(0),

E(Y) bg * by

E(Y) 2T, + b, (1.7)

[ >

A least squares solution for the expectancy of a given member of

Group Two {s the mean of Group Two. Thus

Vé = Vl + by, from equation 1.7, or

Vz 'Y.l a bz. (1-8)
Likewise .

b3=V3-Vl and b4=Y4-Y1.




Equation 1.6 can be rewritten

Y=V + (V2 - V)Xo + (Y3 - V)X + (Vg - Y )Xg + eg. (1.9)

‘Equation 1.9 1ists precisely the comparisons of interest for comparine
several treatments with a control. Since equation 1.6 (and, therefore,
equation 1.9) is the same model as has been given for a one-way analysis
of variance (Williams, 1971, 1974a), this approach also yields results
identical to the analysis of variance situation. Thus, using equation 1.6,
it can be seen that these two useful results can be obtained simultaneously
the usual analysis of variance as one part of the output, and Dunnett's
test as the other part.

The information necessary for a regression solution, with equation 1.¢

as the linear model, can be conveniently placed in tabular form (see Table

TABLE 1.2

REGRESSION FORMULATION FOR COMPARING SEVERAL
TREATMENTS WITH A CONTROL

-
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For the data in Table 1.2, a general purpose multiple regression
program was used. Table 1.3 contains the printout from that analysis.
The criterion variable is given as Y; variable 1 refers to the Con-
trol Group, variable 2 to Group Two, variable 3 to Group Three and
variable 4 to Group Four. Because variable 1 refers to the Control
Group, no information appears in the printout using that variable num-
ber. The table of residuals has not been included herein.

Table 1.3 contains the previously mentioned items. It can be re-
called that V& = 6.0, Vé = 7.0, Y_ = 12.0, Va = 13.0. The intercept

3
is 6.0 (within rounding error) and is V&. Also, b2 =1=Y -7, and

1
is 1n keeping with equation.1.9. Similar statements could Ee made
) concerning b3 and b4{ The computed t values in Table 1.3 are identi-
cally the same values as would result from the use of Dunnett's test.
It is only necessary to compare each of these values to Dunnett's
table for the test of significance. From Table Id, a computed t
value of 3.39 is needed for significance at the .01 level on a two-
tailed test, Thus, both Groups Three and Four are significantly higher
than the Control Group., It thus can be seen that the computed t
values, which are tests of the partial regression weights, should be

evaluated in this instance not by the traditional t table, but by use

of Dunnett's tables,
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9
Organization of this Monograph

The remaining portions of the monograph address multiple comparison
concerns not usually addressed by most available sources. An additional
objective is to reduce computations to a minimum. While computer programs

could easily be written for each specific situation, all that is neccessary
is a general usage multiple linear regression program. The print-out
shown in Table 1.3 would yield sufficient information for completing any
of the situations described in this monograph,

Chapter Two addresses multiple comparisons in the analysis of
covariance. The method described is much easier to accomplish than
the process described by Winer. Chapter Three considers the treatments
X subjects design (repeated measures). Chapters Four and Five consider
the two-way ANOVA fér the equal cell case and the disproportional case,
respectively. The N-way ANOVA is considered in Chapter Six. Finally,
Chapter Seven considers situations that do not lend themselves to a

simple solution as described here.




CHAPTER Il

MULTIPLE COMPARISONS IN
THE ANALYSIS OF COVARIANCE

In the analysis of covariance, each separate comparison will have
its own standard error of estimate even if equal N occur in each cell.
The equation for the standard error of estimate for a comparison in the

analysis of covariance is given by Winer (1971, p. 772),

S__ . . kvl —
Y1adj'YJadj =\J MSy, 1 1 4 (Xi - Xj)2
ni nj

where
V}adj = the adjusted mean for group 1;
V}adj = the adjusted mean for group J;
MSQ = the error term in the analysis of covariance;
n1. nJ a respectively cell frequencies for the ith and Jth groups;

X1. xJ = respectively the means on the covariate for the {th and
Jth groups; and
E =SS for the covariate,
XX W )
While researchers may feel justifiably 111 at ease in attempting to
use eguation 2.1, the use of regression can eliminate the tedious calcu-

lations, Further, more than one covariate can easily be accommodated.

An_Example

Table 2.1 is taken from Williams (1974a, p. 104 and p. 109). In
Table 2.1, X1 is a binary variable for membership in group 1, X2 is a

binary variable for membership in group 2 and X3 is similarly a binary

10




,ﬂand~x5 represents a measure of intelligence; the Y value represents a

"posttest score. Only the pretest is considered as a covariate in this

section; both the pretest and intelligence are considered as covariates

in the section under multiple covariates.

TABLE 2.1

Data for the Analysis of Covariance

Y X X5 X4 Xq Xg
35 1 0 0 12 120
27 1 0 0 17 98
32 1 0 0 13 102
29 1 0 0 10 106
27 1 0 0 8 94
38 0 1 0 29 123
25 0 1 0 12 96
36 0 1 0 17 108
35 0 1 0 22 115

' )| 0 1 0 15 128
0 0 1 17 90
0 0 1 22 110
0 0 1 10 94
0 0 1 8 95
0 0
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Under the assumption of a single regression line on the covariate

(the pretest, X4) an analysis of covariance can be accomplished with two

linear models:

Y = bO + blxl + b2X2 + b4X4 + e]. ’ (2.2)
and

Y= b0 + b4X4 te, . (2.3)

In that a large part of the print-out regarding equation 2.2 is useful, the

print-out is reproduced in Table 2.2,
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The usual analysis of covariance can be completed by using

(RE - R)/(g- 1) _ (.61959 - .47476)/2

(1 - R§)/dfwy (1 - .61959)/11
which for df = 2, 11, p > .05.

= 2.09,

In equation 2, the X5 variable has been omitted. Thus b1=71adj-75adj
and b2=7éadj-75adj. To find the adjusted means, the following equations

can be used:

Yjadj = b, + b474 = 15.36 + .76(15) = 26.76;
Vladj by + Vgadj

5.52 + 26.76

32.28; and

u
[}

b2 + Vbadj = 3.20 + 26.76 = 29.96.
The adjusted values agree with those originally given by Williams (1974a,
p. 106), though the method shown here s simplified somewhat.

More importantly, the standard error of the regression coefficients
corresponding to X and Xp are respectively equal to the standard errors
from equation 2,1 for comparing Y&adj to Véadj and VladJ to Y3adJ. Thus,
the computed t values given in Table 2.2 are directly usable in whichever
multiple comparison procedure the researcher prefers, Were there interest
in comparing Vladj to Véadj. a model of the form

Yombg #byXp + baky + byX, + e (2.4)

could be used, with focus on the computed t value for the X1 variable,

Complex Comparisons

Complex comparisors, or contrasts, can be completed in a regression ana-
lysis for the analysis of covariance as well. Suppose a contrast of the
form '

¥y V3adj - %Vladj - %Véadj (2.5)

is contemplated. First, equation 2.2 is reparametized as




LY = byt boXy + bgXy + byXy + e;. (2.6)
Then a restriction corresponding to Y1, by = by + Yb, is placed on
v equaiion 2.6:
a? ‘ Vo= byXy = bpXy + (hby+ 5y) X3 + byX, + ey .
Or,

<
[l

Two new variables can be constructed such that V1= 11if a member
of group 1, % if a member of group 3, 0 if a member of group 2; and
V2= 1 if a member of group 2.'% 1f a member of group 3, 0 if a member
of group 1, Then equation 2.7 can be rewritten as

Y= bV + byVy + byX, + ey . (2.8)
; Equation 2.8 (and also equation 2.6) could be processed using a program

such as Ward and Jennings' (1973) DATRAN or McNeil et al.'s (1975) LINEA

However, equation 2.8 can also be reparamettzed back into a form us
a unit vector as was done earlier. fhis can be accomplished by setting
either bl or b2 equal to zero, Setting bz = () ylelds
Y = by + byV) + bgXg + e3 . (2.9)
: Then R = .50151

R§ - RS . ;
To test v, ¢ » ? L T

t = 1.85, p> .05,

Concerns of Homogeneity Regression

To this point, the assumption of a single regression 1ine for the

% covariate has been made. A test can be made of this assumption; three

new variables are defined such that




X7 = XI'X4; and
X8 = X3'X4-
Then a model can be written as

Y

= bo + blxl + b2X2 + b6X6 + b7X7 + b8X8 + 64 .
RY = .71825. To test this for significance,

Fe (R - R3)/(g-1)
(1 - R VN -2g) °

= (.71825 - .61959)/2 _ _
F (1 -71825)/9 1.58; p> .05,

(2.10)

Had the F value been significant, some researchers would prefer to

abandon the analysis given earlier;

creasingly difficult.

Interpretations become in-

It would be inappropriate to attempt to

use the computed t values for testing b1 and b, in equation 2,10, The

would occur where separate regression lines are used
for each group on the covariate,

"adjusted means"

Since the covariance process is occur-

ring separately for each group, differences in the adjusted means would
not test any meaningful hypotheses regarding group differences on the

criterion score. Table 2.3 should help show why this is so.
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Does the information given in Table 2.3 suggest that _iadj - 'éadj

= 20.51697? The answer is a qualified "no". Only under the condition that

each group has its separate regression on the covariate, and its separate

mean on the covariate would by = Viadj - Véadj. However, that condition

is very different than most users of the analysis of covariance would
wish to use,

It is clearly quite different from asking, "If the groups were

equal (gn the covariate) at the beginning of the experiment, how do they

compare at the end?" Even if all groups are “adjusted" by using a co-

variate mean of 74 = 15, the difference in the regression coefficients
preclude interpreting by as "

a treatment difference after covariate

adjustment between groups 1 and 3". The analysis of covariance is usually

enlisted to test treatment differences in groups whose members were unable

to be randomly assigned to a treatment group, so that a statistical control is

used, While a test of significance on b1 can be legitimately done, 1t

does not address questions usually asked by researchers using the analysis
of covariance.

If the expected values are found for each group at X, = 15, then a

more useful result can be found:
E (V) X% 15) % by + by + by (15) 2
9.22224 + 20.51697 + .02173 (15) A 30.06516,

Likewlse, E (Yp, X4= 15) % by + by = by (15) 2,
9.22224 + 11.60924 + 64045 (15) 2 30.43823

and

E (Y30 %4= 15) 2 by + bg (15) 2 9.22224 + 1.19847 (15) 2
27.19839.




Js1on), it is the difference between E (Yl' X = 15) 2 30.06516
and E (Y3, = 15) £ 27.19839 or 30.06516 - 27.19839 = 2.86677 that is
11ek1y to be of interest rather than thinking bl
between Yl adj and Y~ adj.

The specific hypothesis tested in the analysis of covariance is
E(YpX=X)=E (Y, x=X) =, ., =E(Yg X = 7).
Testing this type of hypothesis ‘is shown 1in a series of steps in the

preface of Ward and Jennings (1973, p. xvii-xviii) test, Introduction
to Linear Models.

The interested reader is referred to that introduc-
tion; in the preface, testing this type of hypothesis is outlined 1n

steps 3 to step 11.

Multiple Covariates

Extensions to more than one covariate can easily be accommodated
both for the analysis of covariance and for multiple comparisons. The
intell1gence score, XS’ could be used together with the pretest as co-

variates. Assuming single regression ‘1ines for all three groups on the
two covariates, the model can be given as

Y% bg #byKy * byXy 4 bgXy + bok + e (2.11)

The use of the computed t values for bl and b2 allow a test regarding

differences among the adjusted means for comparing groups 1 and 2 with
group 3 respectively; tq = 1.95059 and ty = 38191, To test the differ-
ences between the adjusted means of group 1 to group 2, a model such as

b + blxl +b x3 + b4x4 +b
can be used.

5)(5 + e | (2.12)
Here, t; = 1.33421; also, t3 =-, 38191, reaffirming the t valye
for the difference between the adjusted means of groups 2 and 3. The
sign 1s changed because the direction of the comparison has changed;
for b, in equation 11, tp addresses Yyadj - V

3adj, for b3 in equation 12,

t3 addresses Y3adj Yzadj.

represents the difference
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CHAPTER 11

MULTIPLE COMPARISONS FOR
TREATMENTS x SUBJECTS DESIGNS

To consider multiple comparisons for treatments ¥ subjects designs

(or repeated measure designs) an example taken from Chapter 7 of Williams

(19744, P.56) is used. See Table 3.1,
TABLE 3.1

THREE TREATMENT METHODS OF PAIRED-ASSOCIATE LEARNING
WITH EDUCABLE MENTALLY RETARDED SUBJECTS

Subject Treatment One Treatment Two Treatment Three
1 18 27 15
2 17 ‘ 24 14
3 14 13 12
4 5 8 6
5 11 14 10
6 9 12 8
7 14 16 15
8 12 17 9
9 22 21 16

10 10 18 15

The 1nformation 1n Table 3.1 can be placed 1n a tabylar form suitable
for use 1n a regression format; see Table 3.2.
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o AR T TABLE 3.2

l» X, X3 X

-
o

0
oo»—-oo-—aoo-—-ooo—aooo—-oo-—-oo-—-oo-—aoor—-ooé
OD—IOOHOOHOOHOOO—‘OOHOOHOOHOO'—‘OOHO
-—-oo»-oo-—-ooo-oc‘:-—-oo»-‘oo.—noo-—-oo»—aoo-—-oo
ooooooooooooooooooooooooooo»—-.—-.-‘
oooooooooooooooooooooooo.-»--—-ooo
ooooooooooooooooooooo.—-:—-.—-oovooo
ooooooooqooooooooc:u-u—u—-ooooooooo
ooooooooooooooo»—-.-u-oooooooooobo
oooooooooooo.—-.—-—-oocoooooooooooo
oooooooop-—-o-u-:oooooooooooooooooo
oooooo»—-—-—:oooo-ooooooooooooooooo
ooo-—-o—-—-oooooooooooooooooooooooo

The values in Table 3.2 are defined as follows:

Y = the criterion score;

Xl- 1 1f the score corresponds to Treatment 1, 0 otherwise;
Xz- 1 1f the score corresponds to Tredtment 2, 0 otherwise;
X3= 1 if the score corresponds to Treatment 3, 0 otherwise;
X4= 1 1f the score is obtained from Subject 1, 0 otherwise;
1 1f the score is obtained from Subject 2, 0 otherwise;

'IJ1Q§£r§tion of Design Matrix for Treatments X Subjects Designs

-—-HHOOOOOOOOOOOOOOOOOOOOOOOOOOO

o X5 Xg X5 Xg Xy Xig Xy X, Xpg *14




models are defined, one for the treatments effect,

effect and one for the combined treatments and subjects effects.
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><
(o)}
"

1 if the score is obtained from Subject 3, 0 otherwise;

>
1]

7 1 if the score 1s obtained from Subject 4, 0 otherwise;
X8 =1 1f the score is obtained from Subject 5, 0 otherwise;

w
n

1 1f the score 1s obtained from Subject 6, 0 otherwise;
Xlo = 1 1f the score is obtained from Subject 7, 0 otherwise;
X11 = 1 1f the score is obtained from Subject 8, 0 otherwise;
12 = 1 1f the score is obtained from Subject 9, 0 otherwise;
13 = 1 if the score ig obtained from Subject 10, 0 otherwise; and

X14 = the sum of the criterion scores for each subject separately,

The analysis in Williams (1974a) proceeds as follows: three 1inear

one for the subjects

These

models are given as

Vo by + biX) + byXy + ey, (3.1)

"% Bo ¥ b¥y + bgs + beXg + byXy + bty + box, + P10¥10 * byy¥yy +
bigXip * €0 (3.2)

and

R L R by, + bokg + box, +
P10%10 + byyXyp * bypkp, + ey (3.3)

The assocfated RZ values and sums of squares (SS) for equations 1-3

are Rf * 17845 S5, = 136.27; R = L6023, S5, = 521.20; RS = .8607;

553 = 657.47; SS; = 763.86.

A complete summary table is shown in Table 3.3,
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P TABLE 3.3
SUMMARY TABLE FOR THE TREATMENTS X SUBJECTS DESIGN

Source of Variation df SS MS F
Treatments 2 136.27 68.13 11.52
Subjects 9 521.20

Error 18 106.39 5.91

Total 29 763.86

An alternative analysis using X14, the sum of criterion scores
for each subject, would use the following equations (Williams, 1977a):

Y= byt blx1 + b2x2 + el, (3.1)

Y = by + bygXyy * ey (3.4) and

Y = by + blx1 + b2x2 + b14X14 + ey (3.5)

The results, 1n terms of sums of squares and R2 values, 1s identical to
that already given, with R = Rg 55, =85, R = R and S5 = 55,
However, care must be taken with the degrees of freedom. Equation 3.4
uses only one predictor; thus, the "apparent" degrees of freedom is
one. It must be remembered that the actual df = N - 1,

The analysis to this point has been focused on constructing the
usual ANOVA summary table rather than being concerned with  the possible
comparisons of means. Suppose there is interest in testing hypotheses
regarding the means: u 1= 2 s u ) =y 3 and Wy = u3. Testing
these hypotheses can be accomplished with two different formulations
of the full model, equation 3.3 and

= + + + + + +bX +bX +
Y=0> blx b X b X, + b.X b X b7X7 g's

0 1 33 4”4 55 66 99
byg¥1o * bllx11 + b12X12 + e3.(3.3a)

Part of the printout from the use of equation 3.3 is shown in Table 3.4.
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From Table 3.4, it can be seen that t1 = 1,10362 and t2 = 4,59846;

these t valyes are respectively the tests regarding comparing 7& to Vé

and Y, to Y3, taking into account that the subjects serve as their own
controls. A similar printout could be generated using a model corre-
sponding to equation 3.3a. Values from this printout show ty = -3.49484
ty = -4l59847; fhese t values correspond to comparing 7& to Vé and

Vé to 7&. Also, the corresponding means are 7& = 13.20, Y, = 17.00

and 73 = 12.00‘ Because the comparisons are being done on an 3

posteriori basis, and because all possible simp]e comparisons are

being evaluated, Tukey's (H.S.D.) test is an appropriate multiple

comparison procedure to evaluate the differences in means. Tables

I1a and IIb utilize the computed t values directly for the Studentized
range statistic; for o = .01, t = 3.326 and for o = .05, t = 2,553,
Two t values are significant; comparing Vl to Vé (t = 3.49484, dis-
regarding the sign) and comparing Vé to Y3 (t = 4.59846), both exceed

3.326 (p <.01)., To compiete these comparisons using Tukey's test,

v = dfw = 18 and r » 3.

Using the Shortcut Method
The solution Just given in the last section presumed that each
subJéct (except one) 1s separately coded using a binary coding scheme.
Clearly, 1f the number of subjects {s at all large, the coding procedure
described in Williams (1977a) and using equations 3.1, 3.4, and
3.5 might be preferrable. However, one difficulty with using this
shortcut procedure is that the standard error of the regression

coefficients for Xy and X, are too small due to the degrees of freedom,
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as generated by the computer program, not being accurate for deviation

from regression. These t values could be adjusted by multiplying by an

\/ MS

appropriate constant. The appropriate constant is: ¢ =///MSW3.5 (3.6)
\ W
. 3.3

where MSw is the mean square within (or deviation from regression)

for equatién 3.5 and MSw3 3 js the mean square within for equation 3.3.

The MS is 4.09225 and MS is 5.91125. Thus, ¢ = .83203. The
W3.5 w3, 3

values generated by equation 3.5 for t1 and t2 (comparing Yi to Vé and
Y, to Y3) are ty f 1.32641 and ty = 5.52678. Multiplying t1 and t2

by ¢ yields corrected t1 = 1.10361 and corrected t2 = 4,59845, within
rounding error of the values found earlier. Of course, MSw3 3 would
not be available were the researcher using the shortcut method.

However, MS = SSw3,5 (3.7) where N is the total number of scores,
¥3.3 W-5-g #1
S {s the number of subjects and g 1s the number of groups. The denom-

inator in equation 3.7 can also be found as (S-1)(g-1).




CHAPTER IV

MULTIPLE COMPARISONS
IN TWO-WAY LAYOUTS

Before considering specific questions in a multiple compérison frame-
work given two-way designs, it is useful to consider several unique con-
cerns of such analyses. First, some rectification neéds to be done
regarding decisions on whether to employ 5 fgmilzyapproach, or tofuse the
experiment with all of its dimensions as the unit for deciding upon the
number of comparisons. That 1s,yare results for'kows to be interpreted
without consideriné the results for columns and/or interactions? Similar
questions could be posed for columns and interactions as well. On the
one hand, statistical tradition would be on the side of using familywise
error rates where the row comparisons, column comparisons and comparisons
involving interactions would be interpreted with their own error rates.
On the other hand, 1f the row, column and interaction effects are tested
independently at, say, the .05 level, then the overall error rate is
1- (1-.05)3. The logic of multiple comparisons would suggest that all
comparisons in the experiment be taken into account in reporting proba-
bilities.

In the long run, the researcher has to take the responsibility of
deciding whether to' use a family approach or to use an approach that uses
the ekperiment as the unit for comparisons. Whatever decision 1is made,
communication should be made to readers so that they understand the
ground rules used by the researcher. Having at {east brought up sorie of

the unique concerns of a two-way Jayout, we can now turn our attention to




an actual problem.

An Example for A Two-Way Layout
ra

The folloWing example is taken from Williams (1974a)

Suppose a researcher wishes to measure the effects of three
different approaches to teaching arithmetic combined with
four different methods of assigning homework. Suppose there
are 24 students available, so the students are randomly
assigned to one of the 12 (3x4) treatment combinations.

When the experiment 1s concluded, a standardized arithmetic
test consisting of 20 items with the items in a multiple
choice format is administered. The three different methods
of teaching arithmetic are 1) teaching arithmetic with the
problems very similar to the final test; 2) teaching arith-
metic with half the problems similar to the final test, and
the other half dissimilar to the final test; and 3) teaching
arithmetic with the problems dissimilar to the final test.
The four different methods of homework are 1) problems in a
multiple-choice format; 2) homework is of a project nature;
3) problems from the book in which the student supplies his
own answer, and 4) no homework. The data for this experiment
are in Table 4.1,

TABLE 4.1
DATA FOR METHOD OF TEACHING X TYPE OF HOMEWORK
Method of Teaching

Type of Homework Very Similar Half Similar, Dissimilar

Material to Half Dissimilar Material

Final Material to Final to Final
Multiple Choice 18 . 10 12
Items 10 6 10
Project 5 2 9
J 3 2 3
Student Supplies 7 6 4
Own Answer 3 2 2
No 2 7 10
Homework 0 5 6
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When proportionality is present, several alternative approaches will
yield the same end products in the summary table. A simple to use approach
is to successively analyze the data into three different one-way layouts.
One layout would consider each treatment combination as a separate group.
Thus, there would be (4)(3) = 12 groups. An analysis of variance could be
generated by the following model (Model 1):

Y = by + biXy + byX, + byXg + byXy + bgXg + bgXg * bsX; + bgXg +

DoXg + b1gXyg + byyXyp *eqs (4.1)

Y = the criterion variable,
b0 = the Y-intercept (in this model, b0 will equal the mean of
Group Twelve), '
X1 = 1 1f a score is from a member of Group 1; 0 otherwise,
X2 - X12 = 1 if a score is from a member of the group corresponding
to the subscript number; 0 otherwise,

b1 - b11 = the regression coefficients for X1 - X x and

e; = the error in prediction with this model. 1
A second model (Model 2) would include only information regarding the rows,
disregarding the particular column:
1By ¥ bygkigt bigyy * bighys * e, (4.2)
where
b * the Y-intercept for this model (in this Model, by il
equal the mean of the fourth row, no homeyork),

X13 = 1 1f the score is from a member in row 1 (Multiple

Choice Items); O otherwise;
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1 if the score is from avmember in row 2 (Project);
0 otherwise;
a if the score is from a member in row 3 (Student
Supplies Own Answer); 0 otherwise;
to byg = the regression coefficients corresponding to
X;3 to X5 and
e = the error in prediction for this mode]
A third model {Model 3) would include only information regarding the
columns, disregarding the particular row:
V= By * bygXyy + bygkig * ey (4.3)
where
bg = the Y-intercept for this model (in this case, by will equal
the mean of the third column, Dissimilar Material to the Fina]j;
X7 = 1 1f the score 1s from a member in column 1 (Very Similar
Material to the Final),
X1g = 1 if the score 1s from a member in column 2 (Half Similar,
Half Dissimilar Material to the Final),
by7 b18 = are regression coefficients for X17, x18, and

ey * the error in prediction for this model.

A fourth model (Model 4), while not necessary when the data is proportional

is useful in understanding the process:
Y= bo * bygXyz + bygkig * bygXps + bygXyy + bighig * &g (4.4)
where

by = the Y-intercept for this model,

X13 to X18 = as defined in Models 2 and 3 (excluding X16)
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b13 to b18 = are regression coefficients for X13 to X18 for

this model (excluding b16)’ and
€, = the error in prediction with this model.
Note that X12, X16 and X19’ corresponding respectively to the score is from

Xyp = 1 if the score is from a member of the 12th cell; 0 otherwise,

[}

X16 1 if the score is from a member of row 4; 0 otherwise and

X19

1 if the score is from a member of column 3; 0 otherwise
are not used in the formulation of the analysis; in that they may be useful
for multiple comparisons, they should be included. Al] of the information

regarding a regression solution 1s given in Table 4.2.




TABLE 4.2

REGRESSION FORMULATION OF THE TWO-WAY ANALYSIS OF VARIANCE
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Jsing the four models (Models 1-4), the portion of the summary table for
‘egression can be used directly. The portions of interest, taken directly

‘rom the printout, are reported in Table 4.3.

‘ TABLE 4.3
VALUES FOUND FROM THE REGRESSION ANALYSES

df $s RE

dodel 1

Attributable to Regression 11 - 312 .77228

Deviation from Regression 12 92 .22772

Total Sum of Squares 23 404
iodel 2 (Rows)

Attributable to Regression 3 204 .50495
fodel 3 (Columns) :

Attributable to Regression 2 16 . 03960
Yodel 4 (Rows & Columns)

Attributable to Regression 5 220 . 54455

The data from Table 4.3 can be put into a summary table. There are four
sources of variation of interest in a two-way analysis of variance: rows,
:0lumns, interaction (among rows and columns) and the within group varia-
tion. The sum of squares for rows can be found directly from Model 2 as
the value for attributable to regression and 1s 204, The sum of squares
for columns can be found directly from Model 3 as the value for attributable
to regression and is 16. The sum of squares within 1s equal to the devia-
tion from regression for Model 1 and 1s 92. The interaction can be found
as.the d1fferehce in sum ofvsquares between the attributable to regression
for Model 1 and the attributable to regression for Model 4: 312 - 220 = 92.
Also, the degrees of freedom are necessary for each source of variation.
The degrees of freedom for rows is the number of rows minus one {r - 1);

the degrees of freedom for columns is the number of columns minus one (¢ - 1);

WGy,




the degrees of freedom for interaction is the pko
freedom for rows and columns [Z - 1)(c - 1)

freedom are the total number of subjects minus one (

summary table.
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See Table 4.4,

TABLE 4.4

Summary Table For Data For Method
Of Teaching X Type of Homework

Source of Variation df SS MS

Rows
Columns
Interaction

“Within
Total

204.00

3 68.00
2 16.00 8.00
6 92.00

12

15.33
92.00 7.67
3 404.00

duct ofithe degrees o
s the total degrees of ’
N - 1), _
A1V of the information for the data in Table 4.3 can be put into

a

F
8.87
1.04
2.00

Traditionally, each F value is Interpreted as'essent1a11y a separate
experiment; the wording used {is independent. For this model, the row n%g
column effects are independent, as well as both effects being independ ;
of interaction, This is not the same as saying the F vajues are inde-
pendent; the F values are correlated due to sharing a common denominato
The numerator sums of squares are independent. The probability of a
Type [ error for the experiment 1s not o, but 1 - (1 - a)3. For those
who prefer to use a family approach and interpret rows separately from
columns, eté., they might repeat the error rate as o for a given effect
but not for the experiment. In any event, the data reported here are
unequivocal in their fnterpretation. Clearly there is a significant

row effect, and no other.




An Alternative Formulation for Model 1

The linear model given for Model 1 was a model that ignored row and
column information, and viewed the problem as one that contained twelve
groups. An alternative formulation {Model 1la) is:

Y = by *+ b13X13 + b14X14 + b, X, +b X17 + b, X b,nX

15715 17 18518 * P2o*20 *

by1Xp1 * booXap + bygXpg *+ bygXoy + bygXos + €y, (4.5)
where
bO = the Y-intercept (and equal to the mean of group 12),
X13 to Xyg = as defined previously,
Xpq = the product of X3 times X ),

X

17 K3y
%217 %13 7 K
X2 = X4 " X175
%23 % %14 " 180
X4 = Xy5 " X179
X5 = %15 * X180
b13 to b25 = are regression coefficlents corresponding to

X13 to X.. (excluding X6 and X19) and

5
ey = the error in preiiction with this model.
Both Model 1 and Model la can be referred to as full models. It can be seen
that X13 to X15 impart row 1nformat10n,vxl7 to X18 {mpart column 1nformatjon.
and Xoq to X25 report the product of row and column information. Thus, inter-
action 1s the difference between tﬁe full model and the model that does not
include the product of row and column information. |
Also, reflection on X,g to X,g would show that Xo0 = X1» X21 = X2,

X22 = Xg» K03 = Xg, Xo4 = X7 and Xp5 = Xgj thus, Xi, X2, Xg s X5, X7 and X8
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can represent X20 to X25., See‘Table 4.5.

Multiple Comparisons for. Rows

Most often solutions to the two-way ANOVA~ design follow some form

similar to equation 4.5 (Model 1a) where the row,

column and 1nteract1on.
effects are shown in the same model. The f1rst mode1 (

Mode] 1, equat1on
4.1) is more useful as a full model if any multiple compar1sons are conte

p]ated Before proceeding, an intermediate model

» @ reparameterization o

Mode] 1 can be given as

V= DyXy ¥ bpXy + baky + byXy + boks + bk, + byXy + bgXg + byXg +

b10¥10 * byrXyy * bypXip t ey (4.6) (Model 1b).

The difference between Models 1 and 1b is that Model 1 containswa unit veg% r

but not b12X12’ whereas Model 1b contains b12X12 but not a unit vector,

Model 1b serves as a good conceptual starting point that, depending upon

the program available, may have to be reparameterizgd.

Suppose there 1s an interest 1n comparing row one to row four. A

comparison of interest might be:

nV1taTa4na¥y  nioVigtn Viytngly,
nytnang Mo*htre
In that each ny = 2, equation 4.7 reduces to
Vit Vot Vg = Vypt 7+ Vi,

(4.7)

In terms of the regression coefficients, the comparison can be stated

as b1+b2+b3 = b10+h11+b12.> (4.8)

Transforming equation 4.8 by isolating b1

bl = blO + bll + b12 - b2 - b3- (4-9)
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_Equation 4.9 is a restriction on Model 1b (equatlon 4.6); the right hand
ks1de of equation 4.9 can be substituted for b1 in Model 1b:
"= (B1g*h1ythypmby=bg)Xy + byXy + baXy + byX, + bs¥s + bXg +
b7X7 + bgXg + bgXg + bigXig+ byyXy; +\b12X12 *eg;
" 0AaTHy) * bXH) + byXy + bsXs + beks + byx, + bk, +
bokg * b1o(X10*K1) + byy(X11+X1) + byp(Xpp* Xy) + es.  (4.10)
Five new variables can be defined:
Vi = 1if from cell 2, -1 if from cell 1, 0 otherwise;
V2 = 11f from cell 3, -1 1f from cell 1, O otherwise;
Vi = 1.1f from cell 10 or cell 1, 0 otherwise;
Vg = 1 if from cell 11 or cell 1, 0 otherwise; and
V5 = 1 1f from cell 12 or cell 1, 0 otherwise.
Equation 4.10 can be tran§formed to
Y = b2V1 + b3V2 + b4X4 + b5X5 + b6X6 + b7X7 + b8X8 + b9X9 +

b10V3 + b11V4 + blzvs + eg5. (4.11)

vector. If the available programs require the use of the unit vector (the
is, & constant term is included) then any one of the variables could be
excluded (say Vg ) by setting one of the regression coefficients equal to.
zero, If b12 = 0, then equation 4,11 is reparameterized to be ‘
"7 b * By¥y *+ baVy + byky + bgks + bgkg + by + bgkg + boXy +
bigVs *+ byqVy + es. (4.12)
Using equation 4.12, the following result was obtained: R

2 o
R12 .50496.
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Now, the following equation is necessary:

(RE - RR) / k
1. RE) 7 ar, _ (4.13)

R% = the R2 value for the full model,

2
~n
i

the R2 value for the restricted model,

=
1]

the number of restrictions, and

dfw= the degrees of freedom for the within term in the full model,

For the comparison of row 1 to row 4,

R§ = .77228, k = 1, Rg = ,50496 and df = 12.
W
Then
= (77228 - .50496) / 1 _ .
F (1= .77238) 7 12 . 14.08682;

JF=t = 3.75324. This t value could be compared to an appropriate

table of critical values for multiple comparison procedures. This brings
us back to the original point made in this chapter; the unique concerns of

two-way ANOVA's as 1t relates to multiple comparisons need to be addressed

.

Choosing An Appropriate Multiple
Comparison Procedure for Two-Way ANOVA's

Ideally, a researcher will have chosen a priori comparisons (or con-
trasts). Perhaps the most 1ikely a priori procedure to be of use is
Dunn's (1961) test. If a limited number of comparisons are chosen on
a reasonable basis, then the two-way ANOVA design can be handled without
any new complications. _

The more difficult situation arises 1f a posteriori contrasts are en-

visioned. For example, the t value found in the previous section might be




tested by Scheffe's test; the t valye could be directly compared tg

S = JT—:Ij?T where k is fhe‘number of éfoﬁbs (12) and F is the tab]ed'}

F va]ue for k-1 and N-k degrees of freedom; S =\rII?§T757-at the .05 |
Tevel; S = 5,47, This outcome may seem bewildering; what §§gm§ to be‘a'
Tikely significqnt oOutcome, testing row 1, with a mean of 11, against row
5, with a mean of 5, fails to achiéve significance. Clearly, some other
Strategy needs to be used for the two-way situation.

Reference can be made back to the idea of é family of comparisons; "
there are three Tikely kinds of families; the family of comparisons fop
rows, the family of comparisons for columns, and the family of compariééﬁs
for interactions. By apportioning the error rate to different portiohs%gf
the experiment, the total experiment can remain as the basis for interp?%—
tations. \For example, the researcher might report the overall error rafé

as .05, apportioning .02 to each of the main effects and .01 to the inter-

actions. Thenthe critical values would be

a) for rows, Sp = f{r-1) .02Fr-1.dfw :

b) for columns, Sc = u(c'l).ozFC-l.dfw s and

¢) for interactions Sy=\(k-1) .OIFk-l,dfw . | :
These values are respectively s. = 3.86; Sc = 3.38; and S; = 6.81. quii
using the first critical value, the previously found t value (t = 3.75324)
falls to achieve significance. Had a s11ghtly different allocation beéﬁ%?
made (say .025 for both row and columns), eliminating comparisons of céiff
means, then S, = 3.66 and S¢ * 3.19. In that case, the previously found **
t value would be stgnificant. If row 2 and row 3 are compared to row 1 ‘ﬁ'

in a manner similar to that described here for comparing row 1 to row 4, ;
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. then in both cases, t = 4.37883, both showing significance by the earlier

critical value of 3.86.

Multiple Comparisons for Columns
Testing for differences among columns can proceed in a manner similar

to that shown for rows, columns 2 and 3 could be compared. The corresponding
comparison (or contrast) is: ‘
na¥2 + n5¥s + ng¥g + n11Vyy = ngV3 + ngTs + ng¥y + ny,¥yy
g * Mg *ng+np 3 ¥ NG *ng *npp

Since all of the n's are equal, equation 4.14 reduces to

© (4.14)

Vst Vgt Ty = Va4V, +7,

In terms of the regression coefficients, the comparison can be stated

as

If b2 is isolated,
by = byt bg+bg by -bg - bg- by (4.15)
Equation 4.15 1s a restriction on the full model (equation 4.6) corresponding
to the null hypothesis in equation 4.14, comparing columns 2 and 3.
Substituting equation 4.15 for by 1n equation 4.6 yields
bsXs + bekg + byky + bgXg + bokg + bygkig + byjXi 1+ bioX), + g
Y = blxl + b3(X3+X2) + b4X4 + b5(x5'x2) + b6(X6+X2) + b7x7 + b8(X8-X2) +

by(Kg*ka) + D1oXig * byy(Kygmkp) * bpp(XjpHip)t e (4.16)




V6 =114f cell 3 or cel 2, 0 otherwise;

<<
~
]

11if cell 5, -1 if cell 2, 0 otherwise;
Vg = 1if cell 6 or cell 2,0 otherwise§

Vg =11f cell 8, -1 if cell 2, 0 otherwise;
Vo = 1 1f cell 9 or cell 2, 0 otherwise;

Vi1 = 19f cell 11, -1 i cell 2, 0 otherwise; and ' j“{
V12 =114f cell 12 or cell 2, 0 otherwise.

Equation 4.16 can be transformed to

b11V1 * bypVyp * &g

Reparameterizing by setting b__ = 0 yields

12 : >
Y = by + byXy + baVg + bgXg + bgVy + bgVg + b7X7+ bgVg + bgVqg + -  {

R

b (4.17)

111 * &
Using equation 4.17 as the restricted model and equation 4.6 as the full

b1o%10 *

model ylelds

(.77228 - .73267)/1 = 2,08730.
(1 -.77228)/12

t «(F = 1.44475, This t value is of course non-significant. Other

Fw

column comparisons couTd be achieved in a similar manner.

Comparisons of Cell Means
Comparisons regarding cell means can be fairly simply conceived by |
viewing the analysis as a one-wav lavout; comparisons can be achieved into

different approaches (but which yield identical t values). The more
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vlimportant issue is: Are the number of comparisons of experimental interest,

i decided on prior to the analysis, sufficiently small to justify the use

q

L of Dunn's test? If so, then a much more powerful test can be performed.

Ideally, the number of cell comparisons can be integrated into the row and

i column comparisons so that the interpretation can be made in an unambiguous

;gmanner. However, the error rate can be partitioned into three distinct

f‘units and a separate portion for comparisons among cell means can be used.

If any comparison (including complex contrasts) is envisioned, the use of

{ full and restricted models can be followed as outlined for both rows and

f columns earlier in this chapter. For example, suppose there is interest

; in comparing 71 to 712. The restriction to accomplish this comparison is

*fbl = b12 when using Model 1b (Equation 4.6) as the full model. Then

Y = blle + b2X2 + b3X3 + b4X4 + b5X5 + b6x6 + b7X7 + b8X8

* bgXg + bygXyg * byyXyy * byoXyp * ey

- + +
Y b12(X1 x12) b

+ bgXg + boXg * byokig + by Xy * ey i

Y ombVyg ¥ byKy + bk #byK, b bKe ¥ DK+ ByXy + DKy |

+ + + + +
X2 b3X3 b, X b_X b X b_X

2 474 56 66 77

! *bg¥g * Byokyg * bk T 8 ‘ ?

. where

Vi = 1.1f cell 1 or cell 12, O otherwise (V13 happens to equal Vs).

L Then ),
' (Re - RR) /1 (.77228 - .68317) )1
(1- RE) / df, (1-.77228) / 12




F = 4.69576; therefore t = F % 2.15697.
In the specific casewwhereinjth’Eéﬁszéaﬁgwaké'being compared, a

is

4 B -
simplified process will yield the same 't value; if either b1 orb 1

2
(as 'is true of most

set equal to zero and if a unit vector is available
general purpose multiple linear regression computer programs), then the

remaining b value is tested by the computed t value as a test of the partial
regression coefficient. As an example, bip = 0, so that a model identical *

to equation 4.6 is employed. See Table 4.6.
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v As can be seen from Table 4 6 the computedyf va1ue fﬁrixl

(variable 1) is 2, 16693, w1th1n round1ng error of the value found

earlier through the use of™he full and restr1cted mode]s, th1s
computed t value can be dfrectly.compared to the appropriate table,
depending upon the multiple comparison test used. The remaining
t values are available in case there were interest in testing any of
cells 2 through 11 to cell 12. |

Suppose there was an interest in testing Vé‘to Vg. ‘This

could be accomplished by either of the following models:

Y= B by Xy byKp + gy ¥ bty + beXe 4 X, + box 4
bgXg + b10x10 + qu11 + b12 12 +~e1 (4.18) or
Y bg ¥ ByXy + bpXy by + boky + beXek boky + boxg +
R ULTIMUTUPIPUPR Y (4.19)

In equation 4.18, bgX has been omitted, and hence, by = Vg and

by = V3 - Vi the test of the regression coefficient (the computed t
value) 1s the test of significance for the difference between Y3 and
Vg. Equation 4,19 simply reverses the roles of variables 3 and 6
respectively for equations 4.18 and 4.19. Therefore, by ="bg and

ty = -tg from equation 4,18 to 4.19, Of course, the use of full and
restricted models would have yielded the same result.

Clearly, the concerns of multiple comparisons when addressed to

the two-way layout are complex. Most questions of substance require

the use of full and restricted models, which reduiré the researcher to

state comparisors in terms of the regression coefficients. Comparisons among
cell means can be accomplished either through the use of full and restricted

models, or through the use of the unit vector together with the omission

of one of the groups of interest as a predictor.




CHAPTER V
MULTIPLE COMPARISONS FOR
sPROPORTIONATE TWO-WAY LAYOUTS

Many readers are aware of some of the complexities involved with
-way disproportionate analyses of variance. Several different points
view have been made; Jennings (1967) proposed a solution through the
of full and restricted models. Williams (1972) showed that his un-
usted main effects solution agreed with Jennings. Overall and Spiegel
69) described three solutions: 1) a fitting constants solution
so described by Anderson and Bancroft, 1952); 2) a hierarchical
1968); and 3) a full rank model solution, more recently

.ution (Cohen,
{led the “"standard" solution for Timm and Carlson (1975) and apparently

.epted as such by Overall, Spiegel and Cohen (1975) despite Overall
| Spiegel's previously showing that the full rank model failed to
rieve an additive solution given that proportionate, but unequal cell

aquencies occurred. Speed and Hocking (1976) described various so-

itions in terms of the hypotheses tested. Williams (1977b) showed that

o solution proposed by Jennings and arithmetically identical to the

adjusted main effects solution was also properly a full rank model

lution.
Often the researcher who is nore concerned with getting any so-

ition, rathar than worry about what might seem to be a complex argument

wong scholars, is content to use a solution available through the
ycal computing facility. Given the difficulties involved with inter-
reting a disproportionate two-way analysis of variance, and given the
omplexities involved with multiple comparisons in a t&o-wgy lay-

ut  described in Chapter Four, the reader might fairly ask, “How much

47




more comp1ex are mu1t1p1e compar1sons for the d1sproport1onate¢case?"
3 wo

e ) 23
‘« (o 5 P

Luckily, the answer is that for a g1ven set of hypotheses (or comparQ

isons) multiple comparisons ior the disproportionate case are not too

much more complex than they are for the equal cell frequency case.
An Example

Table 5.1 contains data for the two-way disproportionate case.

’ Column 1 Column 2 Column 3
Row 1 '8 8 1 1 6 2
6 6 1 2
4 4 1 6
Row 2 10 7 7 10 10
10 5 5 9 9
4 4 77
4 4 5 5’
3 3 4 4‘

The systematic nature of the data within any cell is by no means
coincidental; the data first reported in Williams (1972) which had an

N = 18 has been doubled to an N = 36 by recording each score twice.
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First, several variables can be defined:

x1 =1 1if in cel1 1 (row 1, column 1), 0 otherwise; .

X, =11if in cell 2 (row 1, column 2), 0 otherwise;

X3 =1 1if in cell 3 (row 1, column 3), 0 otherwise;

><
E=3
1%
—

otherwise;

0
0

if in cell 4 (row 2, column 1), 0 otherwise;
X5 = 11f in cel1 5 (row 2, column 2), 0
0

X = 1if in cell 6 (row 2, colum 3), O otherwise;

X7 =1 if inrow 1, 0 if in row 2;

1 if in column 1, 0 otherwise;
X9 =1 1f in column 2, 0 otherwise;
Xlo = X7 * XB; and

X11 = X7 * Xg.

Two different full models could be given:

Y = bo * biXy + bpXy + b3Xg + bgXq + bgXs + eq; (5.1)

or

Y = by + byX; + bgXg + bgXg + bygXjp *+ bypXyy + ep. (5.2)
A row model could be given as

Y = b0 + byXy + ep. (5.3)

The column model 1s

Y = bo + b8x8 + bgXg + ej. (5.4)

The combined row and column model {s

Y = bO + b7X7 + b8X8 + b9X9 + e4- (5-5)




If there is interest in reproducing the sum oftsquaréﬁ
P e P I ¥
be found as

2y,

i} 2
SScoLums = 5p (R5.4)s (5.7)

2

2
5 5.2~ Rg 5)s (5.8)

ROWS X coumns = 5S¢ (R

and
s =SS (1-RZ,). (5.9)
WITHIN 5.2'° .
Equations 5.6 to 5.9 will produce a solution that has been cai]ed the
unadjusted main effects solution that is identical for eéchﬂéffect to
the solution proposed by Jennings (see Williams, 1977b).‘ If the full-
rank model soultion preferred by Timm and Carlson (1975) 1s desired,
several changes would be necessary; these changes are also described
in Willlams (1977b).
The interest here, however, is in multiple comparisons; the whole
1ssue of which analysis of variance solution should be used might be
avoided and the comparisons of interest pursued, However, Table 5.2

contains results from the use of equations 5.1 to 5.5.

TABLE 5.2 7
SUMMARY INFORMATION FROM THE USE OF EQUATIONS 5.1-5.5

SST = 264,
Full Model(s) (Both Equations 5.1 and 5.2)
2

R,z = 61212 SS;, = 161.60,
Rows: RE 5 = .15427 SSpgys = 40.73.
Colums: RE , = .28355 SSgo yys= 74.86.
Rows, Colums: RZ s = .60797; SSpous x coLumns = 1-10-
Within: SSyprury = 102.40. - :

they could -
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Testing for Comparisons Between Rows

Since there are only two rows, clearly the only comparison will in-

volve row 1 and row 2. A likely comparison of interest is

nIVi + nzvé + n3vé = n4747+ n5757+ nﬁibr . (5.10)
"1 +no +n3 ng + ng + ng

In terms of the regression coefficients, and assuming a reparameterized
full model, eliminating the constant,

Y = byXy + boXp + b3X3 + bgXq + bgXg + bgXg + ey, (5.11)
equation 5.10 can be stated as

niby + mpby + ngby = Ngby * ngbg + ngbg (g
Tny N, +ong ng + ng * ng

Solving equation 5.12 for by yields

= (ngbg + ngbs + ngbg) (n1 + np + n3) - nabp - n3b3, (5.13)
N (n4 +ng + "6) n n
Substituting this value back into equation 5.11 yields

Y = | ngby * ngbg + ngbg (ny + np + n3g) = ngbz - n3b3l x; +
n (g ¥+ ng ¥+ ng)  "m; n

b2X2 + b3X3 + b4X4 + bsxs + b6X6 + eg.

After some algebraic unravelling, the previous equation ylelds

n n
Y w by (Xp - 75 X) + by (X3 = 73 X;)
by |xg+De {MLEN2Y N8 b b | X 215 (g +n2 +n3)
4 TSRO Ty ny (ng *+ ng * ng)

(ny +ng + n3)
+b6 E +—ﬁ m X1 +e5 (5.14)-

Since ny = 6, np = 4, n3 = 4, ng =2, n5 = 10 and ng = 10, five new
vartiables can be defined to correspond to the variables in equation 5.14:

V1 a1 {f from cell 2, -.6667 1f from cell 1, 0' otherwise;

2 =1 1{f from cell 3, -.6667 if from cell 1, 0 otherwise,
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V3 = 1 if from cell 4, -2121 if from cell 1, 0 otherwise;
V4 =1 1if from cell 5, 1.0606 if from cell 1, 0 otherwise; and
Vg = 1 if from cell 6, 1.0606 if from cell1'1, 0 otherwise.

An equation can be formed with the new variables: ' ‘ i
Y = blvl + b2V2 + b3V3 + b4V4 + b5V5 + eg.
Any one of by through bg can be set equal to zero, and a reparameteriza;

tion will be made such that the constant is reintroduced. Letting bgs = 0,

s
[

Y = bg + byVy + bpVp + b3V3 + baVg + e5. (5.15)

The use of equation 5.15 yields R25_15 .45785, so that

/ 3.61212-.45785)[1 = /15827 . . . ey
,t= F =J “35788) 724 1616 9.54641,

t = 3.08973. These results are 1dént1ca1 to the usual F test of the row

main effect; given that there are only two rows, this was to be expected : «

(though perhaps not after all that manipulation!).

A Different Hypothesis

NSO

Suppose that, 1n equation 5.12, no concern is placed upon the vgryihg

cell frequencies, and a hypothesis is formed

V1+V§+V3 " -Y-4+V§+V6_ (5.16)

The corresponding equation, in relation to the regression coeffients, is
by + by + b3 = bg+bs+bg or b = by + bg + bg - by - b3.
Substituting this value for bl in equation 5.11 yields
Y = (bg + bg + bg = by - b3)X] + b2X2 + b3X3 + baXs + bsXs + bgke + eg;
Y= by (X2 = X1) + b3 (X3 - X1) + bg (Xg + X1) ¥ bs (X5 + X1)
+ bg (Xg + X) + eg. (5.17)
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After defining new variables to correspond to each of the portions
in equation 5.17 in a manner similar to the previous solution,

_ (.61212 - .30070)/1 _ .t =
F = 136788)730 26.12584; t = 5.11134, Curiously, this result

is identical to the row effect for using the full rank model solution

described by Timm and Carlson (1975). Here is the curiosity; if a re-
striction is placed on the full model taking into cognizance the unequal
cell frequencies the outcome is in agreement with the unadjusted main
effects solution. However, if the difference in cell frequencies is
disregarded, the solution is identical to the full rank model solution
as described by Timm and Carlson. One could argue that the solution of
Timm and Carlson, commonly referred to as the full rank model solution,
is actually the solution that truly leaves the data "unadjusted" for
unequal cell frequencies. If presented with the question, "Which
hypothesis, 5.10 or 5.16, more fairly addresses the difference betweep
row 1 and row 2, given that the cell frequencies are d1sproport10nate?",
it 1s my guess that most researchers would prefer 5.10 (i.e., taking
into account the disproportionate cell frequencies). However, if
researchers are aware of the exact hypothesis being tested, they may

opt for whatever solution best answers thelr specific research questions.

Comparisons Among Columns _
Comparisons among columns can be accomplished in a manner similar
to that for rows; suppose there fs an interest in comparjng columns 2‘
separately to colums 1 and 3. The hypothésis for comparing column 1 to

column 2 is given by .

nVy + ng¥s - na¥2 + ns¥s | (5.18)
ny ¥ g ng*ns
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In terms of the regression coefficients, the hypothesis .can be stated as
nlbl + n4b4 = n2b2 + n5b5
nq + ng ny + ng

Solving for by,

= (ngbp + nsbs) (ny + ng) _ ny by
ny (ng + ng) ny

Substituting this value for bl into equation 5.11 yields

Ve | (mgbp * ngbe) (my *mg) _mg )y bpXp + by + byX,
ny (ng +'n5)

+ b5X5 + b6X6 + ey.

After some algebraic manipu]ations,

n1 + ng)
Y= b2 [:é + ny (ny ¥ ns %:] + b3X3 + b4 [}4 ;]

+ b E+D§("1+"4) x] + beXe + eq. (5.19)
5 [Xs RCETAER 6% + €7

Three new variables can be defined
V7 = 14f X5, 8/21 1f X;, 0 otherwise;
Vg = 1 if Xg» =1/3 1f Xy, 0 otherwise; and
Vg = 1 1f X5, 20/21 if X1» O otherwise.

An equation can be formed with the new variables:
Y = byVy + bgVg + bgVg + b3X3 + bgXg + ey.

Any one of the b's 1n the previous equation can be set equal to zero;

Tetting bg = 0,
Y= bO + b7V7 + baVa + bng + b3X3 + e7.

This y1e1d}F « LOL2LZ - -98544)/1 « 14,02684; ¢ = 3.74511.
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In a similar manner, testing column 2 against column 3 yields

- (.61212 - .45433)/1 _ - : -
F 38788/70. 12,21285% t = 3.49469. The testing of sig

nificance is postponed until after the next section.

Individual Comparison of Cell Means
Individual comparisons of cell means can be accomplished, as -far
as the computations are concerned, by using any g-1 of the variables in-
dicating cell membership (X1 through Xg). The "left out group" will be
compared to all remaining groups. The process can be continUed until
all comparisons of interest are found. One such set of comparisons,
made with cell 6 compared to all other cells, using equation 5.1, is

shown in Table 5.3.
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The use of the "Computed t value" column allows testing Vg against
any of the other cells of interest. Comparing Y3 to 76 yields
t = 2.74471. 1If some other comparison were of interest, say Y, to Yg,
then either by or bg can be set equal to 0 with all other regression

coefficients by through bg non-zero.

Tests of Significance

The conéerns for tests of significance regarding multiple com-
parisons for two-way analysis of variance are the same whether the data
is proportional or disproportional. Ffom an experimental viewpoint, one
reasonable approach is to construct a priori a smail number of hypotheses
likely to be of interest. If the number of tests {is held down, then
Dunn's test can be a most profitable approach.

Suppose that the hypotheses of interest are those described in
this chapter:

Row 1 to Row 2, t = 3,45549;

Column 1 to Column 2, t = 4,16587;

Column 2 to Column 3, t = 3,49469; and

cell 3 to cell 6, t = 2,74471 (disregarding the sign).

Using Dunn's test, m, the number of comparisons, is 4, and v, the
dggrees of freedom for the within term, 1s 30. With o = .05, the‘cr1t1ca1
t ratfo 1s 2.66 so that all four comparisons would be significant at the
.05 level. Had the number of comparisons been increased to 6, then the
comparison of cell 3 to cell 6 would become nonsignificant. Had the number
of comparison been increased to 10, then the comparison of row 1 to row 2

would become nonsignificant. While the table in appendix does not show

critical values for 10<m< 20, the comparison of columns 2 to column 3




would be nonsignificant if there were 12 or more comparisons. . Thus, it

can be seen that there is some virtue in limiting the comparisons to

those of direct experimental interest.
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CHAPTER VI

MULTIPLE COMPARISONS IN
HIGHER DIMENSIONAL DESIGNS

Clearly, N-way Designs have complexities of their own; the consi-
derations of multiple comparisons heightens these considerations. On g
the other hand, the issues regarding multiple comparisons reflect the i
same concerns that were evident with the two-way design. Should the re-
searcher employ a family error rate? Or should an error rate be used

that emcompasses the entire experiment? The new complication is that -

as the dimension of the design increases, the number of families are jﬂ

2N - 1. The problem of deciding upon whether to use a family error % 

rate (and of course reporting the type of error rate used to the reader) j§
is compounded by two competing forces; on the one hand, if an overall |
experiment error is used, significance becomes difficult to obtain; on &
the other hand, the use of a family error rate, by increasing the num- i
ber of families, increases the likelihood of finding a significant out- |
come,

Part of the problem, and a hint at a useful solution, is that re-
searchers, particularly those who are more inexperienced, often run

statistical tests indiscriminately without any overall schema other than

the proverbial pragmatist's, "Let's run 1t through and see what we've g

got". Clearly, such an approach 1s inappropriate for hypothesis testing, ’

though 1t might be useful for hypothesis generation. One useful approach

is to construct, on an a priori basis, a 1imited number of hypotheses . VV

that bear directly on the raison d'etre for the experiment. If additional,

essentially untested, results are to be reported as interesting rela-




tionships that might beaF'fd%ﬂ%é%inVé§t5éaéion; then such’ pesults should
be Tabeled for what they really are: conjectural p0551b11it1es that Just

might lead to some interesting hypotheses testing on a future data set.

An Example - A Three-Way Layout
Suppose a 2 x 3 x 2 design is used; Figure 6.1 shows the structure for

this design.

¢
By By By
1 Cell 1 Cell 2 Cell 3
\ AsB.C, AB,C, ABsC)
2 Cell 4 Cell 5 Cell 6
)
By B, B;
A A8y C A8t A1BaC
1 Cell 7 Cell 8 Cell 9
A AB1Cy ABoCy AgB4C,
2 Cell 10 Cell 11 Cell 12

Figure 6.1 Structure for a 2 x 3 x 2 Design

Rather than focus on the usual three-way solution (but see Winer, 1971;
and Lindquist, 1953; also, a four-factor solution is shown in a regression
format by Williams, 1974b) interest is placed upon possible multiple com-
parisons (more correctly, contrasts). To make the problem somewhat more

pragmatic, suppose that the criterion scores represent salaries, the
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A category represents males (A;) and females (Ap); the B category represents
respectively assistant professor (Bj), associate professor (B,), and pro-
fessor (B3); and the C category represents a measure of locals (€1) and
non-locals (Cz) where a local is considered to be a person who has received
any of their academic degrees from an in-state jnstitution. While many
comparisons might conceivably be of interest, suppose the fo]lowihg are
to be tested:

1) male locals compared to female locals

niby + npby + n3bg _ ngbg + ngbg + ngbg
ng +n2 tn3 ng +t ng + ng 3

Restriction:

2) male locals compared to male non-locals

nlbl + n2b2 + n3b3 n7b7 + n8b8 + n9b9 .
nptngtng 7 nytoingtng ’

Restriction:
3) female professors compared to male professors

ngbg *+ Nigbiz  Ngbg + ngbg
ng +nz  ngtng

Restriction:

4) female professors compared to male associate professors

ngbg * nygbjp  npbp + ngbg
g+ nig g ¥ng /b
5) male local professors compared to non-local professors

Restriction: and

ngbg + nyabyp
Restriction: b3 ™ “ng ¥ ny, .
If these are the precise comparisons of interest, a most effective
test of significance that retains a per experiment error rate is Dunn's
(1961) test. In that only § comparisons are {nvoived, Dunn's test would

L]
be quite sensitive to any differences that exist. Note also that data

such as would be likely to occur at any college or university would be

[
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highly disproportionate. While this disproportionality reduces the ef-v
ficiency of the tests (i.e., somewhat larger samples are necessahy than 1%
all cell frequencies are equal) it does not invalidate the tests in any way.
In fact, the issue of disproportionality and choosing an appropriate
solution is not particularly relevant if the interest is focused on the

five research questions given earlier rather than focusing on the main

effects and interactions.

Higher Dimensional Designs

Four-way and higher dimensional designs can of course .be accom-
modated to a regression format. If the questions of a major research
1nteré§t can be limited to a relative few then no major problem is en-
countered by increasing the dimensionality. If on the other hand,
“traditional" analyses of variances are tho&ght necessary before con-
ducting any further tests, then a considerable amount of power 1s lost.

While 1t might seem argumentative to do so, 1t seems fair to ask
each researcher to state as clearly as possible precisely what is 1nfended
in a given research application. Seldom, 1t would seem, would a resegrpher
be interested in the specific hypotheses involved 1n a testing a main
effect. If the reseafch question can be stated and written in relationship
to the regression coefficients such as was done for the example earlier
in this chapter, then a more relevant data analysis can take place. Care
must be taken to use an appropriate test of significance; some researchers
are prone to run each test aga1ns£ the overall F distribution; such an

approach is equivalent to using a per hypothesis error rate.




63

Missing Cells
Insofar as making mu1tip1e-comparisons are concerned, missing cells
do not present any major computational difficulties. Obviously, if a
cell is missing, the corresponding b's can neither be included in any for-
mulation of the full model, nor in any restrictions. Consider that cells
1 and 6 are missing for Figure 6.1.
The full model can be stated either as
Y = byXy + bgky * byky + bgXg + byXy * bgkg + BoXg + bygkyg * byykyy
+ bypXyp + €. (6.1)
or
Y = by + bpXp + b3X3 + bgXg + bgXg + byX7 + bgXg + bgXg + byoX1g
+byy¥ypt e (6:2)
“In that either by or bg (or both) are involved in restrictions 1 through 4
given earlier, only restriction 5 1s unchanged.
Restrictinns 1 through 4 become:

1, Noby + Nabg = Naby + nghe |
Restriction: 22 33 44 553

n, + ng ng + Ng
Restr?ciion: Nabp + Naby o Nyby * Nghg * Ngby
ng + njy ny +t ng + ng
3. naba + ngbg .
Restriction: P12 ™ _232_1r7élj1  and
3 9
4',

Restriction: 012 ™ 22%%—;-{%§§2'

Interpretation of disproportionate cell frequency problems are sometimes

considerably more complex, particularly with missing cells. Why are the

cells disproportionate? Answering that question i€ much more an art than

a science. Certainly the use of data will be helpful, but the interpre-




tation will undoubtedly rest on the insights (and perhaps prejudices) of
the investigator.




CHAPTER VI : H BN

PROBLEMS LESS AMENABLE
TO A DIRECT REGRESSION SOLUTION

While fixed effects designs or random effects designs yield solu-
tions directly for multipﬁe comparisons, when the design becomes mixed
with both fixed and random effects resulting in two or more error terms,
solutions to multiple comparison problems will usually prove to be eva-
sive (at least to this writer). The difficulty is that1so1atin§
the correct error term, together with predictor variables such‘fhat use-
ful hypotheses can be tested,can be either difficult or seeming]y impos-
sible. In these circumstances, the more traditional computational pro-
cedures might prove to be more effective. To show the difficulty with rlﬁ
the mixed design, an example is given. i

An Example

The following probiem is taken from Williams (1974a).

A researcher may have an interest in the differential effect

of two or more methods of instruction over time; thus, mea- i

sures can be taken at specified intervals on the several in- !

structional methods. From the point of view of the experi- it

ment, a repeated measures design can be conceptualized as a =

treatments X subjects design repeated for each instructional : ¢ﬁ
method.* . il
;:.L

To make the example more specific, suppose a researcher 1s finte- ‘W

rested in investigating the differences among three approaches to a o

human relations experience,** E

*This design 1s called a Type I design by Lindqui%t (1953).

**By human relations experience is meant the meeting of a group of people
that has variously been called the T-Group (training group), the encoun-

ter group, or some similiar name.
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* :

the human relations -groups

55 SO

The three dffférent égbroéchés’téwa;d
selected are (1) structured sessions in which the grohp participates
toward concrete prob]ém solving, (2) an unstructured group, where the
group decides upon its own goals, and (3) a group designed to allow

the ihdividua] to focus on his personal problems with the interest being
to help solve these problems. Five groups with 7-9 individuals in

each group are assigned to each of the three human relation group situa-
tions; i.e., there are five separate groups for each treatment situation.
Each group 1; to have a two hour séssion once a week for four weeks.

While there are several things that might be of interest to
measure, the researcher is interested specifically in the amount of ag-
gression exhibited in the group setting.

Videotapes are made of all sessions, and a group of five expefts
independently judge the amount of aggression expressed during the sessions
on a continuum from 0 to 10, where 0 represents no aggression and 10 |
represents an extreme amount of aggression. The measurements are made
with the group as the unit of analysis. The score to be used is the mean
of the five ratings. Results are as follows:

TABLE 7.1

GROUP SCORES FROM THREE HUMAN RELATION GROUP METHODS FOR FIVE SESSIONS
(ARTIFICIAL DATA ) :

Methods 1 (Structured Groups)
Group Session 1 Session 2 Session 3 Session 4
1 3.2 3.4 3.2 2.8
2 4.6 4.0 3.8 3.4
3 5.0 3.8 5.0 3.2
4 2.0 2.0 2.4 1.6
5 3.6 3.2 3.4 3.0
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Method 2 (Unstructured Groups)
Group Session 1 Session 2 Session 3 Session 4
6 6.2 . 5.8 6.8 5.0
7 3.6 3.8 7.2 5.4
8 4.0 6.8 7.8 6.0
9 5.0 5.8 6.0 5.0
10 4.8 5.0 6.4 5.8
Method 3 (Personal Problems)
Group Session 1 Session 2 Session 3 Session 4
11 7.4 7.6 6.8 5.2
12 6.4 6.4 5.6 4.0
13 7.0 6.6 6.6 6.0
14 5.8 7.4 5.0 4.8
15 6.4 5.2 4.0 3.6

To analyze the data in Table 7.1, it is first useful to define sev-
eral variables:

Y = the criterion variable,

X1 - Xlsare binary variables that identify each group,

x16' 1 if the score is from a group in the structured
treatments; 0 otherwise;

X17- 1 1f the score is from a group in the unstructured
treatment; 0 otherwise, '

= 1 1f the score is from a group in the problems treatment.
« 1 {f the score 1s from Session 1; 0 otherwise,

Xa0" 1 1f the score 1s from Session 2; O otherwise,

= 1 1f the score 1s from Session 3; O otherwise,

= 1 {f the score 1s from Session 4; 0 otherwise,

Xp3" X16 + *19°
X264 *16 + X20°
Xp5= ¥16 + Xor’
Xo6= *17 + X197

. X20’ and

Xog= *17 - Xo1°
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Tables similar to those found in previous chapters could be constructed
for the preceding information. In the interest of economy of space, it
is omitted here. The reader is reminded that each score (rather than
each group)  is the unit of analysis, thus, there are 60 scores for the
data in Table 7.1. When preparing the data cards for a computer analysis,
60 data cards would be made.

To analyze the data in Table 7.1, it is useful to consider two sepa-
rate analyses; one analysis can be a treatments X subjects design, tempo-
rarily disregarding thefthree different kinds of groups; then, it is use-
ful to conceptualize the data in a two-way analysis of variance, disregard-
ing for the time being that a given group has been measured several times.

The linear models that are useful for conceptualizing the data in
Table 7.1 as a treatments X subjects design are as follows:

Y = b+ byX, + byX, +...+ biaXia + €0 (for the subjects (groups)
ot P11 T Pty W8T Teffect) (7,103 F

Y =bgt blgx19 + bygXoy * bpyXpy * € {for the trend effect)

.2)5
and

You bg + byXy + boXy +iot bygXyg * bygXig *+ byg¥ag +

b21x21 + eq. (7.3)

When these linear models are used, the following results can be found:
from equation 7.1, SSS = 104.14;

from equation 7.2, SSTREND = 8,63; and

from equation 7.3, SSFRRORI = 32,52; also, SST = 145,29,

While the preceding information would be sufficient for a treatments X
subjects design, it should be recalled that in this formulation, the

type of human relation group was disregarded.
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Actually, the treatments effect is "nested," i.e., totally contained in the

variation among subjects. Before pursuing this "nesting" further at this
point, it is first useful to complete the analysis for the two-way formu-
lation.

The following four linear models are sufficient:

(for the treatments effect) (7.4)

bo + bygXyg * B17X17 * €4
(for the trend effect) (7.2)

1]

by * bigXig * PagXao * Par¥py * &
bg * b16X16 * Dr7¥iy * Pig¥yg * ag¥an * Bty * &5 (7:5)5 and
by * bigXig + b17¥17 + DrgXig * Bag¥ap * Ppr¥ay * Pag¥ps oot
ngxzs + eg {Full Model) (7.6)

When these linear models are used, the fo]iowing results can be found:

<~ =< = =

from equation 7.4, SSygty * 78.87;

from equation 7.2, SSTREND = 8,63,

from equation 7.6, SSERROR = 39,71,

The sum of squares attributed to regression for the full model (equa-
tion 7.6) 1s 105,58, The sum of squares attributed to regression for
equation 7.5 1s 87,50, The difference between these two values is

equal to the interaction. Thus, SSyety x TREND ® 105,68 - 87.50 = 18,08,
A summary table that would contain the foregoing information would

appear as follows:
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TABLE 7.2

SUMMARY TABLE FOR THE HUMAN RELATION GROUPS DATA INwTABLE 7.1

Source of Variation df SS MS F

Among Subjects :
Method 2 78.87 39.44 18.69**
Error (a) 12 25.27 2.11

Total Among Subjects 14 104.14

Within Subject
trend : 3 8.63 2.88 7.20%*
meth x trend 6 18.08 3.01 7.52%*
error: (b) . - 36 14.44 .40

Total Within Subjects 45 41.15

Total 59 145.29

*Significant at .01 Tevel

Thé interest, then, is in finding ways to isolate error (a) and
error (b). Isolation of these two error terms is effected through the
use of equation 7.1, Because of thé complexity of the solution, it is

useful to reproduce part of the regression output relating to equation

7.1; see Table 7.3.
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,The isolation of these error terms should be accompan1ed by 1solat1ng
the sources of variance. That is, two separate ana]yses are 1nd1cated
the analysis among subjects and the analysis within subjects. * This in
turn can be accomplished by constructing two new criteria Y* and Y**
such that Y* =‘§t where the 1> are the predicted scores found from
using the regression coefficients in Table 7.3; also, Y** = y . 4\, or
the error term associated with equation 7.1.

In particular,

AN = 4.79995 - 1.64995X, -
Several interesting things occur with using Y* and Y** (clearly,

.84996X2 - .54996X3 o4 .95003X14.

Y* + Y** = ¥); the SS¢ for Y* = 104.13701 (within rounding of the
attributable to regression in Table 7.3); and, the SST for Y** =

41.14972 (within rounding of the deviation from regression in Table 7.3),
Also, an equation canbe formed such that Y* = bg + b16X16 + b17X17

e, (7.7) For equation 7.7, SSATTRIBUTABLE = 78.87 and SSDEVIATION =
25.27; this 1s precisely the same results respectively as the Among

Subjects variation for Method and Error (a) given in Table 7.2. Thus,
hypotheses regarding the methods effect can be tested using Y* and

making restrictions on Y* = b)cX) b, K o *byg%1g%¢s » (and reparameterizing).
For example, suppose that we wish to test for differences between groups

).

one and three (Ho flugg "

18

* + e,

Then Y blﬁx b17x17 blﬁxle e8
Vroe by (Xyg * Xig) *bX, + e

Let Vl = 1 1f a member of either group one or group three; then

Y* = b16v1 + b17X17 + ea. (7.8)
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* =
Equation 7.8 can be reparameterized to Y bO + b17X17 * eg (7.9)

The R? associated with equation 7.7 is .75735 and the RZ associated

with equation 7.9 is .128035. Then F = 75735 - 128040 = 31.12161;
. T - .75735)/12
\F = t = 5.57867.

Without using regression, the same result can be found by

1
h—

1) = - 5,57129,

The latter answer has only two decimal point accuracy; had MS(a) been
taken to five decimal points, Ms(a) = 2.10583, then t = 5.57868, very

close to the earlier given answer,
Finding Models for Within Subjects

The second constructed criterion, Y**, can be used (with extreme
caution) for tests of trend differences and for comparing one cell mean
to another.

Before testing for these effects, 1t 1s first useful to construct
a full set of cell vartables. Actually, several cell variables have al-
ready been used in the analysis: |

X23 = X16 . X19 (structural treatment, session 1, or cell 1),

Xo5 = X16 . Xo1 (structured treatment, session 3, or cell 3),

1)

)

X24 = X16 . Xap (structured treatment, session 2, or cell 2),
)
)

Xog = Xig - Xo0 (structured treatment, session 4, or cell 4),

X26 = X17 - Xy9 (unstructured treatment, session 1, or cell 5)2
X27 = X17 . X20 (unstructured treatment, session 2, or cell 6),
X, = X17 . X21 (unstructured treatment, session 3, or cell 7),
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X309 = X17 - Xop (unstructured treatment, session 4, or cell 8);

X31 = Xi8 - X19 (problems treatment, session 1, or cell 9),

X30 = X18 + %20 (problems treatment, session 2, or cell 10),

X33 = Xig - X1 (problems treatment, session 3, or cell 11) and

X34 = X8 « X0 (problems treatment, session 4, or cell 12).
Now, suppose there is interest in testing among the sessions for group
differences, in particular, differences among session 1 and session 3
group means. Session 1 data is contained in cells 1,5 and 9 (X23 » Xog
and X31), session 3 data is contained in cells 3,7 and 11 (X24 » Xog and
X33).

Now, a full model should be constructed that contains the cells of
interest,
One such full model 1s as follows:

Y= by + oKy + by +euit Bgkigt Dag¥ast PogXas* Pos¥ost Pog¥agt
bar¥er* baghes® Par*art Pagtagt Pag¥ast &g+ (7:10)
Care must be taken to make sure equations 7.10 is actually a true

full model; SSe8 should equal S$S (14.44). A restriction re-

ERROR(b)
flecting the hypothesis of interest can be written using the regression

coefficients: b23 + b26 + b31 - b25 + b28 + b33 . In term of b23 this
ylelds b23 - b25 + b28 + b33 - b26 - b31 . Placing this restriction on
equation 7.10 ylelds:
Ya% m by +biXy b by Kyt (byg # byg + byg = byg - byy) Koyt
+
baa¥aa * Pag¥as * baghag * Par¥er * ag'as * Pag¥as * P3o*a0
byjXay * Bap¥ap * Bygkay * ¢ -
VA% = b+ by Xy +e.t bigKig* bygXog + bps (Xp5 * Xp3) * bag (Xp6 -

Xp3) * DayXay * bog (Xpg + Xp3) + baghog* byg¥ap * b3t (Xa1 -

Kga) * baphyp * b3z (Xgy + Xo3) *ero- (7:11)
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—
4]
ot
-

~n

1
—

if a member of X23 or X21 (cells 1 or 3), O otherwise,

-<
u
—

if a member of X26 (cell 5), ~1 if a member of X23 {cell 1),
0 otherwise,

Vy =1 if a member of X,o or X,q (cells 7 or 1), 0 otherwise,

V. =1 if a member of X31 (cell 9), -1 if a member of X23 (cell 1),
0 otherwise and

V. =1 if a member of X31 or X23 (cells 10 or 1), 0 othefwise.

Then equation 7.11 becomes:

*k =

YH% = by +byX) Heeet bygKyy + BogXay ¥ Dogly ¥ Dagly ¥ bagkyy ¥

b 8V +b + baaXan t b31V5 + bosXay t baaVe + e (7.12)

2874 29X29 30730 32732 33°6

Equation 7.10 yields ﬁ%- = ,64899; equation 7.12 yields ﬁé = ,62874.

Then

P . {64889 - .65274 L . 2.06603;

t =\F = 1,43737.

On the other hand, this same hypothesis could be much more easily

tested by
Yo,V
1° T3
. . — - B 5.33 w-1.43478,
NW ) T i
n.l n.3

The last calculation is only accurate to two decimal points.
Testing for Cell Differences

If there is interest in testing for differences among cells (say
cell 1 and cell 2), then these tests can be fairly easily accommodated.
In that the full model in equation 7.10 contains both X23 and X24
(cells 1 and 2), a restriction can be made regarding these two cells:

b23 = b24.
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Then

Y** = b+ b, + X +... ' b
0721 PR Byg Xpy # by (Xgz ¥ Xpg) by Xog +eoot

b33 X33 + €y - (7.13)
Let V7 = 1 if a member of either X23 or X24 (cells 1 and 2), 0 other-
wise.
Equation 7.13 becomes:
*k =
Y b0 i~b1 X1 +...t b
(7.14)

14 F14 * Pogly * Dog Xog *oo ¥ byg Xyste
Equation 7.14 yields ﬁi = .63927; previously, %ii = .64889. Therefore,

_ (.64889 - .63927)/1

F =11 - .64889)/36 = 98636,
t =\NF = ,99316.
This cell mean difference could also be tested by
t = 11 . 3.68-3.28 100
\JMS(b) (I +17) \J () L+ 1) 00,
"1 M2 5 5

which 1s close to the previously given value of t = .99316.
Practical Limitations of the Regression Approach

One of the selling points regarding the use of multiple linear re-
gression as a general analysis technique, including solving problems ‘
more commonly done by the analysis of variance, is that not only is the

process more easily conceptualized. but also the comoutations are nsually,

greatly simplified. This present chapter should serve as ample proof
that such 1s not always the case. Clearly, the multiple comparisons
performed here could more easily be accomplished by the usual analysis
variance techniques. Perhaps this 1s but another way of saying that

limiting yourself in the possible analysis techniques may be in the long
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run too Timiting; the same point was made much earlier and much better in
"Don't put all your eggs in one basket". While multiple linear regression
is an excellent tool for both conceptualizing and calculating many tests,
the traditional techniques can occasionally prove to be easier to use, even

for a hard-nosed regression aficionado.
Using Appropriate Tables

Perhaps not enough was said regarding using proper tables to evaluate
an experiment. In general, the total number (and type) of contrasts run
should always be considered when choosing a multiple comparison technique
(and hence, choosing a table to evaluate significance). Every time a set
of tests are run, the number {and type) of tests should be considered when
reporting levels of significance. Those who would contend that "standard
" practise" would allow them to use such techniques as Duncan's tests or
orthogonal comparisons (which do not usually retain an experimentwise error

rate) should remember that "standard practise" is the defense that physi-

clans use in court when the patient dies.
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TABLES

Tables la, Ib, Tc, and Id are reproduced from C. W. Dunnett, A multiple
comparison procedure for comparing several treatments with a con-
trol. Journal of the American Statistical Association, 1955, 50,
1096-127, and C. W, Dunnett, New Tables for multiple comparisons
w;th a Eontro]. Biometrics, 1964, 20, 482-491, with permission of
the author.

Tables Ila and IIb were calculated by the present writer by transforming
the values in Harter (1960) by division byJZ.

Tables IIla and IIIb were calculated by the present writer by transfor-
ming values in Duncan (1955) by division by\Z.

Tables IVa and IVb are reproduced from 0. J, Dunn, Multiple comparisons
among means. Journal of the American Statistical Association, 1961,
56: 52-64 by permission of the author.

In Tables la, Ib, Ic, Id, Ila, IIb, Illa, IlIb, IVa and IVb, v refers to
the degrees of freedom within (dfw).

In Tables 1la, Ilb, IIla, [IIb, r refers to the number of means in the
range,

In Tables Ia, Ib, Ic, Id, k refers to the number of groups compared to
the control (excluding the control).

In Tables IVa and IVb, m refers to the total number of a priori contrasts.
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TABLE 1Ia
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TABLE Ib
PERCENTAGE POINTS OF DUNNETT'S TEST

(.01 LEVEL)
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TABLE IIb

PERCENTAGE POINTS OF THE STUDENTIZED RANGE
REPORTED AT t VALUES (.01 LEVEL)

4.032 4,933 5.518 5,955 6.302 6.591 6.837 7.051 7.241 8.456
3.707 4.476 4.973 5.343 5,638 5.882 6.909 6.271 6.433 7.453
3.499 4,185 4,627 4,953 5.213 5,430 5.614 5,774 5.917 6.821
3.356 3.985 4,387 4.685  4.921 5,117 5.285 5,431 5.560 6.383
3.259 3.838 4.212 4.489 4,708 4.890 5.044 5,180 5.300 6.062

3.169 3.726 4,079 4.339 4.545 4,716 4.861 4,953 5,100 5.817
3.106 3.639 3,975 4,221 4.417 4,579 4,718 4,838 4.944 5,623
3.085 3,568 3.891 4.127 4.314 4.470 4,601 4,716 4.818 5,467
3.012 3,510 3.821 4.050 4,229 4.378 4.474 4.616 4,714 5,337
2,977 3.461 3.763 3.982 4,158 4,303 4.425 4,532 4,627 5.229

2,947 3,420 3.714 3.929 4,098 4.238 4,357 4,461 4,553 5,136
2,921 3.384 3,671 3.881 4.046 4.183 4.299 4,400 4.489 5.057
2,898 3.353 3.635 3.840 4,002 4,134 4,248 4,347 4.434 4,987
2.879 3.326 3.602 3.804 3.962 4.093 4,203 4.300 4.385 4,927
2.861 3,302 3.574 3,772 3.927 4.055 4.164 4,258 4,342 4,873

2.845 3,280 3,548 3.743 3.896 4.022 4.129 4,221 4.304 4.825
2,750 3,150 3,393 3,569 3.707 3.819 3.915 3,997 4,070 4,530
2.705 3.088 3.321 3.487 3.616 3.723 3.813 3.891 3,959 4,390
2,660 3,028 3.249 3.407 3.529 3.630 3.714 3.787 3.852 4.253
2,618 2,970 3,180 3,330 3.445 3,539 3.619 3.687 3.747 4,120
2.576  2.913 3.113 3.255 3.364 3.452 3,526 3.591 3.647 3.992
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TABLE IIIa

PERCENTAGE POINTS OF THE STUDENTIZED RANGE
REPORTED AS t VALUES (.05 LEVEL)

r

vx\ 2 3 4 5 6 7 8 9 10 20
5 2.570 2.651 2.685 2.697 2.697 2.697 2.697 2.697 2.697 2.697
6 2.447 2.536 2.580 2.602 2.612 2.614 2.614 2.614 2.614 2.614
7 2.365 2.459 2,509 2.537 2.553 2.561 2.564 2,564 2.564 2.564
8 2.306 2.403 2.457 2.4%0 2.510 2.522 2.528 2,531 2,531 2,531
9 2.262 2.361 2.361 2.418 2.454 2,476 2.491 2.500 2.508 2.508
0 2.228 2,329 2,387 2.425 2,450 2.469 2.478 2.486 2.490 2.493 ,,
1 2.201 2.302 2.363 2,402 2.429 2.448 2.461 2.470 2.476 2.482 Yivs
2 2,179 2.280 2.343 2,383 2.411 2.432 2.446 2.456 2.462 2.474
3 2.160 2.263 2.326 2.367 2.396 2.418 2.434 2.445 2,453 2.468
4 2.145 2.247 2.311 2,354 2,384 2,406 2.423 2.435 2,444 2.464

2.131 2.234 2,298 2,342 2,373 2,396 2,413 2.427 2.437 2.46l

2.120 2.223 2.287 2,332 2,364 2,387 2.406 2.420 2.430 2.459
2,110 2.213 2.278 2.323 2.355 2,380 2.399 2.413 2.425 2,458
2.101 2.205 2.270 2.315 2.345 2.373 2,392 2.408 2.419 2.456
2.093 2.197 2.262 2.308 2,341 2,367 2.386 2.402 2.412 2.456

Sz~ >;

0 2,086 2.190 2.256 2,302 2.336 2,361 2,382 2.398 2.411 2.456
0 2.042 2.146 2.214 2,262 2.298 2,326 2,349 2.368 2.384 2.454
0 2.021 2.126 2.193 2,242 2,280 2,309 2,333 2.353 2.370 2.453
50 2.000 2.104 2.173 2,222 2.261 2,292 2,317 2.338 2,357 2.452
0 1.980 2.084 2.153 2.203 2.243 2.275 2.301 2,324 2,343  2.451
0 1,960 2.063 2.133 2,184 2.225 2.258 2.285 2.309 2,329 - 2.451
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