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ON USING THE AVERAGE
INTERCORRELATION AMONG.
PREDICTOR VARIABLES AND
EIGENVALUE ORIENTATION TO
CHOOSE A REGRESSfON 8OLUTION‘

. Beverly Mugrage
The University of "Akron

Jesse Marquette
The University or Akron

Isadore Newman
The University of Akron

Since its introduction in 1970 by Arthur Hoerl, the efficacy of

tidge regression has been vigotously debated by statisticians. Notable

‘are the debates in the Journal of the American Statistical Association,

JASA, in 1980 (Smith and Campbell) and in Technometrics in 1979 (Draper

and Van Nostrand) -Much research among proponents of ridge regreasion

concentrated on comparisons of various ridge regtession solutions.
Dempstex, Schatzoff, and Wermuth (1977) compared 57 varietios of ridge
regression; Galarneau-Gibbons {1981) compared ten of the most promising

ridge algorithma. Both were simulation studies. - f :
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Since the introduction of the Monte Carlo method in 1949 by von
Neumann and Ulam, simulation studies have been frequently used 1in sta-
tistics to solve problems otherwise difficult or expensive to solve.
Monte Carlo simulation can be adagted to any situation for which a moﬁel
representing reality can be designed ‘and for which a mechanism to simy-
late this model can be effected.

Analysis of the récent_ literature of ridge regression reveals
essential agreement that ridge regresgion is- an appropriate alter-
ﬁative to least squares regréésion wheﬂ predictor variabies 'are-highly
intercorrelated. Another theme is Common. Many researchers from New-
house and Oman 1in 1971 to Galarneau-Gibbons in 1981 also suggest that
the orientation of the beta vector with respect to the eigenvectors cof-
responding to the largest and thg smallest eigenvalue of the X'X matrix
determines the relative performance of ordinary least Squares estimators
and ridge estimators.

Pui‘pose of this Study

- The question of the predictive values of the  orientation of beta
and/or the average absolute intercorrelation among independent varia<
bles in guilding an 1nve§tigator's choice of tegression method 1is 1in-
te;‘esting and it{zportant. The avai_lability of a computer simulation
capable of producing data with given R2 and average absolute 1n£er-—
correlation made study of this question possible, The simulation was

designed for the 1979 comparison of shrinkage formuli by Newman, McNeil,

Garver, and Seymour,

Methods




different values of 1intercorrelation among predictor variables (0.80,
0.50, 0.30, 0.15) and three different values of Rz (0.50, 0.30, 0‘05).‘
From each population 220 samples were drawn with rep],acement'. There
were 50 cases per sample.

For each sample generated, Mérqﬁette ahd‘ Du Fela's statistical
package ADEPT (1979) was used to calculate the oi.;df.nary least squares
solution, the principal components solution and three ridge solutions.
The ridge solutions choeen wetve the Lawless-Wang solution, the McDonald-
Galarneau solution, and a Hoeri-Kennatd-Baldwin'solution. The Hoerl-
Kennard-Baldwin ‘solution 1s impdrtant historicelly -and because ef its
good  performance in- previous studies. The Laﬁless-Wang solution is a
Bayesian solution derived from the assumptlons Y'N(XB,;IZI) ;and
B~N(O, 021) with the tidge parameter k = azﬁoz estimated by
k = ps?/ ¥ iy o
which estimates the true length of the beta vector by Q = 3 B -3 Z l -1

The McDonald=-Galarneau solution 1s an iterative solution

and then picks k to minimize [B'(k) B(k) - Q‘ This procedure defaults
to ordinary least squares if Q is negative. These three methods of de-

\termining k were different enough. in derivatlon to be 1nteresting to
compare.

The study was a 3 x 4 x 5 factorial design. There were three .
values for Rz, four for average absqlute intercorrelation and five
regression methods. |

The various regreesion solutions were ranked .on four criterta:

1.  Average variance of regression coefficients.

2. Error in regression coefficients as measured by

(8-8) " (8-8).




3. Mean squa‘re error.
4. Shrinkage of Rz upon cross-validation.
For each sample, solutions were ra;xked from one to five with smaller
rank indicating wore desireable golution. Ranks were then summed for
each solutiop on all criteria to give an.over':.all measure of quality of
solution. -
The orientation of the coefficient vector,‘be‘ta, ﬁth respect
to the eigenvector associated with the ldrgest eigenvalue of the XX
matrix was calculated for each sample. For some populations Lhe tange
of values for the orientation was small enough to cause computational
difficulty in the computer packages used in this study. For this rea-
son, the otientatlon of beta was categorized and int:eraction between
regression method and the orientation of beta was determined using
two~way 'analysls of variance. The decision to categorize the orien~
tation of beta is discussed further in the results section.
Results
Since this study was exéloratory, a significance level of .&=.05
was used. When multiple comparisons were made, the correction suggested
by Newman and Fry, a=.05/n, was applied (Newman and Fry, 1972). All

tests were two-tailed.

Error in Beta
For all populations with high average absolute intercorrelation,
m =_80, the error in beta aé measured by (3-3)'(8-3) was significa;\tly
.different for obrdinary least squares tegfession and each of the ridgé

solutions tested. For high mlt_icpllinearity, the error in beta for




each’ ridge solution was significanf:ly different from that of every
~other ridge solution with only one exception: Lawless-Wang error In
coefficients was not significantly different‘ from that of Hoerl-Ken—
nard-Baldwin - for the population with R2=.50 a;ld rr—l =80, ‘For each

of the populations with high ‘multicollinearity, Lawless-Wang regres-—

slon produced the smallest error in coefficients while ordinary least .

squares and principal components regression acco;:ntiﬁg fqr‘ 100 percent
of the trace produced the Iargeét error in coefficients.

For moderate mt;lticollineatity (0.50 and 0 .30), there -was aiways
a significaﬂt difference between the error in beta fo:_' ordinary least
sqﬁates and each ridge solutlon's error in beta. The error for the

complete principal components solution also was significantly different

from that of each of the ridge solutions. Error in beta did not differ

significantly for OLS and complete principal components solutions.

F_or low mlticollinearify (rﬂ =.15), ordInary least squa_reé re-
gression -and compietg principal components regression pioduced sign-
ificantly different error‘of' '.beta from' each othef as well as from

each rid ge solution.

For graphic representation of these results, see Figure 1.

Vériance of Betas

,

For each population, for any given wmethod, the coefficients of

each independent variable “formed a distribution, - Thus: 1f beta 1 is

- the coefficient of the first independent variable, a distribution for

the ordinary least squateé beta would exist, as well as ome th the

Lawlegs-Wang-beta 1, the Hoerl-Kennard-Baldwin b,éta 1, and the McDonald=- :

T e




r in Regression Coefficients

Erro

2

———

Fi

v FIGURE 1
‘Error in Regression Coefficients as a
Function of Solution Type, R?,_an@ |r
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TABLE 1

Summary of Results of Cochran's Test for Variance of Betas ﬁ

Population : Cochran's G for

Parameters

2

R/ x| By 8, B, B, By By B,

.50/.80 <3480 «2661 <2979 2785 .2827 .2825 +2695

. +30/.80 .3537 .2881 »2509 L3113 .2950 <3081 2671

+05/.80 .3300 -2850  .3134 .3038 .2982 <2842 +3021
.50/.50 .3052 +2512 . .2686 .2969 .2581 | <2491 <2741
;30/.30 .3221 +2587 .2689 «2981 2767 <2749 .2726
.05/.50_ «3322 <2759 ;3006 T .3049 .3196, 2753 .2841
.50/.30 .2785 .2485 .2718> .2638 .2512 <2415 .2621 ;
+30/.30 +2870 +2534 .2805 .2710 | .25?5 .2706 .2697 ;
.05/.30 .2983 23099 2903 .2862 J2644 .2666 :.2656 3

+50/.15 2506 .2831 . - .2873 <2738 .2571 <2728 «2473

$30/.15 L3308 2753 L2904 2639 2771 .2em1 2379
057,15 2748 2806 2746 .2619 2639  ..2801 2845

All tests significant [ .

Critical Region: G>¢ 05 = +2360 : i

|
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Avérage'Variance of Regression Soefficients as
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Galarneau beta 1. Variances of these distributions were compared using
Cochran'’s test, normality having been verified with a chi square test
and sample size being equal. The results appear ‘in Table 1. Cochran's
test for each estimated beta for every' population showed that the four
variances compared were not all equal. To examine the relationship
among the variances more closely, multiple comparisons a=,05/n wag
used for .05 significance, This is the correction su.ggested by Newman
and Fry (1972).

For high multicollinearity (0.80) the variance of the ordinary
least squares beta was significantly di‘ffefent from that of Lawlesbs-
Wang or R/oerl-Kennard-Baldwin ‘beta for each independent varliable, The
ordinary least squares beta variance was higher than that of any ridge
beta variance for each of the betas for the seven 1ndependent variables.

For all population (R = 0.50, 0.30, 0.05) with high multicolli-
nearity the Lawless~Wang estimator was always significantly different
from h_t,hﬁa:_t of _the McDonald-Galarneau estimator and for R? - 0.05, it
was significantly different from both of the other two ridge estima-

tors. See Figure 2 for graphic representation of this 1nfotmation.

Shrinkage Upon Cross-Validation

The shrinkage in R2 upc;n cross-validation was not significantly
different awong the various regtession solutions for eight of the
twelve Ppopulations including the population ‘Irith R2 = 0.50 and high
average absolute intercorrelation (0.80). For the other two popula—~
tions (R2 = 0.30, and R2 = 0.05) with high mlticollinearity there

vas a' significant difference in shrinkage of R2 upou cross-validation




‘ FIGURE 3
-Shrinkage in R2 upon Cross-Validation as a
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FIGURE ¢
Average Rank of Mean Square Error as a =
Function of Solution Type, R%, and [r]
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between ordinary least Squares and at least some of the ridge solutions,

For R2 = 0.30, the “ordinary least squares Rz shrunk more than the

ridge solutions and for Rz = 0.05, the ordinary least squares R2 shrunk

less than the other estimetots.

There is no evidence in the tesults of this study indicating

that the ridge regression R2 shrunk less than the otdinary least squares
Rz for populations ‘with high multicol Iinearity, a situation in which

ridge tegression is commonly used.

. may be more useful than the value of the shrinkage of R upon cross-vali—

-dation.

See Figure 3 for graphic _Tepresentation of shrinkage for varying'

Rz and average absolute intercorrelation.

Means of R2 Before and After Cross-Validation

Knowledge of the ‘shrinkage in Rz upon ctoss-validation may be

less valuable than knowledge of the final value of R2 upon cross~

validation. The value of the shrunken R2 gives a lower bound on R2

Shrinkage 1in R2 is of less interest. For this reason, means of Rz

before and after cross-validation were calculated for the ordinary

least squares solutlon and the ridge solutions for each populatlon.

Before cross-validation, Rz'for the ordinary 1least squares solution

was greatest. The values of R2 for the ridge solutions were ounly

slightly smaller. After cross-validation values for R2 among the

solutions were again close 1in wvalue. McDonald~-Galarneau ridge re-

gression produced the largest R2 after cross-validation for six of

the twelve populations. Ordinary least squares regression and Lawless—

The actual value of the shrunken R -
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Quality of Solution as a Function
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of Solution Type, R2, and |r|
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Wang regression produced the highest Rz for " three Populationg each,

tions for 413 Populationg, Generally,

were signlficantly different from each
tions (RZ<0, 50, [] =0.80; g2

there po significant differe

the MSE for the ridge solutions

other, For only three popula-

=0.30, [T] =0.50; ®%~0. 30, 7] =0.15), was

Of  the .ridge sol~

Overali Solution Qualitz
If overall quality ig ineasured b

y the sum of ranks,
of variance indicg‘_bed; a significap

0.00000 for aii populationsg, Reptesentation of overall quality of
solution ag a function of R2

and average 'absolute intercorrelation
occurs in Figure 5,

The number of 80od soiy-
re given in Taple 2. Por

nd RZ = 0.50, 214 of 200

-Galarneau solutionsg.

results were .similar .
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TABLE 2

NUMBER OF GOOD. SOLUTIONS

Population 1: R2=.50,]r[ =.80

Number of Samples: 214

Type of Solution Number of

Good Solutions

Ordinary Least Squares (0LS)

Principal Components (PC)

Lawless and Wang Ridge (LW)

Hoerl, Kennard and Baldwin Ridge (HKB)
McDonald and -Galarnean (MG)

27
13
214
157
108

Population 2: RZ:.30,]r[ =.80

Number of Samples: 212

Good Solutions

Type of Solution ) Number of

oLS
PC
LW

HKB
MG

23
9
211
163
91

Population 3: R2=,05,[r, =.80

- Number of Samples: 216

. Type of So]utioﬁ - Number of Good Solutions
OLS . 22
PC 10
Lw 216
HKB 152
MG 135

2 .

Population 4: R"=.50, || =.50
Number of Samples: 215 v

Type of Solution Number of Good Solutions
OoLS 33
PC 4
jAY 81
HKB 177
MG 184

15
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. NUMBER OF GOOD SOLUTIONS

Population §: R2=.30,Ir] =.50

Numbe;‘of Samples: 21%

Number of Good Solutions

Tybe‘of Solution

OLS 33
pC -3
LW 165 .
HKB 214
MG 100

Population 6: R .05, |r]=.s0

Number of Saﬁples: 219

Type of Solution

-Number oé Good Solutions

oLs 0
PC 69-
v 217
HKB . 169
MG 43

Population 7: st;SO, ,rf=.30

Number of Samples: .219

L Type of Solution Number of Good Solutions
OLS 38
PC 7
LW 109
HKB 163
MG 204

Population 8: R2=.30, [r]=.30

Number of Samples: 217

Type of Solution

OLS
PC
w
HKB

Rumber of Good Solutions

oL
PC




TABLE 2

NUMBER OF GOOD . SOLUTIONS

Population 9: R2=.05;|rl =,30

Number of Samples: 219

Number of

Type of Solution Good Solutions
OLS 39
PC 8
LW 217
HKB 166
MG 99

ggpulationIIO: R2=.50,]ri =15

' . Number of Samples: 219

Type of Solution Namber of Good Solutions
OLS - 40
PC 4
W 115
HKB 216
MG 153

Population 11:  R%=.30, |r| =.15

Numberfpf Samples: 219

Number of

N ) Type of Soiution

Good Solutions

45
7
121
208
65

Population 12: st.OS,lr[-ﬁIS

Number.of Samples: 219

Number of

Good SoJutions

Type of Solution
LS '
LW

HKB
MG

27
8
174
217
101

17




with Lawless-Wang regression pt'oducing the largest number of good solu-
tions, For these same populations, in every case, principal components
accounting for 100 percent of the trace produced the fewest good solu-

tions followed by ordinary least squares regression.

One wmust be cautious in interpreting overall quality of ‘solu-

tion done as a sum of ranks. In summing ranks, equal weighting is

imposed on the criteria for good solution: variance of beta error

in beta, shrinkage upon cross~validation, ‘and MSE. = This stacks the

dei;k against the OLS golution and the principal componentsv solution

accounting for 100 perceat of the trace. Theory tells us that ridge

should outperform OLS on two of the four criteria used.

Orientation of the Beta Vector

To test for interactlon of the orientation of the beta vector
and method of regression solution, the orientation of beta was cate-
gorized and two-way analyses of variaace were run. Categorization of

the orientation became necessary because the small range the orienta-

tion exhibited 1n some populations i:r-esent‘eli“ serious coﬁputati;n;i--
difficulties using the ADEPT model comparison and DPLINEAR. For highly
multicollinear data the interaction between the orientation of‘ beta and
method was nonsignificant. Significant interaction occurred for R2=0.05,
m =0.30, and R> =0.50, and m =0.15 only. For these levels of inter—
correlation, ridge regfession would rarely be considered the method of

cholce. Orientation of the beta vector appears of little usefulness

in choosing among ridge regression methods for highly .multicollinear
data.
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Conclusions

" The results of this study indicate that for high degrees of multico-
llingarity, when stability and interpretability of coefficients is {mpor-
tant, ridge regression is an attractive alternative to least squares regre~
ssion. Low error and small variance of coefficlents make ridge regression
a useful device for anyone vwanting to interpret beta weights for any rea-
son, a device that should prove useful to social science investigators
attempting to look at "causation" through correlation as in path analysis.
Lawless-Wang ridge regtession performed especial ly well on criteria for
stability of coefficients in this study.

The major advantage to ridge regression is not in prediction
nor in hypothesis testing but in applications for which the sign or
interpretability of coefficients is important.

Principal components using all compoﬁents was equi;/a]ent to the
OLS solution iIn producfion of Rz, Q, and MSE. It was not equivalent
in variance or error of regression coefficlents. For the principal
component solution varlance of coefficie;lts increased rapidly as com-
ponents associated with lower eigenvalues were added. Evidence from
this experiment supports the use of a cut-off in using principal com-
ponents regre.ssion (Rummel,1970). More work néeds to be done concern-
193 appropriate pl'gcement of such a cut-off.

Values for Rz»befote cross~validation and values for R2 after
cross-validation were close for ordinary least squares and the ridge
solutions tested in this study. The value of r? after cross-validation

seems a more appropriate way of comparing solutions than shrinkage in

Rz upon cross-validation.
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The orientation of the eigenvector assoclated with the largest
eigenvalue of the ‘X matrix with respect to the population beta
vector does not appear to be useful 1in choosing among. ordinary least
squares regresslon, principal components regression accounting for
100 percent of the trace, Lawless-Wang ridge regression, Hoerl-Ken-

nard-Baldwin ridge regression, or McDonald-Galarneau ridge regres-

sion.

It 1is clear from this study that the quality of a solution as.

determined by error in coefficients, variance of coefficlents, MSE or
R2 after cross—validation depends upon the characteristics of the pop-
ulation. There is a strong dependence upon. the degree of multicol-
linearity. Within a given multicollinearity, there 1is a dependence
upon the R2 of the population.

Ridge regression has a distinct advantage over OLS when stabi—

lity and interpretibility of coefficlents 1s important but aot for

purposes of prediction or hypothesis testing.
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' MULTIPLE LINEAR REGRESSION VIEWPOINTS
VOLUME 11, NUMBER 3 SUMMER 1982

MULTIVARIATE NONPARAMETRIC
ANALYSIS OF VARIANCE THROUGH
MULTIPLE REGRESSION -

THE TWO GROUP CASE

Bradley E. Huitema
University of Western Michigan

Abstract
The computation of the multivariate nonparametric analysis of variance
requires matrix manipulations that are not familiar to many researchers. It
is shown that the multivariate test statistic for the two group case can
easily be computed with the aid of a conventionai multiple linear regression
Computer program.

Presented at the annual AERA meeting March 19, 1982, New York City.

Introduction

In the randomized two group univariate analysis of variance case, situa-
tions arise where the nonparametric Mann-Whitney test is recommended in place
of the parametric ANOVA F or t test or the corresponding fegression analog.
The choice between these parametric and nonparametric alternatives should gen~

erally be based on the nature of the population distributions and the adequacy

of the measurement of the response variable. In the case that the population

distributions approximate normality and the response measures are known to be

Presented at AERA 1982, MLR Special Interest Group
Not refereed by editorial staff
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Carefully obtained, the Parametric procedures are generally chosen. This is
because the relative efficiency (both asyﬁptotic and small sample) of the non-
. _ T to
parametric test relative to the parametric test ig about .95. That is, if we
of
compute the ratio of the sample sizes associated with the pParametric and nopn-
powe
Parametric. tegts having the same power and probability of Type I error, we
find that fewer subjects are required for t or F than for the Mann-Whitney.
. ] the 1
Alternatively, when the sample size ig constant, the power of the parametric
. : ative
test is greater. Many data analyzers appear to discount the usefulness of
- ponen
nonparametric alternatives for this reason and because the F test is said to be
R v ) . relat
"robust" or insensitive to departures frog distribution assumptions. - It turns
' t or ;
out, however, that gz good case can be made for.employing nonparametric statig- - :
. , 1
tics in certain situations,
: . ' nonpar
If the population distributions are clearly nonnormal (e.g., exponential, P
. . ) counte:
rectangular, two~tailed exponential or long-tailed Cauchy) the Parametric test
- the use¢
is reasonably robust (using the typical textbook definition of robustness) but
It
this does not mean that the inferences concerning the population means based
: o to enco
on the sample meang are equally pood under all types of nonnormal distributions.,
: © distrib
The point here is that there ig a difference between the effects of different
: tation i
types of nonnormality on a test criterion (such as F) and the effects on
- eliminat
inferences made about Paramaters, The former has to do with the concept of
! CoT _ ' the case
"criterion robustness" whereas the latter issue 1s that of "inference robustness',
invalid ,
: The reader ig referred to Box and Tiao (1973) as the basic source on this distinc- ’
) servatio
tion. The issue here 1s that the Sample arithmetic means associated with a i th
I this
- conventional parametric ANOVA may be Inappropriate ag estimates of the corres~ (s)
Score(s
The next point
are emplc
of the My
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It was pointed out earlier that parametric t or F is generally preferable

to the Mann-Whitney when normality is present because the relative efficiency
of the latter is about .95. But what happens to the relative efficiency or
power when the population distributions are clearly not normal?

If the deviation from normélity is one of the long-tailed distributions,
the Mann-Whitney test is far more efficient. TFor example, the asymptotic rel-
ative efficiency of the Mann-Whitney when the populations are two-tailed ex-
ponential is 150%. 1If the population distributions are Cauchy the asymptotic
relative efficiency of the Mann-Whitney is « (infinity) and the efficiency of
L or F is zero.

The practical data analyzer should not conclude that there is no use for
nonparametric tests such as the Mann~-Whitney just because he/she does not en-
counter extreme nonnormality. There is a second reason why one should consider
the use of nonparametrics.

It is not unusual, especially in large studies that involve many variables,
to encounter "outliers' or scores that are extreme relative to others ip the
distribution. Sometimes these extreme scores can be attributed to instrumen-
tation failures or clerical errors. In these situations it makes sense to
eliminate the obviously invalid scores from the analysis. But it is frequently
the case that we don't know whether an extreme observation is the result of
inva%id measurement or not. When this happens it.is not clear whether the ob~

servation éhéuld be discarded or left in the sample. A reasonable strategy

in this situation is to transform the data in such a way that the extreme
score(s) has less inf;uence in the estimation of parameters than when raw data
are employed. "~ The ranking transformation, which is a part of the computation

of the Mann-Whitney test, is a simple and effective way of decreasing the in-




fluence of outliers. Since the chance of encountering an outlier increases
with the number of variables analyzed, it is argued here that nonparametric

procedures should be given serious consideration in large exploratory studies.

Purpose of Nonparametric Multivariate Analysis of Variance

When multiple dependent variables are employed in a two-group study it is
frequently suggested that a multivariate analysis of variance or the mathe-
matically equivalent Hotelling T2 be computed. These approaches are employed
rather than (or in addition tp) univariate tests on each dependent variable
for two reasons. First, the univariate approach ignors possibly useful infor-
mation ééncerning the covariances among the various response measures. Second,
the multivariate methods control the probability of Type I error for the whole -
family of response measures. That is, the probability of making one or more
Type I errors in the whole collection of dependent variable tests is equal to
or less than the alpha level selected for the analysis. When studies contain-
ing multiple dependent variables are analyzed using univariate tests the prob-
ability of making a Type I error is greater than the nominal alpha associated
with each test. Hence the multivariate'approéch involves ruﬁning an overall
test that simultaneously consideré all dependent variables at once.

In the case of the two-group multivariate nonparametric analysis of variance,

the null hypothesis is written as follows:

Vi1 vi2
V21 V22
HO' —\il = 22 or - - .
\)pl \)pz
where vy is the location parameter assoc;ated with the 1th dependent
va;iable and the jth population and -
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V1 and v, are the vectors of the location parameters associated
populations 1 and 2.

This is the hypothesis that the two populations are identical with respect
to the p response measures. If this overall hypothesis is rejected there are

several procedures that are appropriate for the identification of the depen-

conNcLy e,

" dent vériable(s) responsiblevfor the overall test, A simple approach is to

run a Mann-Whitney test on each dependent variable. Issues associated with
employing tests subsequent to the overall multivariate test are beyond the
scope of the present paper.

The nonparametric multivariate techniques are virtually unused at the
present time because they have been developed recently and the basic references
(e.g., Puri and Sen, 1971) have been written primarily for mathematical statis-
ticians rather than research workers. The purpose of this paper is to describe
a simple procedure for computing the two group nonparametric multivariate
analysis of variance with the aid of the output of a conventional multiple

linear regression computer program.

Conventional Computation

The Puri and Seﬁ nonparametric multivariate ANOVA procedure involves the
computation of the test statistie (N - 1)erBT~!

B is the between or among group sum of products of ranks matrix and

zfl is the inverse of the total sum of products of ranks matrix.

This test statistic* is evaluated as a chi square with p(J - 1) degrees

of freedom where p is the number of dependent variables and J is the number of

|__groups.

*While Puri and Sen (1971) have shown that their test statistic Ntrngl

is asymptetically distributed as chi square, the small sample properties are
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Regression Procgdure

The multiple regression solutioﬁ requirés the following steps?

1. Construct a data matrix that contains a dummy variable to identify sub-

jects in the two groups (columm 1), all other columns contain the ranks

- associated with the p dependent variables included invthe design.

2. Regress the group mémbérship dummy variable on the ranks of the dependent

variable scores to obtain the.multiple rank correlation coéfficient Rg
3. Square Re ‘
4. Multiply N-1 times Rg’to obtﬁin'the test statistic. That is, (N—l)Ri % xz.

It can be seen from a comparison of the éonventional and regression
approaches that the test statistics are (N-l)trggfl and (N-l)Rz respectively.
It follows that, ‘ -

tpggfl = Rﬁ.

A proof is presented in the Appendix.

not known (Puri, 1974). I have chosen to define the test statistic as

N - l)trngl because (a) » this statistic is also asymptotically
distributed as chi square with p degrees of freedom underkthe null hyppfhesis
of identical populations and (b) this statistic‘reduces (exa;tly) to the
Kruskal-Wallis chi Square statistic in the case of one dependent variable.
Since the small sample properties of the Kruskal-Wallis statistic have been
found to differ little from the -asymptotic results, it~would.be suprising if
the small sample properties of the multivariate generalizacion suggested here
differ from the theoretical results. There will be almost no diffé}ence in

the results obtained using these two formulas with respectable sample sizes.
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Table 1

Example Raw and Ranked Data from a Two Group Design
with Three Dependent Variables

Raw Scores

Group I Group II

TR CH M S

3. 10 12 21 56 11

17 17 7 27 57 10

20 51 5 35 62 6

70 53 0 38 63 1

Ranked Scores
Group I Group II
71 ranks )& ranks Y3 ranks Yl ranks y&.ranks )3 ranks

1 1 8 4 5 7
2 2 5 5 6 6
3 3 3 6 7 4
8 4 1 7 8 2
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Computational Example ]
- The computation of the multivariate test statistic for the data contained
the
in Table 1 is summarized below for the conventional and regression solutious.
' ' Step
Conventional Splution
8.00 16.00 . 2.00
B = {16.00 32.00 4.00
Lz.oo 4.00 0.50
o [ -12877 -.07241 .06746 Step
I~ = |-.07241 .N6857 -.02732 ’
L__.06746 -.02732 .06319 Step
1 . 00649 46319 .22886
BT " = .01298 .92638 45772
_;00162 .11579 .05722 and
tr 52:1 = .00649 + .92638 + .05722 = ,99009. ) the f
The test statistic.is (N - 1)t:§£fl = (7).99009 = 6.93. Since the critical
value of chi square based on p(J -~ 1) = 3(1) = 3 degrees of freedom is 7.81
5 for alpha = .05, the overall multivariate null hypothesis is retained.
Regression Solution
are n
Step 1 Construct the data matrix as shown below.
' justi
) . @ (3 (4)
. usefu
Group Membership Yl Y2 Y3
outli:
Dummy Variable Ranks Ranks Ranks .
1 1 1 8 * respo
1 2 2 5
1 3 3 3
1 8 4 1
0 4 5 7
0 5 6 6
o] 6 7 4 .
0 7 8 2 :
variar
It can be seen that all subjects in the first group have been assigned effect
the dummy score of one and all subjects in the second group have been assigned (Huite
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the dummy score of zero.

Step 2 Regress the group membership dummy variable (column 1) on the ranks
of the dependent variable scores (columms 2, 5, and 4), The resulting
multiple correlation coefficient (actually the multiple rank correlation
coefficient Rs) is .99503.

Step 3 l Square RS. Rz is .99009.

Step 4 Multiply Ri by N-1. (8-1) .99009 = 6.93 = x*. Notice that this
is the same value obtained with the conventional computation procedure.

Since the obtained chi square does not exceed the critical value of 7.81

the following hypothesis is retained:

V11 V12
Hyt fvar |=] Va2
Va1 V32

There is insufficient data to conclude that the population distributions
are not identical. Since the overall hypothesis is not rejected there is no
justification for additional tests on the individual depenaent variables.

In conclusion, the nonparametric multivariate analysis of variance is a
useful method for dealing with long tailed population distributions, possible
outliers, and increased probability of Type I error associated with multiple

response measures. It is easily computed with the aid of any multiplg regres-

sion computer program.

Epilog

There is an alternative to the multivariate nonparametric analysis of
variance for handling the problem_of increased Type I error that is simple,
effective and easily understood. Thig approach is described elsewhere

(Huitema, forthcoming).
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SUMMARY

There are two situations in which nonparaﬁetric procedures such as the
Mann-Whitney test should be considered as useful alternatives to the parametric
analogs: (1) when the population distributions are of certain nonnormal forms
and (2) when the data contain unknown outliers. 1If résponses are obtained on
multiple dependent variables both of these problems are more likely to occur '

than in the univariate case,

An additional problem associated with the multivar1ate case 1s an increase
in the probability of Type I error; that is, as the number of dependent vari-
ables is increased the brobability of making a Type I error increases. One
method of controlling Type I error isg to employ the Puri-Sen nonparametric
multivariate analysis of variance. Tt appears that the Puri-Sen method has
virtually never been used. This is so because (a) the original papers pre;
senting this procedure were written for mathematical statisticians (and are
inscrutable for the typical research worker), (b) there are no secondary sources
that describe the procedure, and (c) there are no widely distributed computer
programs‘available to cafry out the analysis.

The Puri-Sen test statistic can easily be computed for the two-group case

by regressing a group membership dummy vatiable on the rank-transformed depen-~

dent variables and multiplying the resulting R2 by N-1.
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INTRODUCTION TO THE STUDY

This investigation'sought to evaluate the utility of discriminant functions and
their related statistics, in providing a practical post-hoc determinant of
criterion strength and decisioning (sic) reliability for decision-making in the
multiple alternatives environment (Wholeben, 1980a). Past experience with the
use of binary inieger'prograMming {operations research) models in the selection
of elementary school sites for closure during severe enrollment decline had
demonstrated, that discriminant functions could provide a useful tool to the
decision modeler -- not only to assist an evaluation of the model's reliability
in constructing various solution set vectors {i.e. ihe schools to be closed
versus those to remain open) in the form: .

{100111000...04

where l=open and O=close; but also to provide an .accountability framework for
the public's understanding of the methodology utilized and the reasonableness of

Presented at AERA 1982, MLR Special Interest Group
Not refereed by editorial staff
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the results (solutions) according to the criterion references employed. Thig
current paper seeks. to expand upon that 1979 investigation, and provide
additional-data_supportiné the use of discriminant'Fdnctions as an effective
post-hoc technique for eva1uating\not only decisioning reliability but also the
relative impact which each of the applied criterion references provided to the
construction of the resulting decision (solution set vector formulation).

This paper will proceed to first acquaint the reader briefly with the idea of
multiple alternatives modeling (MAM), and presehf a strong rafiona]e for
evaluating and simulating potentiatl alternative deciéions via an easily
constructable criterion-referenced methodology. Secondly, the reader will be
introduced to the "tools" of the MAM evaluator, and the rudiments of a
nomenclature which will be utilized within the body of this report. Next, the
findings of the 1979 school closure model (SCHCLO) will be summarized as an
indication of the utility of discriminant functions in assessing decisioning
model reliability for the "complete“ matrix model case -- that is, a criterion
model with no empty cells due to missing or incomplete (irrelevant) data entries.
Fina11z, the use of discriminant functions for assessing modeling reliability
and individual criterion strength associated with each decision will be studied,
utilizing the 1981 fiscal deallocation model (ROLBAK) for evaluating budgeting
unit alternatives for deallocation during funding roll-backs; and emphasizing
the "scant" matrix model case.

The objective of this paper remains to demonstrate the utility of discriminant
functions in assessing the relationship between those criterion references
designated as providing the rationale underlying the decisions made; that is, to
correlate decision sets (solution vectors) with the criteria, and thus measure
the retationship of criterion variance in the prediction of solution vector
membership. Furthermore as an auxillary objective, the use of discriminant
functions will also provide a useful 'at-hand' technique for understanding the
weightedvvalue (or strength) for each of the criterion referenced variables
entered into the discriminant function formulation. Finally, these results will
demonstrate the utility of discriminant functions in the assessment of'decisioning
reliability and criterion strength for botﬁ the "complete" and "scant" criterion
matrix of values.
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jrﬁvaluation and alil decision-making resulting therewith, dema
?”accountab%lity, visibility and responsibility,

Jequally complex methodologies to assess both con
4 and to provide an understandabie environment wit

{ as collectively) which the criterion
H decisions. The clear need for the criterjon-refer

§ CRITERION STRENGTH AND DECISIONING RELIABILITY

nd a high degree of
Today's complex issues require
tent and process of such: issues,

hin which to simulate potential
decisions and measure resulting effect or impact. As jmportant moreover, is the

secondary demand for providing a means for post-hoc evaluating not only the
results of the simulated decisions, but also the influence (singular]y as well

references lend in making the original

enced decision-maker therefore
is to satisfy the following five objectives:

{11 to validate the sophisticated decisioning methodologies
which are so necessary for addressing today's complex
Problems -- yet so often ignored, discounted or feared;

{23 to Study criterion effect upon the decisions made, and
the impact which the system receives via those decisions;
and thereby understand differential criterion weighting and
influence -- "what® made a difference in constructing the
decisions, and the varying impaét resulting;

[31 to provide a high degree of visibility, and therefore
accountability, to the public interests served and affected
via those decisions -- generating a milieu of tryst within

which the decisions, no matter how unexpected, can be
trusted and accepted;

[41 to simulate the variable impact upon the decisions made by
introducing additional criterion influences into the model,
and thereby perform a path analysis from solution to solution
as different criteria are utilized to construct each decision
or solution -- satisfying the innate need of some individuals
who must always ask, ... but, what if .. ?": and
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{51 to Eermit easy and quick decisioning replication within an
'ever changing environment -- knowing the relationships
between past successful decisions and the criteria used to
construct those solutions, in order to understand the
potential of future decisions based upon the new values of
more current criterion measures.

This paper demonstrates the superlative ability of a parametrically-based,
statistical technique to satisfy each of the five objectives stated above.
Relying upon multivariate, linear regression techniques, DISCRIMINANT FUNCTIONS,
constructed to relate criterion vectors to a singular 'solution set vector':
containing either a binary (1,0) decision representation or the composite entries
of a 'selection tally vector' (0,1,2,3,...), provide the basis upon which the
required measures of criterion strength and decisioning reliability will be
constructed.

Generally, the notion of criterion strength refers to the identification of those P

measures which in effect constructed the final decision or solution to the modeled Q
problem; and furthermore provide a 'factor' measure of ordinal value or weight
within that same group of ‘so]ution-formatfon‘ variable measures. Specifically,
criterion strength will address three fundamental questions existent within all
decisioning evaluation:

{13 which criterion references most clearly defend the decisions
made?

{21 to what extent are the criteria individually representative

of the decisions made? Jh
fo
{31 how do the most discriminating criteria within this decision EV

setting relate to each other in. terms of importance and
influence?.

This paper will illustrate the utiiity of discriminant function(s) formulation

- for answering these questions of criterion strength, respectively, by evaluating

the following rudiments of discriminant analysis:
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criteria included within the formation of discriminant functions
-- that is, which references were tentered’ into the composition
of the prepared functions;

{23 order-of-entry of each of the variables which discriminate the
final solution vector; and

{33 weight (or factor strength) relationship between the standardized
canonical discriminant coefficients.

Generally, the notion of decisioning reliability refers to the degree of trust
which is implicit to the decision model (in this case, the "muttiple alternatives
model® - MAM)j implicit in the sense, that the decision-maker can accept the
results of such a criterion-referenced technology, both in terms of content (viz.,
effect of the criterion references within the model) as well as process (viz.,
effect of the model upon the criterion references). Specifically, decisioning
reliability will address two fundamental questions existent within all decisioning
evaluation:

[l11 to what extent are the criteria collectively representative
of the decisions made? '

{23 to what extent can the defined matrix of criterion references
re-predict the original binary (include v. exclude) solution?.

This paper will illustrate the utility of discriminant function(s) formulation
for answering these questions of decisioning reliability, respectively, by
evaluating the following charactistics of discriminant analysis:

[l canonical correlation coefficients which offer a measure of
relationship between the 'set' of discriminating criterion
references and the ‘'set' of dummy variables which are used
to represent the solution vector; and




[2] the frequency of mis-inclusions and/or mis
over~estimations and/or under-estimations) discovered when
the classification coefficients constructed to predict a
solution with the known relationships among the

discriminating criteria variables, are utilized to re-
predict the original dependent va

~exclusions (or

riable (original solution),

DESIGN OF THE MULTIPLE ALTERNATIVES MODELING (MAM) FORMULATION

The complex issue of multiple alternatives decision

-making is no stranger to the
educational analyst,

The selection of some number of schools from a relatively
large pool of potential candidates for closure is a MaM problem. Each school
site represents varying measures of effectiveness, efficiency, satisfaction and
expenditure for each of a number of criterion references (e.q. capacity of

building, heating requirements, building age, projected enrollment change over
future years, safety factors of neighborhood,

to include one site for closure as op
"good" aspects of a ‘to-be-closed*
the other school operational,

posed to another site means, that
school must be sacrificed in order to keep

even though the ‘to-be-kept—open'
certain unsatisfactory measures on the same
closed school exhibited as satisfactory,

situation is known as interactive effects
represents the necessity of.constructing S
include some form of ‘controlled!

school may have
criterion variables which the now
Such modeling of this decisioning
modeling (Wholeben, 1980a), and
olutions sets which will invariably
preference/trade-off mechanics as the various
alternatives are evaluated. The issye of complexity is also represented in the
statement of the problem: to select some number of schools for closure in order
to promote certain defined goals of the district; and thus to determine how many
schools will be closed and which ones, Obviously, such a model must in effect

be simuiteneously performing these two inter-related decisions:

“how many?" and
“which ones?v ..
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Jrithin each object cost code for each of the units under evaluation; and in
’addition contain perceptual measures of administrative level of expendability.
Jonce again of course, exists the dual responsibilities for determining how many
1program budgets will be discontinued, and which ones -- based upon the interactive

IThe multiple alternatives model is simply a system of simultaneous linear

as members of the modeling framework previously illustrated within Figure 1,

ghe determination of which program unit budgets will be decisioned for continued
;funding (versus deallocation) is another example of the multiple alternatives
Tframework, and its superior contribution to the realm of accountable and
gcriterjon-referenced evaluation and decision-making (Wholeben and Sullivan, 1981).

§in the fiscal deallocation model, criteria represent the projected expenditures

modeling effects of the various criterion weights across unit alternatives.

inequalities and equalities which collectively represents the problem to be
solved. Such an algebraic linear system is portrayed in <Figure 1), Note how
each linear combination represents a vector of values (viz., coefficients) which
identifies the total, measureable impact to a system of the alternatives being
modeled. Thus there exists a unique (normally) combination of coefficients for
each of the criterion references used as input to the decisioning process. The
alternatives themselves are further defined as binary variables (that is, taking
on the value of either 0 or 1 (to be excluded in the final solution set, or to

be included, respectively). Vector formylation for each criterion reference,

Dajxy  ajxg  ajaxg ... 3j§Xj 3

portraying i criterion references across j alternatives, will then provide a
basis for measuring total impact to the system as a whole attributable to the
solution set constructed. Bounds (or limits) to what is allowable as a total
impact to the system are expressed as vector entries within the conditional
vector (or normally named, RHS, the right-hand-side). The RHS-values are the
constants of the equations and inequalities modeling the system, liFigure 25
Presents a listing of the four generic types of criteria to which each model
should address content validity; and ¢Figure 3 depicts these criterion entries

The remainder of the modeling process concerns the use of an additional vector
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~minimize the impact of the objective function's values upon the system) or a

R

to assist in determining from the potentially hundreds (or millions, in some
exercises) of possible alternatives, that one, best mix for which the best,
possible solution exists., This process is called the search for optimality, and ,
the vector is known as the objective function (or sometimes, the cost vector), :
Geometrically, the objective function is a n-1 dimensional figure passing through
the n-tuple space (convex) which is feasible (that is, includes all of the
constraints postulated through the use of the linear equalities and inequa1ities)
and which seeks a minimum point within the feasible region (if the goal is to

maximum point within the feasible region (if the goal is to maximize the defined
objective function's impact to the system as a whole), : ’

Simply stated, the multiple alternatives model is a technique which seeks to
construct a solution set (a vector of 1's and 0's), such that this same solution

vector represents the solution of the simultaneous system, constrained by a series .

of competing criterion measures (vectors), and based upon the optimality demands
of the objective function.
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Figure 1. Representation of the Augmented Decision Matrix Model

as the "Multiple Alternatives Model" (MAM).

(Decision Variables)

Constraint

Constraint #02

Constraint #03

. fv

Constraint #04 41 42 43 44 1 45 46 47 48 % . 4

Constraint #05 | s1] s2| 53| sal| ss| se| s7] s8 5

Cost Vector Coefficients

8 8
Optimize: E cjxj st: E aijxj £, = 2 bj x>0
1=1 J=1

(If MILP, x is integer; if decisonal, x=0,1 only.)




Analyzing Multiple Competing Alternatives.

Multiple Alternatives
Criterion : Foci A1 A2 A3 A

Figure 2. Representation of a Generic-Criterion Decisioning Model for
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the relationships between the mode]
Just discussed above' and the resulting solutions formulated, require the use

of linear vectors and combinations of vectors (matrix), Only those vector and

matrix formulations most germane to this paper will be discussed below. Th
reader is invited to be patient until. the

1s1on-Making"

ustration of all vectors and matrice
pertinent to MAM.

Solution Set ‘Vector. In order to distinguish between alternatives included or
excluded as members of the final solution to the system modeled, a vector of
binary-decision representations ‘is required, in the form:

{101100000... 14

where '1' means that the criterion values associated with that particular x(j)
will be computed to measure resulting system impact; and '0! means that the
underlying criterion values will have gg"impact upon the system,

construction of the system solution, a method called cyclic optimization
(WhoJeben, 1980a; Wholeben and Sullivan, 1981) is ysed.
model is execyted once for each unique criterion being us

model, the intent may be be prepare a solution set whereby existing capacity of
the remaining schools will be maximized; in another cycle, the model will be

executed such that the schools remaining open within the district will minimize
the amount of energy expended for facility heating requirements. The selection
tally vector is basically a frequency summation vector, compiling the number of
times each alternative was chosen as part of the solution vector, across all

cyclic optimizations, Such a vector will pe represented as:
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showing that the first alternative was selected as solution a total of 3 times,
the second alternative a total of 7 times, and so forth. This vector is extremely
impoftant when the MAM Procedure requires a step-wise decisioning process such
as the school closure mode] -- evaluating a revised database after closing a

single school such that the effects of closi

incorporated into the next decision for determining additional site closures.

Discriminant Criterion Inclusion Vector.

This vector simply represents another
binary entry vector of 1's and 0's, signifying which particular criterion
references were utilized via discriminant functions to develop the canonical
classification coefficients

» and the standardized Canonical discriminant
function coefficients.

Discriminant Criterion Entry Vector. This vector contains 1,2,....k entries,
where k criteria were utilized in the development of the discriminant functions,
and the 1,2,...,k entries represent their order of entry into the discriminant

formulation. Criterion variables not entered into the function(s) receive a
value of '0', by convention.

Applying discriminant procedures to the
binary solytion vectors will result in the computation of standardized canonical
discriminant function coefficients, These coefficients will reflect the utility
of entereé criterion vectors if those vectors contain standardized measures in
lieu of the normal raw scores. By dividing each of the standardized canonical
coefficients by the smallest of the standardized canonicals, the quotient will
provide a factor of importance. for each of the criteria as relative to the other
criterion entered in the discriminant formulation., The discriminant.weighting
summary vector is a Tinear representation of these factors (quotients), where
the minimum entry value is always '1,00' (smallest standardized coefficient

divided by itself). Non-entered criterion locations receive a value of '0.00" by
Convention,

Discriminant Weighting Summary Vector,

h7
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Other 'tools' have been referenced in the proceedin

g section of this paper;
criterion constraint matrix,

RHS), objective function
Other formulations are
ty weighting matrix) to
accountability and usefy?l

condition limits vector (
vector, and the cyclic optimization tracking matrix,
currently under study by the author (e, 9. the optimalid
investigate new relationships which may allow greater
reliability of the multiple alternatives modeling fram
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THE "COMPLETE" MATRIX CASE: THE SCHOOL CLOSURE MODEL (SCHCLO)

A total of 32 elementary school sites were measured across 24 relatively
independent criteria, resulting from previous factor analyses of an original set
of 64 criterion references. The criteria chosen were utilized by the multiple
alternatives model for school closures (SCHCLO; Wholeben, 1980a) to evaluate the
population of sites for some set of defined closures based upon the characteristics
of the data; and the needs of the school district involved. Because the criteria
utilized portrayed different value orientations (i.e., positive effects to be
maximized; or negative effects to be minimized), the model consisted of a total

of 18 cyclic MAXIMIZATIONS, and 6 cyclic MINIMIZATIONS -- for the total 24
optimizations required. The strategy was to operationalize the cyclic model,
evaluate the full N=32 sites, analyze the selection tally results, choose a single
site for closure, update the database to signify the closure, and then re-evaluate
the now reduced N=31 site model for an additional closure. This étep-wise closure
strategy was considered consistent with the pragmatic reality of deciding schoo)
closures due to severe enrollment declines.

{Figure 4> displays the results ("tracking matrix") of the N=32 cyclic optimiza-
tion; and in addition, the selection tally vector entries (right column vector).
The asterisked (*) vector entries signify those sites considered having the most
potential for closure, due to the selection tally entries. These 4 sites were
simulated_'closed' (i.e. included as '0' in the solution set vector); and a
stepwise discriminant function analysis performed to analyze the relationship
between the 24-vector criterion matrix which purportedly constructed the solution
set, and the solution set thus constructed.

{Figure 5y displays the results of the N=32 discriminant analysis. The single
discriminant function constructed required a total of 8 criterion vectors to
adequately explained the variance found within the binary solution set of 4-0's
and 28-1's. The group-correlative relationship between these 8 criteria and
the dummy variables formed by the solution set vector, was a canonical of 8512,
explaining 72.5 percent of the variance between the criterion and solution sets,
Based upon the re-classification coefficients formed, the discriminant function

4g
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Figure 6.

Sunmary of Discriatnaac Function Analysis

Based Upoa MIP-4A Sua Resulcs (N=32)

CRITZRICN CRITERICN WILKS'
stER REMOVED LamoA SISHIFICANCE
1 5743 .0096
2 3864 L0044
3 AREAREPR L2320 .0008
4 - ENERVAST : 1502 .0003
s POTENT 0972 .0001
6 MINORITY 0666 0001
7 AREAZLEC .0457 L6001
8 SITEAGE L0310 L5001
9 THERMEFF .0208 L0901
) ENRELEC L0142 .001
1 ENRHEAT .qo7s .000
12 AREAHEAT .0036 .60u
13 ENRMATY ~ .g021 .000
14 THERMEEF .0027 .000
15 AREACAPC 0017 .000
16 CLASSRY L0011 .000
17 ENROL o L0007 .000
18 AREAUTIL 0005 .600
PERCENT OF (NIGEE  CANONTCAL
FUNCTION SICENTALYE TARIANCE EXPY CORIZLATION
1 124,994 ‘ 71.87 .9306
2 5.481 15.72 9200
3 2.300 6.60 .8348
4 1.500 4.30 7745
5 630 L 6124

L
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was able to re-predict group membership for the solution vector (inclusion v,
exclusion) with 100.0 percent accuracy.

{Figure 6> illustrates the results of the discriminant analysis to evaluate the
compositional relation between the selection tally vector and the full Criterion
database. For convenience, any selection frequency 2> 5 was entered into the
discriminant model as a frequency = 5. This was considered necessary in order
to provide some control over problems associated with singular frequency tally
entries, and a loss therefore of variance potential. To explain the variance
existent within the selection tally vector (0,1,...,5), a total of 16 criterion
vectors were entered into the final construction of 5 independent discriminant

functions. Re-prediction of the original vector entries proceeded with 100.0
accuracy.

i

e

TS

;
1

Upon the choice of a single school site for closure (j=ll, since tally entry = 7),
the database was updated to reflect a N=31 base, and the net effect of the stud
transfers from the closed site. The model was re-executed, and a new tracking
matrix constructed, as displayed in <Figure 7y, A total of 4 new sites were now

simulated as closed (with tally entries ¥ 4); and the discriminant model re-run,

ent

{Figure 8% displays the discriminant results of analyzing the N=31 solution set,
A total of 10 criteria were required to explained the independent variance --

two more than the N=32 analysis. The canonical correlation existed at 8392, or
70.5 percent explained (independent) variance. Re-classification resulted in a
ng;Q percent accuracy level. As before, the selection tally vector for the N=31
case was analyzed by discriminant functions; and these results are illustrated

in ¢Figure 93, A total of 4 functions were constructed; and a re-prediction of
87.1 percent accuracy achieved. Within the re-classification, 7 occurrences of
‘over-estimation' resulted (viz., an ‘expected' tally entry greater than the
original 'observed' value); and 1 occurrence of 'under-estimation’ (viz., an
'expected' tally entry lesser than the original 'observed' value). Thus, it
would seem that reclassification errored on the non-conservative side.
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Figure

Summary of Discriminant Fuaction Analysis

Based Upan MIP-4B Results (N=31)

CRITERION CRITERION WILKS'

STEP ENTERED REMOVED LAMBDA SIGNIFICANCE
1 ENROL .8883 0861
2 INTERL3 .8l64 .0585

MINORITY .7238 .0309

STUDPROX . .6504 0206

16590
AREAMAIN v .5944

<0095

.0073

CLASSRM -5659 .0102

ENROL _ .5336 .0126

ENRHEAT .4957 L0132

10 ENERWAST L4330 .0081

11 THERMEFF -3387

«0020
12 ENRELEC +2954.

.0015

Eigenvalue = 2.38541 . Camonical Correlation = .8394

Classification fesults:

P AN S

Actual Group Cases Close No Close
Close 4 4 (100.0%) -
No Close 27

- 27 (100.0%)

“ Percent of "grouped" cases correctly classifiod: 100.0




Figure 9.

Summary of Discriminant Functioa Analysis

Based Upon MIP-4B-Sum Results (N=31)

CRITERION WILKS®
REMOVED LAMBDA SIGNIFICANCE

CRITERION
ENTERED

STEP

20412

L6912

INTEROL

.0213

.5064

INTERL3

.0091

-3596

MINORITY

.0070

.2703

POTENT

.0064

L2067

STUDPROX

<0047

.1517

SITEOL

.0057

-1193

AREAUTIL

.0034

.0822

AREAMAIN

.0044

20635

CANONICAL
CORRELATION

PERCENT OF UNIQUE

VARIANCE EXPLAINED

EIGENVALUE

FUNCTION

.8049

42.30

1.840

.7769

34.99

1.522

.6363

15.63

.680

.4852

7.08

.308

57




Figure 9. (continued)

Clasgificatioa Results:

ACTUAL . : .
GROUP  CASES FREQ=0 FREQ=1  FREQ=2 FREQ=3 FREC=4
FREQ=0 4 4 (100.0%) -~ - - -
FREQ=1 1 - 10 (90.9%2) 1 (9.1%) -~ -
FREQ=2 8 - 1 (12.5%) 5 (62.5%) 1 (12.5%) 1 (12.5%)
FREQ=3 A - - - 4 (100.0%Z) 4 (100.0%)

FREQué 4 - - —

- 4 (100.0%)

Percent of “grouped" cases correctly classified: 87.10
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THE “SCANT" MATRIX CASE: THE FISCAL DEALLOCATION MODEL (ROLBAK)

total of 31 program budgeting {unit) alternatives were evaluated for defunding
cross a total of 10 competing criterion references. In lieu of a step-wise
procedure as represented in the school closure modeling framework, the model is
¢ further constrained to choose those programs for refunding such that the new
?operating district budget is not less than 675,000 doltars, but not more than
| 700,000 dollars for the particular programs under scrutiny. To study the effect
- of the model's solution generation process, the feasibility region as defined
§ by the constraint matrix and the RHS-values is constructed in two distinct
~patterns: a highly restricted region in which very stringent controls are defined
for the modeling procedure; and a relatively relaxed region in which less
stringent controls are modeled. In addition, the ROLBAK formulation is executed
both for cyclic maximization of the objective functions, and for cyclic
miﬁfmization of the objective functions. Thus, a total of 4 tracking matrice
containing 10 potential solution sets (each) result.

i

This particular modeling application represents the “"scant" matrix case, in that
a high proportion (48.7 percent) of criterion matrix cells contained a ‘zero'

. entry, signifying no cost for that particular alternative within a specific
object-expenditure category. For the SCHCLO model, the criterion matrix was
"complete® -- all cells contained a value greater than zero.

Under the 'restricted* formulation, the 17 resulting solution sets signify only
2 distinct solution vectors. In contrast under the ‘relaxed' formulation, a
total of 17 distinct solution vectors result. Under both restricted and relaxed
limitations, 3 objective functions were unable to declare optimality due to the
inability to find an initial integer-feasible solution.

{Figure 10y and <Figure 11y display the solution sets resulting from optimization
within the restricted region environments. The selection tally vector is noted,

as well as the impact upon the total budget based upon the simulated cuts (i.e.,
where X=funded). As can be easily seen, the solutions resulting from optimization’
within the restricted environment present only two distinct alternatives for

later discriminant analyses.
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{Figure 125 and {Figure 13% display those solution sets resulting from the
optimizations within a relaxed environment. A total of lz distinct solution set
vectors are formed; and thus the selection tally matrix demonstrates greater
variability than existent within the restricted orientation.

Discriminant functions were computed for the relaxed modeling setting %irst,
requiring a separate discriminant execution for each of the distinct sotution
yectors resulting from the MAM analysis. As noted in an earlier section to this
paper, criterion strength was evaluated utilizing the three composites vectors: '

DISCRIMINANT CRITERION INCLUSION VECTOR
DISCRIMINANT CRITERION ENTRY VECTOR
DISCRIMINANT WEIGHTING SUMMARY VECTOR.
The first vector is composed of binary (1,0) entries signifying whether a specific
criterion was entered into the discriminant analysis for explaining the variance

within the solution set. The second vector contains entries of 1,2,3,... , such
that the order-of-entry for the discriminant criteria is represented. Finally,

the third vector contains a factor-weight entry for each of the 'entered' vectors,™

to measure the relative importance of each of the discriminating criterion
references. '

The notioh of decisioning reliability was evaluated utilizing . two techniques:

CANONICAL CORRELATION
RE-CLASSIFICATION ANALYSIS.

¢{Figure 14y contains the discriminant results for solutions accountablie to
maximization within a relaxed region. The first ten columns contain the

jinformation from the discriminant analyses for each of the ten simulated solution

sets. The ordinal numerals reprasent order-of-entry, while the bracketed entries
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{« Cut)

Total Initial Budget » 893.5 ($1000's)

Note:

Figure 13, .

1

”& xx] contain the factor-weights computed from dividing each of the standardized-
5anon1ca1 discriminant coefficients by the sma]\est such coefficient for each
fnscr1m1nant analysis. For example in the fwrst column signifying the results -
fﬁ discriminating the solution computed from maximizing ‘certificated salaries’ .
’Ecriteria were required to explain available variance within the solution set.
%he cr1ter1on ‘budgetary composites' was entered first, and represents a factor
Jf 2.51 in its importance to the remaining 4 criterion discriminants. The
u1ter1on tcertificated salaries' was entered secondly, and represents a factor
ﬂf 3.17 in its relative importance for discriminating the solution set being
Bnalyzed; and so forth. The selection tally vector is similarly analyzed via

Siscriminant functions.

ﬁor understanding the dimension of decisioning reliability, computed canonical
f:orrelation coefficients existed as follows, for maximized-relaxed solutions:

Objective Canonical Percent Variance  Relative
Function Coefficient Explained : Rank
CERT .9056 82.0 3
CLAS .8633 74.5 6
BENE .8729 76.2 4
SUPL .9077 : '82.4 2
H INST .9339 87.2 1

CONT .8679 . 75.3 5
TRAV .8614 74,2 7
CAPI .8419 70.9 8
PERC .7870 61.9 9
comp .7281 53.0 10.

Thus it would seem, that a formalized objective of "maximizing” the expenditures
associated with instructional materials in determining which programs to refund
during a period of scant resourses, produced the highest ‘correlation between
the criterion matrix of 10 vectors and the proposed solution set vector
constructed from the MAM analysis execution. Likewise, the maximization of
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{J o
ution vectors formed by ‘
The resylts of

Number of
Under-Estimates

Number of
Over-Estimates

Re-Prediction
Accuracy (X)

ns) optimizations. The re

|
|
-c]assification portion of I
i

e computed canonical correlation coefficients for minimized-re]axed solutions:

saible; Optimality not achieved)

Objective Canonicaj Percent Variance Relative |
Function Coefficient Explained Rank }
CERT 7721 59.6 6 !
CLAS - - - i
BENE .7902 62.4 5 |
SUPL .8194 67.1 2 |

INST .7675 58.9 7

CONT .8000 64.0 3

TRAY .7928 62.9 4

; : CAPI :

PERC -9343

Number of
Mis-Exclusions

Number of
His-inclusions

Re-?reqictipn
Suracy (%)

Tution, to be.i:he best fit with the
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SUMMARY OF FINDTNGS

The use of discriminant functions in providing a useful post-hoc evaluation
strategy for multiple alternatives decision-making has been studied within two
separate real-world settings: the closure of schools; and the deallocation of
program unit budgetary items. Two generalized issues of content and process were
the main foci: content, in as much as there is a need to relate criteria used

to the decisions made; and process, in order to verify the reliability of the
decisioning procedures based upon the criteria utilized.

The author maintains, that two related "abilities" are necessary for prudent and
trustworthy decision-making. The fjggg ability refers to that knowledgé which
clarifies (1) which criteria 'effected' the decisions, and to what extent; and
(2) to what degree did this 'effect' vary across the results of the cyclical
optimizations. The second ability relates the need to study (1) the relationship
between the ‘'optimizing vector' (objective function) and the results of a
discriminant analysis; and (2) the relationship between the extent of feasibility
region constraint (relaxed v. restricted) and the resuits of a discriminant
analysis. To accomplish these ends, the multiple linear regression technique,
discriminant functions analysis, is utilized to measure the topics of criterion
strength and decisioning reliability.

The results of these discriminant analyses illustrate the superior efficacy found

in relating multiple correlational strategies to discovering relationships between '

solution vectors and the criterion vectors (matrice) supporting those decisions.
Three measures. of criterion strength and two measures of decisioning reliability

are illustrated for the reader -- all measures normally products of discriminant
function(s) formulation.

It is a fundamental by-product of this study though all to important not to note,
that the formation of "classification coefficients" within the discriminant
process provides an excellent way of projecting expected impact from a newly
collected set of data variables. By utilizing the linear combinations of this
new data, 'expected correlative' decisions can be computed which maintain the

71




same variance relationship as the decisions utilized originally in the initial
discriminant analyses. |

In summary, the use of discriminant. functions in addressing the issues of criterion
strength and decisioning reliability has been illustrated to hold great promise

for the decision-maker, evaluator and otherwise.problem-solver. Increased
accountability, visibility and responsibility are the maximized ends.
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Appendix I

Synthetic "True" Covariance Structure for Misspecification Categories
I and ITI: The Covariance Structure used as the Input Matrix for the
Simulation of Data Sets whith a Multivariate Normal Distribution.

b kP 3 X X %
Y, 1.338
Y, .781 1.1175
Y, 1.9525  2,54375  6.453975
X, .84 .62 1.55 1.1
X, .42 .31 .775 .5 .35
X, .78 .55 1.375 .8 .4 1.1
X, .234 .165 .4125 26 .12 3 .19
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Appendix I1

Synthetic "True" Covariance Structure for Misspecification .Category II:
The Covariance Structure used as the Input Matrix for the Simulation

of Data Sets with a Multivariate Normal Distribution.
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{Campbe1] and Stanley, 1966) Using the netation of Campbel] an
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Campbe11 and Stanley state, *

~ #which maé%s use of all sjx sets of

» while very simple conceptually, can be

is. Campbe1] and
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Treatment

Yes No

Pre- Yes 6rl Gr2
Test

No Gr3 Grd

In this design only the posttest scores are statistically analyzed. This

procedure does not allow one to control for the pretest scores in groups

1 and 2, thereby losing some power; it does however estimate the effects

of treatments that are independent of individuals having a pretest and
treatment pretest interaction. It also tests for the effects of pretesting,
independent of treatment and pfetest-treatment interaction, on posttest scores.
Finally, the approach estimates the effects of pretest-treatment interaction,
on posttest scores.

One of the advantages of writing specific regression models which reflect
research questions is that ohe is less likely to héve a statistical answef
that is unrelated to the researcher's question of interest. The following are
a variety of regressipn models which will reflect potential research questions
that can be ascertained from the Solomon Four Group Design. It should be

remembered that there is not one correct answer.

Recently, Newman, Benz, and Williams (1980} devised a way to analyze data
that, by extension, mfght be applied to Solomon type designs. A unique property
of this technique is that, the statement by Campbell and Stanley not with-
'standing, a single statistical procedure can be employed which makes use of
all six sets of observations simultaneously. On the other hand, the solution(s)
may prove to be no more satisfactory than existing possibilities that split
‘the data into two sets. In the end, the Solomon Four Group design may prove
to be one of those recalcitrant research situations that leave the would be

analysts foundered on the shoal of a simple design whose simplicity is only

a deception.

Consider
. have scores s

% tested and or

vé‘tested contre

5 given in Tab

Experimenta
; Group One
:Pretest  Pos
- 5

7

5

12

6

Several

ivide the da

t=14.24
The form
Zrepeated meas
nalysis of ¢
To appro:
ﬁ§ariab1es can
Y = the ¢

X1 = the_




a deception.

Consider the following research situation. Five people in each group
have scores such that one experimental group has been pretested and post-

tested and one experimental group has been posttested only. Two similarly

hi tested control groups are also included. Data for such a situation are
is
ps given in Table 1.
ts
Table 1
Data for a Solomon Four Group Design
sting,
Experimental: Control: Experimental: Control:
t scores. Group One Group Two - Group Three Group Four
! Pretest Posttest " Pretest  Posttest Posttest Posttest
action,
5 15 5 8 13 9
7 12 4 7 10 8
; 5 10 4 8 12 6
reflect ] 12 17 6 6 11 3
. ; 6 11 6 6 14 4
swer N
wing are Several different approaches might be tried. One approach would be to
uestions i divide the data into two sets: Groups One and Two (thdse who were both pretested
be t and posttested) as one set, and the posttested only groups (Groups Three and -
Four) as the second set. The latter set can be simply tested by the use of the
f ttest: '
yze data §
S = 4,24 (p<.05).
2 property . 3 L
'tH ' 55 The former data set {Groups One and Two) can be conceived either as a
1th- .
£ § repeated measures design or as a problem that can be approached through the
e 0 e B . . R
lution(s) ] analysis of covariance (or related techniques such as residual gain analysis).
ylutio |
1it - | To approach the problem f1rst as an analysis of covariance, the following
spiy S B
§ Variables can be defined:
prove ]
= the criterion, or posttest score;
Id be

fobet 4

X1 = the pretest score;
on]y . .
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5 = 1 if the score is from the experimental group, 0 if the score is from

the control group;

>
[l

3" 1 if the score is from the control group, 0 if.the score is from

the control grdup.

Then either of two full models can be used:
Y = b1x1+b2x2fb3x3+e1, (1)
or
Y = bo+b1X1+b2X2+e1. (2)
Equation 2 utilizes the unit vector in the process of generating a constant
whereas equation 1 :'does not. Eifher model will yield the same R2 value.
The restricted model (with equation 2 as the full model) is of the form:

Y = b0+b1X1+e2. (3)

_For this data set'Rg ='.79379, Rg = .42334, F = %.79379 - .42334)/1 = 12.58, p<.05.
: 1 - .79379)/77

Using a Repeated Measures Approach

If the problem is visualized as a repeated:measures design wherein the pretest
is the first measure and the posttest is the second measure, then the design is
Tike the Type I design shown in Lindquist (1953) and:-can be achieved through -a

regression approach (Williams, 1974). For a regression formulation, see Table 2.

o
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7 0 1
] 0 0
2 0 0
i 0 0
b 1 0
72 0 1
] 0 0
7 0 0
1 0 0
5 0 0
gﬁ 0 0
s 0 0
R
E 0 0
5 0 0
% 0 0
i 0 0
% 0 0
i 0 0
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The usuc

V= BythyX ¥baXytbeXote, s (8) :
The summary t
and , 1
Y = b0+b1P1+b2P2+...+b9P9+b10X3*b11X5+e8. (9)
For the preceding, Ri = .54297;
o RE = L312s0;
Ré = .3'1250; ubjects
. xperimental-
R; = .62500; frror (a)
Q2 - 2. Nithin Subjec
R8 .70312 and R9 .93359. Gost-retest

What might have occured if a model of the following form were used? E}g&g:a?;;on
. i
Y = b0+§1P1+bzP2+...+b9P9+b10X1+b11X3+b12X5+e9.

It would not sensibly yield R® = .54297 + .70312 = 1.24609. Such a model would 5i

fail because the effect for experimental-control is "nested" in the subject

(or person) effect. To test for the experimental-control effect, ‘ As the 5
‘ @ this to be
F =R - 3125001 D is
e (.54297-.31250)/(10- researcher
(RE-RE)/(P-1-1) .
' be exclude
p<.05.
‘time were
To test for the test-retest effect,
2 ‘ were, the
F= R6/1 _
: 'g If a six g
(1-R3)/(N-P-1-1) i
' : 4l This could
= .31250 = 37.65, p<.0l. ¢
.06641/8 g . ’ Z three-way
The interaction is tested by © layouts ar
F = (R5-R5)/1 = (.70312-.62500)/1 = 9.41, p<.05. : Consi
5 .06641/8 :
(1-R9)/(N—P-1—1) ) Y = the cr
Note that the interaction effect can be conceptualized as actually being ~j'X1 =1 if -
additional evidence for the experimental effect. The higher increases in : group
the experimental group will show up in part as interaction for a repeated XZ =1 4f
measures design. : 5; group




el would
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The usual summary table for the repeated measures design can be constructed.

fne summary table is shown in Tab]e 3.

Table 3

Summary Table for Repeated Measures Design

i df $S MS F
Bubjects 9 139.00 :
fxperimental-Control 1 80.00 80.00 10.85
Zrror (a) 8 59.00 7.375 :
Hithin Subjects 10 117.00 _
gest-retest 1 80.00 80.00 37.65
iinteraction 1 20.00 20.00 9.41
error (b) 8 17.00 2.125

fotal 19 256.00

Using A11 Six Groups Simultaneously

As the Solomon design is approached, several conceptual issues ensue. Is
this to be seen as a six group design with attendant solutions? If the
researcher opts for a six group design, person vector information needs to

be excluded. Indeed, this was also true in the previous section. At no

‘time were the four groups and person vectors used simultaneously; if it

were, the R2 was theoretically to be 1.24609, obviously an impossibility.

If a six group design is to be used, what dimensions would be appfopriate?

This could be considered to be a one-way lay-out, a two-way lay-out, or a

three-way lay-out (but with two missing cells) only the one-way and three-way

layouts are discussed here. First hypotheses with a one-way lay-out as addressed.
Consider the following variap]es:

Y = the criterion score;

17 1 if the score is a pretest score from a member of the experimental
group, 0 otherwise;
X2 = 1 if the score is a posttest score from a member of the experimental

group that has been pretested, 0 otherwise;
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1 if the score is a pretest score from a member of the control group,

‘0 otherwise;

1 if the score is a posttest score from a member of the control group
that was pretested, 0 otherwise;

XS-

1 if the score is from a member of the experimental group that was not

pretested, 0 otherwise; and

X6 = 1 if the score is from a member of the control group that was not pre-
tested, 0 otherwise.

For theusix group situation, the full model is:

Y.= b1X1+b2X2+b3X3+b4X4+b5X5+b6X6+e9. (10)

At least two different sets of restrictions\might make sense in addressing

the Solomon design. One such set would be bz-b1=b4-b3, which addresses the

hypothesis ?é-7i=74-7§, as the hypothesis that the gains in the twice tested

experimental and control groups are equal} also, the second restriction is

5=b6 és the once tested experimental groups have equal means: V5=Y6‘

The first restriction can be rewritten as b2=b4—b3+b1: ‘Placing these

b

restrictions on the Full Model:

Y = b,X +(b4—b +b1)X2+b X,+b X +b X +b_X_ +e (11)

1M 3 3"37°474775%5 576 10
Y = bl(X1+X2)+b3(X3—X2)+b4(X4+X2)+b5(X5+X6)+e10. (12)

Letting D1 = X1+X2;

= Xg-Xy3

=X X2; and

4+
= X5+X6, the restricted model is:

Y = b,D,+b, D, +b, D +b (13)

101%030,+bgD3+bD *e 4.
2 v
Here, R10 = ,71183; R13 .42882.

2 2
F=(RpR13)/2 - 2830172 = 11.79, p<.0l.

(1—R§O)/(N-6) (1-.71183)/24

This
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tions are
further pr
may leave
into Engli
in the mee
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One ¢
Dunn's (1¢
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group,
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10t pre-

essing
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e tested

;tion 1is

=Y6.

1g these

This F test tests simg]taneous]y Y2-Y1=Y4~Y3 and Y5=Y6; placing both sets

of restrictions allows the rejection of the null hypotheses. If these restric-
tions are equivalent to hypotheses the researcher had in mind, then there is no
further problem. Translatihg the meaning of these two hypotheses into English

may leave the researcher somewhat uneasy; however, ‘one attempt at a translation
into English is: It is not simultaneously true that there is no differences

in the means of the non—pretested group and ‘that there ié no differencés in

the gains of the pre-tested groups.

One approach would be to test each of these hypotheses separately and using

Dunn's (1961) test for multiple comparisons. Imposing the first restriction separately

(bz-b1=b4-b3) yie]ds Y = b1X1+(b4-b3+b1)X2+b3X3+b4X4+b Xgtb X te

5757066 €11°
Y = bl(X1+X2)+b3(X3-X2)+b4(X4+X2)+b5X5+b6X6+911. - (14)
Then using Dl’ D2 and D3 as previously defined, Y = b1D1+b302+b4D3+b5X5+b6X6+e11.
2 =
R15 .66038 and
- (nd _nd .
F= (RppRis)/1 = 71183-.66038 = 05145 . = 4.29.

(1-R§0)/(N-6) (1-.71183)/24 = (1-.71183)/24

t = JF = 2.07. Since two contrasts are planned, a value of 2.39 is necessary
for significance of the .05 level, hence the hypothesisfﬁéﬁ’§=/aﬂ/g, corres-
ponding to 72-71=7ﬁ-75 cannot be rejected. The imposition of the second

restriction (b5=b6) yields:

V= by thyKyth X otb X, HheXetbeXcte, o3
¥ = by X +b,yXotbaXakh X ytbo(XgHXg ey (16)
Using DA’
Y = blx1+b2x2+b3x3+b4x4+bsog+e12. (17)
2 2 -
RS, = .48028 and F = (R7,-R7,)/1 _
17 107”17 = .71183-.48028 _ ,aicc - 19.28,

(I'Rio)/(N’6) (1-.71183)/24 {1-.71883)/24
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t=/F= 4.39 t>3.09 from Dunn's table, so that p<.01. Note also that from

the numerator of these two tests that .05145 + .23155 = .28300, within rounding

It
error of the numerator when both restr1ct1ons were appliied; this is because missing
these contrasts are independent. Fromvthese calculations, it can be seen that cell des
the greatest poftion of the rejection of the hypotheses tested .by the restric- the thre
tions 1n equation 13 is due to the d1fferences in the groups that were posttested

.on]y rather than due to d1fferent1a] increases. Experime
A second set of restrictions (actually, a single restriction) is given as Control
(bz'bl)'(b4'§3)=b5"b6;_ This restriceion tests the hypothesis related to To test -
(7&—7&)-(7#—75)=V6-75;vthat is, the difference between the mean of. the gain o
scores is equel to the difference in posttest measures of the non-pretested restricti
group. The restriction can be stated as b2 be.-b +bl+b4-b3. Imposing fhis b1+t
restriction yields: which yie
Y= b1x1+(b5-b6;b14b4-b3)x2+b3x3+b4x4+b5x thekote s (18) Y= 0y(X,
= bl(X1+X2)+b3(X3-X2)+b4(X4+X2)+b5(X5+X2)+bG(X5-X2)+el3(19) Defining

Using Dl’ 02, D and defining 05 = X5+X2‘and D6'= X6—X2, equation 19 can be

rewritten as Y = b101+b3 2+b D +b5D5+b6DG+e
2

R20% .
Then F = .71183-.70326)/1 = .01857 ='1.55,
1-.71183)/24 {1-.71183)/28

which is non-significant. Thus, while we have previously showed that the

13. (20)
=.70326.

differences between the posttested groups is significant (p<.01) and the
differences in gains in the pretested groups are non-significant (p>.05),

there are no significant differences between the gain of the mean scores

and the posttested only groups differences. This is not to say the outcomes might
for the Solomon design are uninterpretable; it does say that the inter- O
pretations are. tricky. test t

are be-

e
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Viewing the Solomon as a Three-Way Design

It is possible to view the Solomon design as a 2x2x2 design with two
missing cells. The missing cells are planned, as was the case in missing
cell design described by Williams and Wali (1979). In diagramatic form,

the three dimensional case can be seen as:

Pretested Non-Pretested
Pre Post Pre Post
Experimental Grgup. Grgup X Grgup
Group Group ) Group
Control 3 4 X 6

To test for the experimental-control main effect (A effect), the following
restriction can be imposed:

b1+b2+b5=b3+b4+b6
which yields

Y = bz(_xz-xl)+b3(x3_+x1)+b4(x4+x1)+b5(xs-x1)+b6(x6+x1)+e14. (21)
Defining D7 = X2-X1;
08 = X3+X1;
D9 = X 4+X1;
010 = X5-X1; and
b1 = X6ty
Y = b2D7+b3DB+b409+b5Dlo+b6011+e14. (22)
RS, = .29159;
F = (.71183-.29159}/1 = .42024 = 35.00, p<.01.
(1-.71183})/24 . .28817/24

To.test the effect of pretesting (the B effect), several rival hypotheses
might be used to serve as the main effect.

One such hypothesis is b1+b2+b3+b4=b5+b6. This hypothesis does not
test the more appropriate hypothesis of interest, since the pretested scores

are being compared to the scores which have been posttested only. More inter-
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esting is b2+b4 b5+b6 or b2 b5+b b4.

Then,
Y= b1X1+b3X3+b4(X4-X2)+b5(X5+X2)+b6(X6+X2)+615 (23)
Defining 012 = X4- 23

Dy3 = X5+X2’

Dyy = Xg*X,
Y; by X *b3X3#byD, b0 o+ b6P1aters-  (24)
Roy = .69897; |

71183- 69897 .01286 = 1.07, p>.05.
B {T--71mm728

The outcome of this test would Suggest that the effect of

pretesting per se jg
minimal for this data set.

To test for pre-post differences.(the C main effect), the restriction

4-b3 can be imposed.

b1+b3=b2+b4 or b1=b2+b Then

Y = (b2+b
Y:

b )X1+b2X2+b3X3+b4X4+b5X5+b6X6+e16, or
2(x2+x1)+b (x3 x1)+b (x +X )+b5x5+b X cte

16. (25)
Letting D

15 = X3-X1, equation 25 can be rewritten
bZDl 3015+b409+b x5+b6x *e6 {26)
R25=.50600;

.71183-.50600)/1 =

.20583
1-.71183)723

Zl .71183)/2%

1nd1cat1ng a pre-test increase in scores.

= 17.14, p<, 01

Interactions in the Three-Way Design

First of all, the two'missing cells will cause the non-existence of

two interactions. The three way interaction will not exist, since it is

impossible to have non-pretested groups who were pretested.  For the same

reason, the BC interaction will fail to exist To test for the AB inter-

action, that is, the interaction between the experimental

~-control condition

17 = o7
stantial

equal to
To -

with pre-
the full
=4.29,

a summary

Summar
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S0, the C e
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3

B

Y= by X #baX kb (X 4Ky )4bg (XotXy ) +be (Xg =X, ) ey 7

(A) and the effect of pretesting (B), the restriction on the full model would be:

bz-b5 = b4-b6 or b2 = b4-b6+b5.

Then Y = b1X1+(b4-b6+b5)X2+b3X3+b4X4+b5X5+b6X6+el7, or

C(27)
Using previously defined transformations, Y = blX1+b3X3+b4D3+b5013+b606+e17. (28)
R§7 = ,71183; R§7 is identical to the R2 for the full model. This is circum-
stantially so because 7é-75=74-7g=13—12=7-6§ Thus, the AB interaction is
equal to zero.

To test the AC interaction, that is, the experimental-control condition (A)
with pre-post differences (C), the restriction bz—b1'=b4—b3 would be imposed on
the full model. This in fact was already done in equation 15, yielding R%5=.66038,

F=4.29, p>.05. The results from the three-way analysis can be placed into

a summary table; see Table 4.

Table 4

Summary Table for a Three-Way So1ution to the Solomon Design

Effect Restriction RR  df  sS MS F
Fxlzegggilmental-control) b1+b2+b5=b3+b4+b6 .29159 1 163.33 163.33 35.00
B8 (pretesting) b2+b4=b5+b6 .69897 1 5.00 5.00 1.07
¢ (pre-post differences) b1+b3=b2+b4 .50600 1 80.00 SQ.OO 17.14
AB bz-b5=b4-b6 .71183 1 0 0 0]
AC ' b2-b1=b4-b3 .66038 1 20.00 20.00 4.29
Deviation from Full Model . .28817 24 112.00 4.67

" Finding the sum of squares in Table 4 is facilitated by knowing SST = 388.67.
k Also, the C effect and the AC effect are identical to the same effects as

shown in Table 3.
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MULTIPLE LINEAR REGRESSION VIEWPOINTS
VOLUME 11, NUMBER 3 SUMMER 1982

TEACHING APPLIED RESEARCHERS
TO CREATE THEIR OWN |
STATISTICAL MODELS

Joe H. Ward, Jr.
Brooks Air Force Base, Texas

Earl Jennings
The University of Texas at Austin

The purpose of the following remarks is to give you something of the
flavor of a novel approach to the teaching of statistical model building
and manipulation. Historically, it evolved out of an applied environment
in thch many of the clgssica%u?qﬁels appeared to be inadeqqgtg gr‘at ;east
deficient in one orvmore respects. Students in applied areas who have been
ex;;sédbto the approach fgspond enthusiastically to it, and, in general,

the more "traditional" work they have had, the greater their enthusiasm. The

- response of teachers has been mixed. Many of the critics make remarks similar
" to those criticisms that are directed at the "new math." It is certainly
. accurate to state that students of this approach get very little practice in

" arithmetic for even the most elementary models. 1In fact, the primary text
! -

e e

[6] is almost totally devoid of computing formulae.

With respect to mathematical and statistical foundations, we rely very
heavily on the theory of the Cléff?Fal fixedfx‘linear ﬁode;, and the text
bears some §Hgg£§}qi§} Fesemblance to a gypical text on lipe§§ m?dels. However,

a great deal of the material covered in a typical linear models text will be

Presented at AERA 1982, MLR Special Interest Group
Not refereed by editorial staff
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found in ours only indirectly, if at all. Conversely, the concepts we ide

and the skills we try to develop are only indirectly_ipfegaplgi

text.

In general; our approaéh has the folloﬁing'characteristics:

1. a technical vocabulary of minimal length.

2. Very few special symbols and computational formulae. In those

o,

places where a new special symbol or formula would ordinarily

be introduced, we make every effort to identify the concept as a

special case of a more general concept and the formula as a special

case of a more general formula.' The "cumulative effect of this is,

we believe, a hierarchical
s - N

tructuring of the content that enhances

learning. See Appendix A for an example of the way we. summarigze

the models of one-ﬁay analysis of variance, a test for non-linearity,

aﬁd‘simple regression analysis, and Appendix B for a summary of a
two-factor prbblem. Students are assumed to have access to a

computer, so very little arithmetic is required.

3. An emphasis on the idea that a model is a way of formalizing an

argument.

similar to the skill required to translate elementary algebra "word
p;oblepgf“into algebraic equations.

3 FExtensive practice in the algebraic manipulation of models. This

pfopetties and almost always required to produce a restricted model

that can be used - in tests of hypotheses about the parameters of the

Some

example. S

of two diff
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is obtained
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for some models, the level of skill required is minimal.

Some of the features of the approach can best be understood by an

fxample. Suppose we were interested in evaluating the differential effects
}% two different methods of teaching reading in the second grade. Students
gre rahdomly assigned to the two conditions. A measure of reading achievement
obtained before instruction begins, and another measure is obtained at the
d of instruction. Because‘girls tend to read beﬁter at this age than boys,
%e can probably increase the precision of our estimations and the power of our
#ests by considering sex in the model. Moreover, there is a possibility that
gex might interact with teaching method, initial performance, or both.

Ultimately, we are going to argue that if we can reject the hypotheses

E@, voy, x) =E(2, boy, x)
Eq, girl, x) =E(2, girl, x)

;e are in a position to conclude that the methods are not equally effective.
é&ifgiﬁiiuggpse, the hypothesis is that the g{pected posttest performance for
a Method 1 boy with initial performance x- is the same as the expected posttest
pexformance for a Method 2 boy with the same initial performance, x. A similar
statement is made for girls, and x takes on all possible values of initial
performance. Suppose the potential range of x is 20 to 80. We seek a model
that will produce 2 (methods) X 2 (sexes) X 61 (values of x) = 244 estimates
of fﬁgfggsehyalggg. If we are not willing to make any simplifying assumptions
abpuﬁ'the relationships among the expected values, we need é model with 244

parameters, which we refer to as the mutually exclusive categorical model.

Fortunately, in this problem, it seems reasonable to assume that the expected

diffe{

nce in posttest performance per unit difference in initial performance
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assumed model. Although the amount of algebra required is burdensome




is constant (sometimes called the linearity assumption), although perhaps a
different constant for each of the four groups. If this assumption is true,
then the 244 expected values are expressible as a function of only eight

parameters. In the text, we discuss ways of investigating the tenability of

this assumption. Although there are an infinite number of ways of pParameterizind
- FONENEREELZ1ng

a model to estimate the eight parameters, one with intuitive appeal is

Y = alB‘l) + azB(Z) + a6t a2 4

B(x) (2 (1)

c(X % ) + e (X« B )) + Cc3(X * G ) +

(2) (1)

o x *»c'ty ¢ g

where

Y is a column vector of dimension.n containing the observed posttest
e L e
scores.

(1)

Ewn is a column vector of dimension n containing a one if the correspond-
ing value in Y was observed on a boy in Qﬁﬁﬁg@ i; zero otherwise.
(i=1,2)

G(i) is defined for gifls similar to B(i) for boys.

X is a column vector of dimension n containing pretest scores arranged

in the same order as Y.

The a's and c¢'s are unknown scalars, and E(l) is an unknown column
vector. A least squares solution to Model 1 might produce values

that could be represented as in Figure 1.

The a's are the intercepts and the c's the slopes of the four separate
straight lines. They are also estimates of the eight parameters which are

assumed to yield the expected values. We could proceed to investigate our
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Figure 1. Possible results for Model 1.

ultimate hypothesis using Model 1 as an assumed model. However, such a test

based on the F distribution would involve four degrees of freedom in the

unquélified recommendation with respect

to method.

en.is frequently approached.. in StaﬂﬁafﬁiﬁﬁFEQQS by

a factorial analysis of ce in which the assumed model is a subspace of

s

Model 1 incorporating the assumption that each ¢ is an estimate of the same

parameter. This assumption is frequently referred to as the ggypgengipyméf

regression assumption. If this assumption is true, then the 244 expected

values are expressible in terms of qnlwaivgwpa;amgters, A model to estimate

these parameters is
(2)

1 2
Y = alB( ) + aZB( ) + a3G(1) + a“G(z) + ¢cX + E

A least squares scolution to Model 2 might be represented as in Figure 2.
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Figure 2. Possible results for Model 2.
In Model 2, the a's are the intercepts of the four lines in Figure 2,
and ¢ is the common slope.

of what are called the "adjusted'meéhs,“>name1y

(a, + cx) + (a, + cx) (a, + ex) + (a, + c;)

2 2

which simplifies to a, +a, =a, ta .

A sufficiently large non-zero difference leads to a relatively large F,

a rejection of the hyPothesis, and the conclusion that the methods differ. Such

a conclusion seems defensible, but we are still not in a position to make an

~unqualified recommendation with respect to method. In Figure 2, a, + a, is

1 3

greater than a, + a; , yet the available data seem to suggest that Method 1
is better for girls and Method 2 is better for boys.
A number of possibilities exist to reduce this ambiguity. The standard

covariance sex by method interaction test is relevant information, but it does

not directly address the issue. . We could ‘conduct pair—wise investigations
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(a; = a, ana a3 = a,) and suffer the problems of an lncreased experlmenthse

’ Type I error rate or adopt some post. hoc test and suffer the consequent loss

of power.v

An alternatlve is to consider an assumed model that av01ds the amb1 ulty,

S SRR SN

altogether. For example, if we are w1111ng to assume the follow1ng relatlon—
shlps among the expected values
E(l, boys, x) - E(2, boys, x) =

E«@, girls, x) - E(2 giris, x)

and
E, boys, x;) -E (2, boys, x,) =
Ea, boys, X,) - E 2, boys, X,)
and ‘
E(l, girls, X)) - E(2, girls, x!) =
E, giris, x,) -E (2, girls, x,)
where
X, X, x, = 20, 21, . .. 80 x, = X,

the 244 expected values are expressible as a function of only five parameters

as in Model 2, but because we are making different assumptions, the model we

- create will have different properties than Model 2. The skills requlred to

Create a model that incorporates the desired assumptions are identical to the
skills required to test the assumptions. Involved is a simple substitution .
for the expected values above, their estimates in symbolic form from Model l,

and an algebraic simplification that results in three implied restrlctlons.

+ - - = 3 - - .
a, € x - a Cx = a, + c, X a, c,. x (1)
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a + ¢/x; -a, - c.x

1 2 21 T8 v ex, -a, -cx, (2) F
a, + csxl Ta, mox = as tex, - a, - T X, ‘(3)
Equation (2) can be simplified to
ﬁ (e, - e ix, - X)) =0 é
. : EA least sc
Since‘x1 Xy, C¢; must equal C,, and they can be given a common name. 3
€y = ¢, = b, a common value (4)
Similarly, Equation (3)>can bé simplified t§
(c; - C.,)‘(x, “X;) =0
implying
€y =¢, = g; a commoq value (5)
Substituting (4) and (S) into (1), we achieve
4 *+bx -a, ~bx=a, +gx - a, - gx
which can be written
4y - a; - a; +a, =0 (6)
a, thrdﬁgh 4, can be renamed so that they satisfy (6) As follows:
a, = dz + ?3 , The
‘In effect, we have renamed the eight pParameter estimates in Model 1 in terms difference
of only five names: dl, dz' da' b, and g. differing}

If the new names: are substituted in Model 1, we get

namely d; .

Y = dIB(I) + (4, + dg)B(z) + de(l) inspection,

+ (az + ds)G‘(z) +

claimed prc
b(x « Yy 4 px » 8y f g« 6 4

estimate tt

(2

g(x « ¢1%) L g0

related as




(3)

(4)

(5)

(6)

(7)

terms

Expanding and simplifying yields

(1) gt?)

Y =a, 6" + y + 3,6 w6y 4 a6 + 61?4

bx+ 81 4 x« 8y 4w g™ 4 xac®y 4 g®

3

Figure 3. Possible results for Model 3.

The essential property of Model 3 for our purpose is that the expected
difference between any pair of persons having the same sex and initial performance,
diffexing.only in the method of instruction, is estimated by the same constant,
namely d, . When the properties of a model are not immediately obvious by

inspection, we encourage the practice of verifying that the model-has the

i e

claimed properties. This involves writing the symbolic expressions that
estimate the expected values and verifying that the symbolic expressions are

related as the expected values are assumed to be, aé shown in Table 1.
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