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COVARIANCE STRUCTURE AND STRUCTURAL

EQUATION MODELLING IN RESEARCH:

A CONCEPTUAL OVERVIEW OF LISREL MODELLING

Peter F. Cuttance
Cerntre for Educational ‘Bociology
7 Buccleuch Place :
University of Edinburgh
Edinburgh
EHS8 9LW

Synopsis

The principal objective of this paper vis to demonstrate
conceptually the re;a&ipnship between.var;ouc modelling techniques
commonly employed in data analysis in social and behavioral
rasearch. The papci tocﬁau on the commonalities betwaen such
nultivariate techniques as path analyais, regresaion analysis,
panel models, longitudinal models, common factor analyqig. higher
order factor analysis, factorial models (eg mulcitruc-mvulumnthod

nocdals), test score models, error structure analysis models and the
ANCOVA model.

It shows how the covariance structure model which underlies the
LISREL model can be employed to reconceptualise and parameterise
oach of the above models in terms of a more ginoral framework. In
particular, these models can be conceptualised as a gpecific
configuration of the sub-models which comprise the LISREL model.
The Ieasurement and structural models of the general covariance
model are employed as the basic building blocks to reconceptualige

the specific models on which each of the various techniques are

Presented at AERA 1983, MLR Special Interest Group
Not refereed by editorial staft . )
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based. The LISREL model has been chosen as the ve 1c1e for

denonstrating these conceptual commonalities because it is the most

widely used general covariance structure model. Although other
i & 10N

nodels such askCOSAN (McDonald, 1978), EQS (Bentler, 1982 ) /and‘

i oy

LACCI (Muthen,i71983) are similar to the LISREL model and will thus
‘also allow for the parumeterisation of theé models discussed in this
paper, the associated computer programs for estimating ‘them are not
as yet as widely used as the LISREL program.

Significant advances have been 1ncotporated into the recently
released version V of the LISREL program,. In particular, the

program now includes a procedure which automatically estimates a

set of initial start values for the iteration process in the
maximum liklihood method of estimation. The provision of these
start values by the user h;d been a major obstacle to the use of .
the program in previous versions. Version V also provides a wider
range of statistics for judging the fit of the model, in addition
to an option tor e-timating relationships between ‘discrete’
variables and’ anothor for using a least lquares estimation
procedure where the a.-unptlona undozlyinq the maximum 1ik1ihood
model are not met' by the data and modol under invettiqnu.on. -

Further, the Lzsazn proqram is soon to be 1ncor£acod to one of
the most widely used pcckaqu available in the social, behavioral
and medical sciences. It is oxpcctod that this will mean a much
wider availability and use of the program than has been the case
hitherto.

"The paper 4s written and btocohtod in a schematic and didactic
8tyle suited to novice modellers in social and behavioral research.
The only requirement is that readers have an idea of and gome
previous aexperience with at least one or two of the multivariate
techniques hentionod,in the opening paragraph abova. They are not
required to have an understanding of matrix algebra or atatistics
in general. Path diagrams are employaed as blsual representations
of the conceptual models.




1.00 Introduction

This article aims to £ill a major lacuna in the social science
literature covering the general linear model upon which several
types of statistical analysis are baged. Statistical models such
as factor analysis, test theory models, regression models, analysis
of covariance etc. 1¢an be shown to be specialisations of a more
general mathematical and statistical framework. By explicating
these submodels in’ termn of a more general model it 15 possible to
gain greater insight into the particular aimilarities and'
differences between individual submodéls.

The genefal model is not new, but its development has recéi&ed
much greater attention over the last decade and it has been used in
a wide rango ot application. in education, psychology, ' economics,
-ociology, ‘and related sub—disclplinol. However, due to the
technical aophiatication requirod to use the computer program and
to parameteriss the models its application has remained an elite
speciality. Although various forms of the general model have bean
advanced in the litoratuz‘ (McDonald, 1978; Bentler, 1982; Wo‘kl;
1978; Joreskog lnd SOrbom, 1977, 1978, 1981), "I focus on the
particular formulation which appears to have gained the widest
currency. This model, now commonly referred to as the LISREL
model, is accompanied by a burgeoning technical 1literature
raporting the statistical and mathematical theory on which it is
based and 'state of the art' applications of it. Thig literature
is accessible to only a small subgroup of spacialists who are
familiar with the statistical and mathematic;l theory underlying
advanced multivariate statistical analyses, however, an elementary
overview for the less technically minded redearcher is not readily

available in the published literature. It ig this lacuna in the




liﬁerature’whicﬁwi‘&im‘to fili. Reviews of the applied literature
are to be found in Bentler (1980) and Biélby and Hauser (1977)
while general expositions of the statistical model can be found in -
Joreskog (1973, 1974, 1977, 1981), Joreskog and Sorbom (1977,
1978). Carmines and McIver (1981) and Rindskopf (1981) provide the
most readable general introduction to covariance structure models
while Bentler (1980) provides a lucid discussion of metgbdélogiéal
issues. Woofle (1982) and Lomax (1982) Joreskog and Sorbom (198 1)
provide introductions to the application of LISREL. o

"My aim is to proviae an didactic introductory overview of the
general model and some of its specialisations, 80 that a much wider
group of ' researchers may appreciata the scope and nature ot the
method withln a context of the more familiar multivariate data
analysis methods found in the nogial sciences.

i

Although multi-equation linoar modela have been used widely in
eocial sclence research over the laat two  decades or so, their
parentaqo and development in other dilciplinea now spang more than
half a century. The biologist Bewell Wright, is usually qg?dited
with the first substantive use of such models in a paper published
in 1925. The US Government sponsored Cowlesa Commission set up in
tﬁe late 1930's recognised the potential for their application in
econcmics and early work in educational psychology also produced
variants of such models. During the 1950's and 1960's the
sub-digciplines of econometrics and plychomotrioi were fostered and
developed by a surge of interest in the application of these mocels
in economics and psychology, respectively. Their application in
education and soclology aleso commenced during the 1960's, however,
it was not until late in the decade that researchers in these
latter disciplines generally became aware of the extent to which
similar mwodels had been developed and applied 1in psychology and
econamics. The seminal article by Goldberger (1971) explicated the
relationship between the variants of the model employed in

econcmics and psychology and indicated how an approach based on the




merging of these could provide models of more general interest.
Today the most  sophisticated deQelopment of the model is known
through the generic terms of covariance structure analysis  and
structural equation modellinq.' The work of Joreskog and Sorbom
(176, 1977, 1978, 1981) has largely been responsible for
solving the complex mathematical and statistical problems

associated with the model so that it is now possible to use it in a
wide variety of general applications.

The computer program LISREL V has been specifically designed for
the estimation of these models. Other gimilar programs have been
developed by McDonald (COSAN), Bentler and Weeks (EQS) and Muthen
(LACCI) but they are not yet as well documented and developed as
LISREL, nor are they as widely available. Bach program has
slightly different features and capabilities but LISREL ia the most
widely used in the research reported in current academic journals.

2.00 Structural Modelling: The Ganeral Framework

The topics to be discussed here can be summarised in the
following distinctions:

(1) exploratory v's confirmatory analysis,
(2) fallible v's assumed infallible data,
(3) latent (uncbserved) variables v's observed variables,
(4) linear v's non-linear models,
+
(5) model fitting v's parameter estimation,

(6) over-identified v's just-identified models.




v stinctions cwill be “employed ito’ ‘ellucidate
“diffet nce and similarities ;between the :more . general covariance
;model and . those  which underlie the ‘more  familiar
multivariate methods in common use.

(1) Exploratory v's Confirmatory Analysis BN

When the level of knowledge available about a given problem is
relatively .underdeveloped one -has to proceed :to -analyse and
interpret that problem with elementary methods (Wwold, 1966, 1969).
The .methods are -elementary  only in the Bense that they embody
little accumulated knowledge ‘about the ‘phenomena - of ‘interest, ' ie
they arxe not based on an elaborated formdl -theory of .the phenomena.
Such methods can - be .described as exploratory -,since they take as
their only criterion, the standard of 'whether .or not they 'provide
& means to make some sort of sense of the data', When the method
employed produces a non-interpretable or unexpected finding, it is
either discarded or given a post hoc interpretation. @ince
discarding a finding leads to the process of searching or exploring
the data for another, more appropriate, interpretation, this
Procedure also  results in a Rost hoo explanation of the pattorns
existing in the data, The problem with such oxplnnntionl is that
there is, in principle, an unlimited number of them which describe
the data equally well (on statistical ocriteria) for any given
'litultlon. In the 1limiting situation where we astart from a
position of 'no theory', not aven a common  gense one, no formal
statistical procedure will choose  between the logical or
explanatory validity of competing post hoc explanations on the
basis of statistical analyses of the data. Hence we need to have
recourse to a method of eonfitmntion,r or 4in the parlance of
statistics, & method of 'testing’ the various competing
explanations. )




Confirmatory analysis is the procedurg used in such a gituation.
In order to conduct a confirmatory analysis it is necessary to
come to the data armed with a 'theory' of what may have generated
the grid of relationships which exist in that data. This theory
may come from many sources; scholarly, common sense, exploratory
analysis of other data, etc, and may be more, or less, well
developed. The one requirement which the theory must be able to
satisfy, however, is that is must be amenable to formulation in a
testable form. This may be  based on a weak specification - eg
variables Xt.......X5 are related to each other in a non-random way
or, on a strong specification ~ eg X1 causes X3 but not X2, or sgome
combination of options in such a range of specifications., Once the
theory is formulated in a testable specification it is possible to
conduct such tests as appropriate to confirm or reject the
particular hypotheses. A collection of hypotheses which describe
the overall theory in greater detail can also be tested
simultaneously. 1In such a case we say that the overall model which
describes the theory is being tested. 8ince model testing is
usually based on geveral individual hypotheses which are
simultaneously tested, it provides a greater degree of rejection or
confimation of the theory than independent tests of individual
hypotheses. Structural modelling is specificaly aimed at such
conf irmatory analysis of theories.

However, the distinction between oexploratory and confirmatory
analysis is not as marked as I have presented it so far. We
probably always have at least one rudimentary theory in mind when
we plan a study. At the simplist level, a theory of measurement is
required just to collect data on a particular variable. _ If we put
4 little effort into constructing a theory on the basis of what 1is
already known about the phenomena of interest, we will usually be
able to provide one or more potential explanations on the basis of
this prior knowledge. These hypothesised models can then be tested

against the data to see if they could have generated the patterns
therein.




Tf a model §r3$iaes‘ah‘aéééﬁ&ibie;fii téafﬁéﬁaﬁtd;‘tﬁén”we have

aﬂ"” n ependent confirmation of the theory, although it is’ possible
that ‘other models (possibly unknown) could also fit the data
equally well. Where the model is not’ confirmed we can test
alternative models in a similar fashion, and in’ the event that none
of them fits the data, explore the data by making modifications to
these rejected models. Exploratory analyses aiﬁed at providing
refinements and changes to the models m&y suggest appropriate
respecifications which can then be tested against new data, or

validated against a sample of the data held back for such purposes.

(2) Fallible v's Assumed Infallible Data

The foregoing has assumed that we 'can actually measure the
theoretical variables of interest in order to test the theory. We
still have a problem to face, even if such variables 'are directly
measurable. When we measure an item or variable of interest two
questions immediately arise: (a) Is the measurement valid? (b) Is
it reliable? Thess two issues are studied under the rubric of
'measurement error'. Any sophisticated mathematical or statistical
analyses will want to be able to take account of (-uch error, 80
that we can model the pattern of relationships between the
underlying true scores for each variable in the data. The problem
of measurement error has been studied in oducitionil psychology in
the development of 'test score theory' and in economics as the
‘errors in variables' problem. The essential component of both
approaches is an attempt to distill out the ‘true score' of the
variable from the measurement error. The sub-model underlying this
agpect of the LISREL model is illustrated in Figure 2.1, It states
merely that the observed(measured) variable(X) conslsts of two
parts: a true score represented as a latent variable(f), plus an
error of measurement(S). (Ses Figure 4.1 for a description of the
symbols employed in the figures.)
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Figure 2.1’ LISREL Measuremant Error Model . -

kx-l£+6




‘$Her§‘me Surement ‘error may be 1nterprated as a recidual covering

a range of intluence ) other than that of the true score, which
produce the observed score. Influences auch as quéstionnaire
method effects, relpondents self image, etc, wﬁich vary across
individuals _and influence their responses, are included. The
measurement model thus posits the existence of a true score for the
particular theoretical variables of a theory, however, the effects
of measurement error mean that it is not possible to directly
obgerve these true scores. The notion of a lﬁtent (unmeasured)
variable is introduced to represent the true score. The variable £

in Figure 2.1 is of this type.

(3) Latent (unobserved) Variables v's Observed v:i{ab;es

The preceeding section has indicated one situation in which a
latent variable is introduced into the model so as to provide a
more lnformative analysis of theoretical models against (observed)
data.

Another situation in which it is necessary to introduce latent
variables is when the theory employs oconcepts which are, in
principle, not directly observable, eg social class, anxiety,
intelligence. In order to obtain a moacutomoné on these variables

it 4is necessary to measure observable variables which are
'designatod a8 indicators of them. [Essentially, this amounts to
saying that the measurement theory of these variables is more
camplex than for directly observable variables. Por instance,
simplistic measurement of the variable social class may assume that
a single observed vnrinﬁlo, fathers occupation, say, is a suitable
measure of it. More complex measurement of social class may take
account of other aspects of the concept , also. In this case, a
wider range of variables which are hold to be more representative
of the total 'conceptual domain' of the concept (eg relationship to
the mode of production, mothers' and fathers' education, family
wealth,etc.) may be employed as complementary indicators of the
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theoretical variable. In such a situation it is necessary. to
expand Figure 2.1 to include more than one observed measure
(indicator) of the latent variable, so that the theoretical
variable is represented by the common variation across the set of
designated indicators of it. This is repregented in Figure 2.2 and
the latent vatiqble in such cases is referred to as a common
factor.

We note that the form of the relationship between the parts of
the model in Figure 2.2 is formally the same as that in Figure 2.1,
thus they are represented in thé same way ;n the LISREL model.
Whether the variable £ is to be interpreted as a latent variable
or common factor is dictated by its particular theoretical purpose
and not by statistical or mathematical considerations. When it is
interpreted as a common factor (as in factor analysis),the error
tennl@;-G‘) may be interpreted as the unique part of each cbserved
variable and the common factor itself as the shared part or common
construct underlying the set of them, The term latent construct

will be employed to refer to both common factors and latent
variables when there is no particular need to distinguish between
thems This usage helps uas to keep in mind the fact that such
variables are formally ‘constructed' measures of theoretical
variables, as opposed to direct measurements on the variable.
Direct measurements on a variable assume that it takes the same
scale of measurement as the measuring instrument, however, indirect
measurement means that the scale of measurement for the constructed
variable depends on the 'weight' of each particular observed
indicator in the constructed variable, in addition to the scale of
neasurement for each indicator. Thus, constructed variables will
of ten -have 'arbitrary' scales of measurement and these may change,
depending on the membership of the particular observed variable set

employed as indicators of the construct. .

T T AT TR T+




A Single Lataant Factor.with Fallihle Cbserved

Variables : o v,
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(4) Linear v's Non-Linear Models -

Linear 'models have ' become

solution to the numerical and

analyses.

" ‘popular

for

statistical problems in

 analysing the °
relationships between variables because they afford a -tractable

such

The true relationships between variables may not be

linear, thus the use of linear models necessarily implies ‘a more or

less approximate

fit' ‘to reality. Ad hoc procedures are available '

for linearising the relationships between variables through the

application of non-linear mathematical transformations to the data
when these are well behaved ° relationships,

but”’

parametric

techniques for linearising non-well behaved relationships are more
complex (see Kendell ‘and Stuart, 1973; Box “&nd  Cox, “1964). = The

property of ‘'continulty' In" measuremént ‘gcales’is’an important’
aspect of linear relationships. 'A-measurement séale’ for 'a variable-
must be’based’ on an assumed indeflying coRtihuim™if it id ‘to™ have”
the p&ﬁdh@iai‘bf’i“lihéir idlé?ionnhiﬁ"wilh other vat
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This “ aspect ' of measurement has been 'singléd cut for particular

.. i1 et B oMy L ot s w e
attention because it ‘is one ‘of ‘the* “stronger Assumptiohs" Hade " Li"
linear models.’ Variables which are of a categorical nature are by

definition not continuous. ' 1f the“underlying theoretic4l variable

is, however," “continuous

in nature then 'the obseived variable is'

often treated as if it were continuocus. 'The LISREL 'V program

includes an option to

"{mplement

this type of analysis.

Essentially, it rescales the measuring instrument ‘on the assumption
that the underlying theoretical variable is continuous and normally

distributed in the population.
used to calculate
relationships between variables.

These .rescaled variables are then
the correlations, etc, for the analysis of the
Where the theoretical variable is

not continuous in character, then ‘the assumption of linearity is

inappropriate. For

such categorical theoretical variables, the

correct procedure is to analyse the data for each categorical group

separately and then compare model estimates between
in the

In the latter case

include a (binary) dummy variable

membership/non-membership in a group.

groupse

or to

model to represent

it 1is




assumed‘@that~“the ~groups defined by the dqmmy variable qhqre the
same structure of relationships (ie. same slopes .for their
're\;gres:sﬂ.i.ox}.,f lines') but that their regression lines may be

non-coincident.

When the data to be analysed contain a mixture of interval and
ordinal (discrete) measures the LISREL approach can be used to
estimate the relationships between the variables in the data. The
LISREL program calculates different types of ‘correlation
coefficient' between the different types of variable pairs
(interval, discrete polytomous, discrete dichotomous) depending on
the particular pairing of variable types i;volved in each instance.
The matrix of these mixed 'correlation coefficients' is then . used
to estimate the relationships between the variables in a model,
However, where all, or almost all, of the variables in a data _set
are of a dichotomous categorical type it may be more appropriate to
use other methods specifically developed for this case (0§ log
linear models, latent structure models). Muthen (1983) and Bock
and Aitkin (1981) have also developed programs which can estimate
structural models for this case. The Muthen program is based on a
framework aimilar to the LISREL model. Examples of the application
of thesa methods can be found in Muthen(1981) and, Altkin,Anderson
and Hinde(1981)s In the case where the data contain a mixture of
the varieble types noted above, the use of these latter methods may
result in a considerable loss of information if all the variables
are collapsed into dichotomies. It is possible to avoid this loss
of information by creating dummy variables to represent each of the
categories in the polytomous and interval variables in the data.
This procedure, however, results in n-1 dummy variables for n
categories in a measurement ascale, thus it can result in a very
‘large number of variables in the raw data set which forms the input
into thesa programs. Also, formal inequality conetraints have to
be included in the structure of the model 1if these sets of
transformed variables are to retain the information contained in
the ordering of categories in the original meagsurement scale. The

LISREL approach can thus be seen as a compromise solution for




.analyses in data where the variables are measured with mixed types

of measurement scales. - This compromige is achieved at the cost of

assuming -that the distribution of the true.score for the .obsgerved
variable is normally distributed in the population.

(S) Model Fitting v's Parameter Estimation

Prior to the development of the genaral LISREL model it was, not
possible to routinely test how well the estimates of the parameters
in a structural model had reproduced the observed correlation or

covariance matrix for the  data.

interested . .in -estimating . the . ., paramete
mode 1l independently gg’gqgstraints,qqrqns

bhadt

equations,

social Rela;ionshipsl betwegn
usually viewed as being all of the

status,

_8clence models. variables were

For example, pcrontal education and students' educational
aapirationa as determinenta ot achlevement would be entered 1nto
the same reqronlion ~equation.
that one variable should have causal priority over the other.

' YA

In general, Lt il alwnyl poaniblo to estimate puramcccr- for
relationships between variables ie
saturated, model is po-icid.

vhcn an unconltraincd,
can ba factor analysed to derive an ectimnto of their common tactot

variation. In more complox, ie tormnlly conltrainod, models the

estimation process nttcnpcl to ptovido the best set of o-timatel
given the theory derived constraints placed on the relationships
between conutruct&d (latent) in the model.
situation, ‘of which the first order common factor
model is a simple cage, the model estimates will exactly

variables In an

unconstrained
reproduce
in
fixed
in value, say, set to zero) it is problematic as to how closely the

the pattern of variances and covariances in the gata. However,

a constrained model (ie one in which certain parameters are

15

Typically wthe, researcher was.
of éaéh§equation in the .,
contrary to,
what is, usually . Suggested ‘by A;QQv§q§atanE}ve th19ry un¢$ylying

However, moet theories would luggeat

. 8ame causal or relational

ror inctlnco, Any set ot variablo. T




,~,est:l.ma'ted; parameters reproduce the relationships in the data. - The
fit of the'model is a measure of how well the parameter estimates
of a particular constrained model reproduce the relationships in
the data‘’as represented by the correlation or covariance matrix.
If a particular theory is a poor description of the processes which
produced the data, then the constrained model which represents that
theory will result in a poor fit between the model and the data.

The issues of parameter estimation and model fit are
conceptually quite distinct. Model fit indicates how well a
particular set of parameter estimates describe the first and second
order moments (correlations or variances and covariances) in the
data, while parameter estimation relates to the estimation of the
magnitude of individual parameters lu_ch as factor loadings or
regression coefficients. The maximum 1liklihood method of
estimation 1s basad on an iterative process which employs a
criterion of how well a particular set of estimates fit the data at
each iteration in order to derive a solution which fits better at

the next atep, given the constraints imposed on the model. The
capacity to test for fit is an advance over methods which provide
only the opportunity to estimate parameters. For instance, none of
the multivariate astatistical procedures in the widely used §PSs
computer package provide for testing the fit of models based on
their parameter estimates. In part this is justified, since the
procedures éhotin are all designed for estimating unconstrained
‘(saturated) models, hence the models will all have an exact fit to
the data. However, the methodology of using such models often
calls for modifications to the estimated solution, eg a standard
recommendation is that variables with a factor loading of less than
0.3 should be deleted from the particular factor when using them to
build a composite measure from the factor. Buch rules of thumb
raise the question of how well these constrained composites then
fit the data. The rule of thumb amounts to the placing of ad hoc
restrictions on the multiple factor model, which is then, by
definition, a constrained model. Thus the composites will not
necessarily fit the data perfactly, as would the unconstrained




mcdel on which they were based.

(6) Over-Identified v's Just-Identified Models

The idea of identification can be demonstrated by an analogy
with the conditions for solving a set of algebraic equations. The
discussion of parameter estimation and model fit above assumed that
the parameters of the model were identified. A model is said to be
identified if the parameters can, in principle, be estimated as
unique values.By unique I mean thaﬁ the set of equations can be
satisfied by just the one ‘unique' set of values for the unknowns
in them, For instance the variable Y is said to be just-identified
in the following equation set:

Y=X+ 2
Y= 33X ~2

By substituting the expression for Y from the first equation into

the second equation we obtain an expression which is in terms of
the 'X' variable only. '

X+ 2= )3 -2

On simplification this reduces to X=2 and by resubstitution into
the first equation we solve for Y as Y=d.Now,this solution
(Y=4,X=2) 4is the only set of values which will solve both of these
equations simultaneocusly,hence they are sald to be unique.

In structural modelling the aquations express the relationships
batweern the known varisnces and covarlances which we calculate
directly from the raw data and the unknown ‘'parameters' which
represent the model specific effects of one variable on another.If
we have more unknown parameters in the equations the number of

variances and covariances for the variables employed in a model,




“ then the modelis said to be ‘Lnder-identified, that ‘is,there ‘is
insufficient™ known “information in the system to satisfy the

requiredéﬁz%éﬁ;éceach”unknown can be uniquely estimated.what thig
means in practice is that each parameter can at most only be solved
as a function of the other parameters in the model.

If we have exactly the same number of unknown parameters as ther
are known variances and covariances (or . correlations) in the
model,then it should, in principle, be pogsible to uniquely estimate
each of the parameters in the model.I say 'in principle' because it
sometimes occurs that a get of the variances ana covariances in the
model are an exact linear éomhination of some  other subset of
variances and covariances and this means that the total amount of
known information is reduced, 'because a ‘linear combination of
variances and covariances does not add to the information aiready
contained among the uncombined set of variances and covariances.
That is, there is less information available in sets of variables
with exactly collinear variances and covariances than there is in
two subsets each of which is indepedent of each other. Where there
is more known information contained in the set of variances and

covariances than there are parameters to be estimated, then the
model is said to be over-identified

If the equations of the model were exactly deterministic, that
is, if each outcome could was specified as an exact combination of
the other variables in the model, then all pairs of equations would
'glve the same solution as any other pair of identified equations
for the model.In practice the models uged in the social and
behavioral sciences are not exactly deterministic but 'stochastic!
in  nature.That is,they specify that the endogenous ( outcome )
variable is only partially determined by .the other variables
included in the model and partially determined by a 'stochastic!’
residual or error term.This astochastic residual then, in
effect,repregents the combined influences of all the variables
which have been left out of the model(eg because we do not have
data on them), The result of combining the stochastic element of
modelling with the condition of over-identification is to arrive at




a gituation where the different -
slightly daifferent solutions
arbitrarily

pairs  of ..equationg may  -give

for the’ pParameters., - Rather than
accepting one set of parameter estimates ag

to the other possible sets in an over-identified stocha
we can use the additional informatioen available from the
for AQifferent subsgets of the equations
8ame gense is the best ‘average'
the model and data at hand.1

preferable
stic model
solutions
to find a golution which in
estimate of the parameters ,given

N practice thig job is done by a

camputer algorithm which minimiges the difference between the get

of variances and covariances implieq by a given
estimates for the model and the
covariances which are

set of parameter
set of population variances and

estimated from the raw sample data,

by
assessing which estimates give the best fit to the data,
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In complex models the number of parameters to be estimated is

8 on the 1dent1t1ab111ty of each to
since the procedure is logical or mathematical, as
opposed to statigtical, in nature ‘and standard numerical or
statistical computation techniques are not suitable.

program does undertake a check on model identification
option for maximum 1iklihood estimation
unweighted least

often too large for manual check
be undertaken,

The LISREL
when the -

la‘uaed but not when the
Squares method is employed. ‘ '

3.00 The LISREL Model

As noted earlier, the structural models
are those which can be
cons istent theory, The

set of consigtent notions a

of concern in thig Paper
formally specified on the basis of 4
term 'theory' ig used here to denote any
bout the relationships between the
of variables of interest., fThe Model derived from the
more or less elaborated,
the theory.

set
theory may be
depending on the state of development of
The particular feature of mode;l in
framework {g that they make explicite
of relationships between the

the LISREL
provision for the egtimation

underlying theoretical variables of a
L]
theory, Heutiutically this

amounts to the estimation of the
regression and correlational

relationships between the latent




constructs in the structural; model. - ..This aspect of the LISREL

The curved lines in the figures presented in this paper
represent correlations or covariances, and straight lines represent
a special form of regression type relationships, known as
-gtructural relationships, ie they are causal, (asymetric)
relationships. The single arrow head indicates the direction of
the relationship.

The Greek letterf (Ksi) indicates endogenous (otherwise known as
predetermined or independent) observed constructs'and ;_t:he‘ letter n
(Eta) indicates endogenous (dependent) ,c‘ons,truct:s_ (ie determined by
other constructs in the model). The convention used 1n‘ referring
to LISREL models is that an exggenoua conatruct is one which is not
caused by any other constructs in the model.. In the terminology of
experimeﬁtal design some constructs which are designated to be
dependent in same equations in the model may appear in other
equations as an independent oconstruct. For example, in Figure 3.2,
the construct n, is both dependent and independent, similarly for
n2 depending on which part of the model is being considered. It is
for this reason that the term exogenous is reserved for referring
to constructs which are causally independent of all others 4in the
model. Any construct which is caused by any other construct in the
modal is then referred to as an endogenous construct.

Since not all of the variation in an exogenous construct is
necessarily determined by the other constructs included in the
model, these constructs are specified to have a residual term
denoted by [ (Zeta). The Greek letters atc' employed so as to
distinguish between uncbserved and observed variables in the full
model, Unobserved variables (latent constructs) are denoted by
Greek letters and directly observed variables are denoted by Roman




Figqure 3.1 A Simple Structural Model
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Figure 3.2 A More Complex Structural Model
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letters and enclosed in square b;xés. éitcles denote that a latent
constiuct is meant to represent a specific theoretical variable
(E,n),' in contrast to those of an omnibus composition represented
by residuals ( ) or error terms (8,€). A more complex structural
model is depicted in Figure 3.2. In this diagram the constructs
51,52. are exogenous and n,~n, are endogenous oconstructs. We note
that the presence of three endogenous constructs means that the
model attempts to explain a theory in which the exogenous

theoretical variables simultaneously cause these different outcome
variables. ' ‘

The equations in Figure 3.2 can be interpreted as multiple
regression equations for the particular structural relationships
lpecifie& between the latent constructa. The coﬁatruéta are
unobserved (latent), thus we cannot actually estiﬁate the equations
as they stand at present. Estimation of the relatlonships between
the latent constructs requires that we have estimates of the values
of the latent variables based on measurements on the observed

variables, thus it is necessary to add a measurement model to the
structural model of Figures 3.1 and 3.2.

The measurement model provides the required 1link between the
observed and unobserved variables of the model. The measurement
model is used to describe the latent constructs in terms of the
reliabilty and validity of the measurements on the observed
variables. Figure 3.3 presents a measurement model for a single

latent construct. The same form of the relationship betwaen
observed variables and uncbserved (latent) constructs applies for

both exogenous and endogenous constructs. The Roman letter 'X' is
ugsed to denote observed variables which ,are indicators for
exogenous constructs and the letter 'Y' is used to denote those
which are indicators for endogenous constructs. In the LISREL

model, unlike in standard multiple regression analysis, the implied




causation do go travel betueen obcerved X's and the Y's,
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being modelled. The vuriables of a particular theory and, hence,
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of tﬁe structural equations, are those represented as the 'true' or

latent constructs of the structural model. We note that the

'impure' meaeutee ot the theoretical variables
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measu}ement model of Figure 3.3 is of the same form as that
presented eatlier in Figures 2.1 and 2.2.

Figorens.d takes the simple structural model of Figure 3.1 and
adds measurement models to each latent construct., For purposes of
illustration the number of cbgerved wmeasures has been varied for
each construct. {1 has only one observed measure (x1), 52 has three
observed measures (X2,X3,X4) and n, has two observed measures
(Y1,Y2). We note that errors of measurement in the Y variables are
dencted by<tne Greek iettor Epsilon (€) and measurement errors in
the X vn:iab{ee are denoted by the Gfeek letter Delta (§). Figure
3.4 reptosentl'the completed model and the relationships marked by
curved and straight lines can be estimated with the LISREL computer
program.,

In order to use the LISREL program it is necessary to translate
the fommulation of a model into matrix notation and to satisfy
certain technical conditions. These aspects of the model are
discussed briefly at the end of this pPaper. The next section shows
how the model developed so far can be employed to describe several
sub-models of the general LISREL model. Tno discussion continues
through the expository use of path diagrams for such models. The
equations for each model are érelentod with the diagrams but may be
passed over by the introductory reader without much loss of
information.
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" rhe systeﬁ'assumptions made by LISREL are:(¥) that there is zero

”covariance between the latent constructs and the residuals on the
latent constructs, ie E(EZ )J=0, E(N L )=0, (2) there is zero
"“covariance between the meagurement errors on the observed exogenous
and those on the observed endogenous vatiables, ie B($ € )=0 and,
(3) there is zero covariance between the latent constructs and the
errors of measurement on . the observed variables . le E(§ €)=0,
E(§ 6)=0, E(NE), E(N 8). These assumptions apply to the full
model as depicted in Figure 4.1. (In some situations models can be
reparameterised in alternative ways which allow for a relaxation in
the restrictions implied by thgce assumptions.) The following
sub~-models will now be illustrated:

(1) first order common factor analysie model,

(2) higher order factor analysis model,

(3) regression model,

(4) recursive path model, S

(5) reciprocal effects path model,

(6) test score model,

(7) multitrait multimothod model,

(8) error ltructute analylia modol,

(9) analysis of covariance (ANCOVA) model.

(1) First Order Common Factor Analysis Model

The basic structure for a factor analysis model with a single
comron factor is presented in Figure 4.2a. In this model all three
observed variables (X1,X2,X3) are assumed tb be measures which
reflect the underlying latent factor (€)¢ The error terms ‘61‘ Gi)
indicate that the observed variables may be measured with error. A
basic assumption of tho Classical factor analysis modcl is that
these error terms are uncorrelated, ie E(G % ) = 0,4 ¢ 3.
However, such an assumption may not always be warrqntod. If common
variation exist between a subset, but not all, of the obgerved
variables, then it may not be captured by the factor which

represents influences common to all the obsgerved variables.




4.00 Sub~Models of the General LISREL Model

The general LISREL model can be summarised by the
Figure 4.1

diagram in

The sections within the broken lines represent the measurement

models for the exogenous and endogenous constructs, and the section
of the model linking them represents the structural ~model. The
individual symbols do not have subscripts, which indicates that
they represent all the constructs of their type in this
representation of the general model. ‘Note that the observed
exogenous variables (X's) are not directly linked to obsgerved
endogenous variables (Y's), The structural model which 1lies
between the measurement models mediates the causal influence of the
exogenous variables on the endogenous variables. Althopqh not
shown in Figure 4.1, correlational links are allowed for between
the individual exogenous constructs and regression type (causal)

relationships are allowed for between those within the endogenous
construct set.

There are two types of assumptions which go with the LISREL
modal: (1) System Assumptions - these qri the general statistical
assumptions necessary in order to estimate all models in the LISREL
framework and ,(2) Model a-lumptioﬁl - the additional assumptions
which are specific to a particular model, eg the Classical factor
analysis model specifies that the errors of measurement on the
observed variables are uncorrelated. In effect these latter

assumptions are the restrictions which we place on the general
modal to define the sub-models as particular specialisations of the
general model. Hence, these assumptions are, in principle,
testable within the LISREL framework, whereas the former sgset of

L]
assumptions are not, since they are an integral (le necessary) part
of that framework.
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Figure 4.1 Schematic Representation of the General LISREL Model

X - obsex_:vod @xogenous variables
£ (ksi)

latent exogenous constructs
3

n (eta) -~ latent endogencus >cox;stxucts

y - observed endogenous variables

6 (delta) ~ measurement error in cbserved exogenous variables
€ (q:silon) - measu:en;ant exror in cbserved chdoqonous variables

2*(Lambda X)-  construct loadings (validities/reliability) for observeq
éxogenous variables - -

A y(lambda ¥)~ construct loadings (validities/reliability) for observed
‘ : endogenous variables

Y (gamma) = ragression type coefficients of latent exogenous constyyct
) on latent endogenous constructs

§ (zeta) = stochastic residual term for esach latent endogenaus

: construct

The above notation differs from that found in the literature for thae V.
general model. I have employed lower case Greek letters to indicate the
paraneters of the model -~ as in the other wodels in this paper. Usually,
lower case Greek letters denote that the system is specified in equation
form while upper case Greek letters denots the corresponding specification
of these equations in matrix algebra format., The literature usually
discusses the general model in terms of its matrix format. .

The model has three other sets of paramaters in addition to those shown in
the abave diagram;

96(theta 6)- the covariance matrix for the errors on the observed
exogenous variables

Oe(théta €)= the covariance matrix for the errxors on the observed
endogenous variables

8 (beta) -~ the matrix of structural coefficients betwaen the latent
endogenous constructs

¢ (phi) =~ the matrix of correlations between the exogenous latenff‘
constructs 28 .
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Figure 4.20  Milti-dimensional Factor Model
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Variation common to a specific subset of the observed variables
will be left unanalysed by a single common factor model such as
that in Figure 4.2a. In such a model these unanalysed
relationships will be represented by correlations among the error
termms belonging to the specific subset of observed variables, thus
the assumption of the Classical model will be inappropriate.
Correlations between the error terms in this model are an
indication that the observed variables are not unidimensional. The
specification of the single factor (EQ in Figure 4.2a implies that
the model is unidimensional, given also that the errors are also
specified to be uncorrelated. ‘

A multi-dimensional factor structhre is represented in Figure
4.2b. By specifying that the correlations between factors (¢2i)
are zero we are able to test orthogonallity between the factors. A
rotationally invariant solution is found Sy placing restrictions on
the patterﬁ of factor loadings (the'kij ) for the observed
variables. For example, in_ Figure 4.2b variables X, and X, are
specified to load only on factor £,, etc. ‘ \ '

We note that the model in Figure 4.2a is of the same form as
that in Figure 2.2, indicating that the separate measurement models
of LISREL can each be viewed as simple common factor modals.
PFurther, note that the structure of the factor analysis model is
the same as the LISREL model at each end of Figure 4.1, If we
split the model of Figure 4.1 in two (ie delete the arrow denoted
by the Greek letter Gamma~ Y ) we have two separate models. If the
residual term § (Zeta) is specified to be zero then the left and
right models are equivalent.b Thus the simple factor analysis model
can be parameterised in terms of either of one of two equivalent
LISREL sub-~models. This is a consequence Jf the fact that there is
no designation of variables as endogenous or exbgenous, since there

are no 'causal' relationships between the latent constructs, in a




 ?~?hé‘ righthand model in Figufe 4.1mdoes, however, allow for a
nén;zero residual (Zeta- ) on the latent factors (n) and is known
as the ordinary factor analysis model, whereas that on the left ig
known as the Classical factor analysis model, due to itsg
specification that the latent factor (Ksi-f ) has no residual term.

(2) Higher Order Factor Analysis Model

The higher order factor model allows for the specification of a
moxe detailed analysis of the structure among subsets of the
~obgerved variables. This is shown in Figure 4.3. The LISREL
framewotk does not allow tor directional (regression type)
zelationlhipu between latent congtructs on the left side of Figure
4.1, thut it is necessary to apecity a second order model in terms
of the ordinary factor analysis model on the right of Figure 4.1,
The factors n‘ and N, in Figure 4.3 are first order factars while
Ny 18 & second order factor. We note that while the first order
factor model in Figure 4.2a appeared to consist of a measurement
model only, it can now be seen from Figure 4.3 to represent a
trivial structural model in which the otﬁc:' factors are null.
8ince the first order factors will bhe fully determined by the
second order factor only in the special ;aao that the different
factors are perfectly correlated, eg. r(n‘ n,)-l, 4 residual term
( T ) is specified for each first order factor in the general form

of the model. Weeks (1980) gives examples of the use of such
models.
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v‘yafihb1e§ as 5153§ Vétiﬁbles. ('Fixed variable' means that the
values of the variable found in the data are the only values which
that variable can take, ie that these values are not sampled from a
probability distribution of values for that . variable.) The
regression estimates are then said to be 'conditional' upon the
particular values of the ‘X' variables in the data, as is the usual
case with ordinary multivariate regression. I1f, however, the
exogenous variables (X's) are observed with error, then the true
values for the underlying theoretical variables will be dependent
upon the probability distribution of the 6bserved scores. In such
cases the variable is said to be a random or stochastic variable.
Measurement error is one source of a probability distribution for
the estimates of the true values of a variable.k By building in the
stochastic nature of measurement error it is possible to
parameterise a regression model in the LISREL framework such that
the regression coefficients are directly disattenuated for the
effects of measurement error. This development can be viewed as a
special case of the path model introduced in the next section,
Error is a pervasive feature of all measurement, but it presents
particular problems where measuring instruments have not been
universally standardised, as in much of the work in the social
sclences. Hance, fixed variable regression is not a particularly
appropriate modelling technique for much of the data available in
the social sciences.

(4) Recursive Path Model

The recursive path model presented in Figure 4.5 reflects the
dual development of complex structural models. ('Recursive’ means
that all the causal folctionohipl between variables are
unidirectional, Thus if X! causes X2, X2 cannot cause X1, ile there
are no feedback loops in a recursive model.) It can be viewed as a
marrying of the peychometriciang factor analysis model (the
measurement model) and the econometricians regression model (the
structural model). Furthermore, it is possible to allow for the

added complexity of correlations between the errors of measurement

3




{(3) Regression Model

Figure 3.1 introduced the way in which the relationghips in the
structural model could be viewed as being of the same form as a
regression model. However, due to the fact that in ' the LISREL
framework there is no direct 1link between the exogenous and
endogenous observed vﬁrinbles, a regression model has to be
reparameterised in terms of the structural model to perform a
regression analysis between the observed variables. The
appropriate parameterisation is that given in Figure 4.4. In this
modal the observed variables are each specified to bé\identical to
a companion unobserved latent - construct. Thus ”in; the LISREL
formulation the paths between each observed variable and its
companion latent construct are specified to be unity, ie they are
specified to be perfectly reliable measures of the underlying
theoretical variable. This makes expliciﬁ one of tﬁe basic
assumptions of ordinary multiple regression analysis: that the
variables in the equation are identical with the theoretical
variables of the theory being modelled.

If the residual term () in Figure 3.1 is specified to be zero
then the endogenous variable is specified to be an exact linear
function of the exogenous variables. Regression models usually
allow the residual term to be non-zero, in which case it is an_
omnibus term representing the sum total of effects due to the
exogenous variables not formally included in the model.
Equivalently it can be interpreted as the ~variation in- the
endogenous variable which is not accounted for by the exogenous

variables in the equation. .

The assumption of perfect reliability for the exogenous

variables is equivalent to a specific formulation of these

35




Figure 4.4 LISREL Specification of Ordinary Multiple
. Regression Model

Structural Model

O TUSIRG SPLOSE

Measurement Model

1p petveen T

The symbol = implies an identity relatiqnsb
measured and unmeasured variables.
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ed variabiéé‘adrossvlatent constructs. However, as in
the classical actor analysis model, the errors for different
obsexved variables within a given construct may be assumed to be
‘uncorrelated.i Such an assumption is often made in order to

identify the parametets of the model.

As indicated in the previous gection, the random variable
regression model can be parameterised in the general form of a
recursive path model. However, paﬁh models have a particular
advantage over regression models when the objective is to explain
phenanena. Regression models do not incorporate the structure of
relationships of relationships between the theoretical variables of
a theory. A theory will usually imply a structure of relationships
in which some of the theoretical variables partially determine
others in a direct way and others indirectly. This means that a
(mathematical) model of a theory which 1néorporates the form of
this structure is a more appropriate representation of the theory.
An exact correspondence in the form of the structure implied by
both the mathematical theory and the model is sald to describe an

isomorphic relationship batween the structures.

Ordinary regression models do not usually provide estimtes of
‘these fundamental structural parameters of a theory, because they
do not model these particular relationships. Instead they estimate
parameters measuring the effect of each oblofvcd exogenous varlable
on each observed endogenous varlable, one at & time, given
statistical control for the other exogenous variables in the model.
Thus regressiocn parameters are an omnibus measure of the direct and
indirect effects between the endogenous variable and the other
variables in a theory, ie regression models are based on a ‘black
box' approach to the structure of relationships which exist within
the exogenous variable set: all exogenous variables are given the

game 'causal' or ‘'relational' status with respect to theAendogenous




variable. Ordinary regression'models ﬁay,.however, be viewed as a’
first approximation to the representation of a theory if they
include among their exogenous variables only those which are fully
exogenous with respect to the theory, ie those which are not
determined in any way within the theory. The ordinary regression
model is then said to represent the reduced form of the structural
model. The coefficients of the reduced form model indicate the
total effects (the sum of the direct and indirect effects) of the
exogenous variables on the endogenous variable in the structural

model.
(5) Reciprocal Effects Path Model

The essential difference between a recursive and a ‘Treciprocal
(nonrecursive) effects model is that the former apecifies that
causition between a paif of latent constructs is unidirectional
whereas the latter 'impliel that the two variables influence each
other thrbugh a ieedback mechanism. The recurgive path model of
Figure 4.5 can be made into a recipiocal effects model by the
respecification of the section enclosed in broken lines. The
relevint respeciticution is indicated by Figure 4.6a, otherwise the
model has the same repreientation as Figure 4.5.

Although it is not the usual parameterisation of a nonrecursive
modal, the reformulation presented in Figure 4.6b also implies a
particular form of reciprocal relationship between the endogenous
constructs n,; Andn In this case the effaect of one construct on’
the other is Lndirocc, operating via the variation captured by the
residual terms (C,ng) and the covariance between these residuals
across cquution.. This indirect effect of one endogenous construct
on another is a form of 'spurious' effect, since it implies that
there are common variables (or at least, common variance) omitted
fran  the .quationl for each of the endoqenoua constructs.
Nonrecursive models usually suffer from problems in jdentifying the
parameters which represgent the reciprocal effect. The solutions to
these problems usually lie in simplifying the assumptions about the

nature of the effects (eg assuming that the effects are of the same




dj;azrcggtion) léxj in the use of instrumental

(6) Test Score Model

The test score modgl developed in educational psychology can be
fomulated as a special case of the factor analysis model. The
model is presented in Figure 4.7. The interpretation in the test
gscore model is that the common factor (Eil ) is treated as the
underlying true score for the observed variables (X1,X2,X3) and the
error terms (61° 6, ) represent their unique variation. This
unique variation is a compogite measure of the test specific
variation for each ocbserved variable (item), and random error in
me asurement. Since the variation which is common across all the
observed scores is accounted for by the true score factor, the
uniquenesses are usually specified to be uncorrelated, e t(di j
0,vii%), in such models., This tormulation then corruponds to the
Claassical Test Score Model. However the restriction that the
uniquenesses mﬁlt consist of non-ly-tomntlc vari;tion only, le that
they are uncorrelated, will not hbld, in the data unless the
assumption of unidimensionallity between the observed scores is
also satisfied (cf first order common factor analysis model). For
much of the data in social and behavioral research, the
uniquenesses can be thought of as consisting primarlly of the error
in measurement in the observed variables, although they may contain
substantial amounts of 'method effects' on measurements also
(Cuttance, 1983).,

If the true score factor is standardised to have a variance of
unity a parallel measures model is specified by restricting all of
the loadings on the true score factor to be equal (A= X,=},)and, the
variances of the uniquenesses terms to be equal to each other also

(61'52"6 3),& tau~equivalent measures model is then obtained by




Figure 4.6a Respecification of Figure 4.5 to include direct reciprocal
effects ~ (paths between n, and 1, respecified, balance
of model as in 4.5)

Figure 4.6b Respecification of Figure 4.5 to include indirect
feedback (reciprocal) effects.P21indicates a covariance
between the construct residuals.
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- Figure 4.7 Test-score Model
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congeneric measures model 1s;obtainedﬂby“thé:turthgfL;el
the equality restriction .on the true scgre‘ggcpgg:;quf‘
order to identify a congeneric measures mOdel;it‘Aismi;;L{ég.
have at least three obgerved measures of the true score fact&‘
It should be noted that standardisation may change ﬁhe‘fof;'-
the relationship between the components of variance in a ,gqu&re
Parallel measures remain parallel after standardisation,{éi#ce
their variances are the same for different cbserved ;measurqg,!
Tau-equivalent . measures, however, may become congeneric measures
after standardisation. This is because the true score .loadings are
affected by the standardisation of each observed measure . agcording
to its own variance. Thus measures which have different variances
but éQuaI true ecore loadings before standardisation .may . ﬁgve
unequal true score loadings after standardisation. . Congeneric
measures generally remain congeneric after standardisation. An
interesting special . case for . congeneric measures occurs if the
alternative measures have equal reliabilities (ie equal 'ratios pof
true score variance to observed score variance) in their original
metrics. Upon standardisation such measures become :.parallel
measures. This Jinformation can sometimes be used to i{dentify a
modal which is underidentified when the (unstandardised) covariance
matrix is analysed. The model may be identified by restricting the
measures to a parallel measures specification and analysing the
correlatioh matrix., Identifying a model by such a device, however,
means that the basis of the interpretation of some model parameters
may change. Kim and Ferree (1981) provide a discussion of the
issues of interpretation in structural models with standardisation

of either variables and/or parameter coefficients.




imethod Model

This ‘model * is a particular‘ specification of a family of models
known more’ generally as variance/covariance components models. In
:general, thege are used for modelling quasi-experimental data from
various factorial designs found in educational and psychological
research.

The multitrait-multimethod model has been used in psychology to
model data when more than one type of measuring instrument (method)
has been employed to measure latent traits across individuals
Further, Campbell and Fiske ( 1959) showed how the model can also be
used to assess the validity of alternative measures of a latent
construct and Cuttance (1982 .) has used it to study the method
effects of different que:tionnair-c in the context of a true scora
test theory model.

Figure 4.8 represents a model for the latter type of analysis.
There are four true scores (€1-E,.) each with two observed variables
and  there are two method effects Q), due to the two
questionnaires employed to collect tho data on the observed
variables. If standardised data, ie correlations are analysed,
then the true sdore factor loadings are the square root of the
reliabilities and the squared method factor loadings indicate the
proportion of the variance in the observed scores due to the method
“effect. There are corresponding relationships for the case whers a
covariance matrix, rather than a correlation matrix, 4is analysed.
In most applications the covariance matrix is the mnore appropriate
to analyse, since it retains information on the measurement scale
of the observed variables. A correlation matrix, on the other
hand, loses this information in the process of astandardising the
observed scores in terms of units of their estimated standard
deviation. Ses Schwarzer (forthcoming) for a didactic example of
the use of multitrait-multimethod models.
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,»ﬂOften in social science research the models employed to analyse

data assume that there is zero correlation between' the measurement
error on one observed variable and other observed variables in the
model. A trivial form of this assumption isg foun‘dbin the ordinary
multiple regression model, which assumes that all observed
variables are perfectly meagsured, thus there are no ' measurement
errors which ocould be correlated. as noted in the discussion
above, this assumption of independence between error terms is also
made in the Classical Test Score model and in the Classical factor
analysis model.

The error structure analy-is model of Figure 4.9 is designed to
investigate the validity of the assumption of independence between
erxrors. Although the general LISREL frnmework does  not formally
require this assumption of mdependence, it is often specified in
such models. This 4is usually because of the need to make
restrictions on a model in order to identify it, and hence provide
unique estimates of the parameters in the model.

Under certain conditions we would expect ‘the assumption of
independence between errors to be implausible. Particular
‘conditionl which may invalidate the assumption apply whqn there is
& common method effect influencing the observed values for some or
all of the variables, or where the observed variables are measured
on repeated occasions, or when individuals' responses on a given
variable are influenced by their scores on another variable, eg
middle class pupils upgrading statements of their parent's
education, In fact, correlated error across observed variables is
to be expected whenever measurement is contaminated by systematic
influences other than the true scores for those variables. In the
case where the contaminating influences are not common across

variables then we have a situation characterised by a test score
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"model wiﬁ uncorrelated uniquenesses. Alternatively, if the errors

or uniquenesses contain systematic influences (eg corresponding to
test specific factors or method effects) across observed variables
then they can be modelled as additional common factors underlying
the observed variables (cf common factor analysis model). In many
situations . the theories being modelled do not contain the
addition&i 1nformation'requ1red to specifically represent these
additional factors, or the researcher is not particularly
interested in them. In such cases the 'common' component of the
error terms can be left unanalysed and unbiased estimates of the
model obtained by allowing the errors to be freely correlated.
However, in order to obtain unique eatimates the model has to be
identified and this is not possible if all error terms are allowed
to be freely correlated within constructs. Identification with all
errors correlated can be obtaingd, however, if we are prepared to
place other types of restrictions éﬁ the measurement models, eg
equality vrestrictions across some of the error variances. This
specific assumption would imply ‘that the different observed
variables were all subject to contaminating influences of a similar
pattern and magnitudae, Even if such an assumption is considered
plausible with respect to the random component of the uniquenesses,
it will be wuch less plausible for any systematic components of
their variation, Hence, it may not hold generally for such errors
Of measurement. Of course, how appropriate the apecification of
equal variances is for given data also depends on other conditions,
such as the relative magnitudes of the -f-tomncic and random
canponents of these arror terms. A particular model in which these
error terms are specified to be of equal variance, is the parallel
measures test score model. Howsver, we note that in the classical
specification of this model the individual obssrved variables are
agsumed to be unidimensional, thus the error terms are assumed to
contain only random measurement error, with no common or systematic
camponent across error terms.

Alternatively by specifying the correlations between selected

error terms to be a known (or agsumed) fixed value (zero) we reduce




the number of parameters to Se estimated. Hence, the measurement
mode ls cen be over-identified by the judicious specification of
independence (zero correlation) between selected error terms in the
model. The present type of model may be’ used to investigate the
hypothesis of independence between specified ‘error terms in a
randan subsample of the data. In a confirmatory study we would
algso turn to the knowledge evaileble ‘from the theory and other
sources in order to decide which error terms are most likely to be
correlated but, in an exploratory study it is neceesary to
empirically teet hypotheees' ebout the error structure among
particular variablee. These teets will, of course, be conditional
upon the specified eesumptione about the structure of errore emong
other variables in the model. '

The cenerel LISREL framework allows for correlated errors
between observed variables within each of the endogenoue and
exogenous variable sets, but not across these two sets of
variables. Thus, to allow for all posible specifications of such
correlations the model in Figure 4.9 is parameterised with all
observed veriablee ~and latent constructs as endoqencus'variables
and constructs, respectively, in a recuraive framework. ' All
reqreeeion effects in the model are thus between Eta (n)
constructs, and the error terms (ci ) can then be specified with
any correlational structure required. This parameterisation is
therefore in terms of the right hand side only of the model in
Figure 4.1, since parameterisation as a recursive model in the full
frameawork would not allow for a specification of correlated errors
between the two sets of error terms, (§) and (¢c), at either end of
that model.




(9) Analysxs of Covar1ance (ANCOVA) Model

{The LISREL model can be used to estimate ANOVA and ANCOVR models.
The prime feature of these two models which contrasts them with all
of the models so far discussed in this paper is their focus on the
parameters measuring means and their comparison across (treatment)
groups. The other models discussed so far all focus on the

covariance structure of variables which exists within a single

group of subjects, although it is a straightforward move to compare

structural models across groups also. Thus the essential

difference is that the former models focus on covariance structures

while ANOVA and ANCOVA both pfimarly focus on mean -ﬁrﬁctures.

The ANOVA model was developed for the analysis of data from
controlled experiments in which subjects could " be randomly
allocated to  treatments. Randomised assignment allows the
researcher to assume that variables which are not explicitly
controlled within the experiment do not ayatemizicaliy influence
the dependent variable across treatments (groupi). How?ver, much
of social and behavioral science data describes situationa in which
the ideal conditions of experimantal research cannot Se satisfied.
Research  based on such data is lometimal called
‘quasi-experimental’, which alludes to the fact that it is possible
to employ procedures in the analysis of tho dnti to control
statistically for the lInfluence of extraneous taccors which may
have influenced the scores on the dependent variable. In order to
exarcise statistical control in this way it is of course 'noco--ary
to have collected data on these extraneous influences. This is one
of the reascns why quasi-experimental research is sometimes sald to
be weaker than experimental research: in quasi-experiments the
researcher needs to know before hand which non-experimental factors
to collect data on, whereas in a controlled experiment there is no
requirement that the relevant extranacus influences be known at
all, since the randomised allocation of subjects to treatments

nullifies any effect they could have had.
The analysis of covariance (ANCOVA) model was designed to do the

same job for quasi-experimental data as that which the analysis of
variance (ANOVA) model did for data from controlled experiments; to
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test for a difference in the effects of two treatments. This
involves a test of the difference in the mean scores for the
treatment and control groups after treatment of the former ° group,
given control toi covariates which may also'have influenced the

outcome.,

Assuming that we have data on the reievant extraneous factors
(covariates), so that statistical control 18 possible for the
influence of these, the usual multivariate ANCOVA analysis model

* makes two Aimportant assumptions about the data on the two groups .

First, it assumes that the variances and covariances are equal
acroes the groups. Second, it assumes that the relationship
between the covariates and the outcome (dependent variable) are the
game across groups. Now, ~ because the condition of randomised
assignment to treatment groups is not satisfied it is likely that
the first of these assumptions will otten be violated, For
instance, children from one school are likely to differ from those

in another school with respect to " their entry abilities, social
class, motivation etc. Only if gtatistical matching on the
relevant variables-is carried out can we be reasonably agsured that
the tirst assumption will be approximately satisfied, The second
assumption is often the one which is least tenable and it is the
one which is most crucial for accursta estimates. It implies that
the control group and treatment group have the same regression
1ines with respect to the effect of the covariates on the dependent
variable., This assumption may be more plausible in the situation
where the treatment effect is null but where the treatment is
tef fective' it seems plausible that the relationships will often
differ between the control and treatment groups. Indeed the
treatment may have the effect of changing just this relationship,
eg compensatory education progranmes mMmay aim to ralse the
performance of digadvantaged children relative to non-disadvantaged

children through special programmes (eg Head Start) and this
treatment may also result in a changed relstionship between social
class and educational attainment at the end ot the programme.

Social class will, however, be one of the covariates which a 1ﬁ

researcher may wish to control for in any evaluation of the effect 3

c1
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(:reatqent) (Sorbom, .

above . two assumptions are made 8o as to achieve

. The
idehggfication in he usual ANCOVA model, however, other 1dentifying
restrictions may be more appropriate to the research problem at
hand, Thus the flexability of a facility allowing for the
specification of an alternative sget of identifying restrictions
would be an advantage in guch analyses.

Although not originlly'designed with such analyses in mind the
LISREL model can be parameterised to eatima;e’ the ANCOVA model
(Sorbam, 1982; Joreskog and Sorbom, 1981; Horn and McArdle, 1980).

Figure 4,10 presents  an augmented path diaéramatic
representation of a ANCOVA model.b The 'analyais of differences
between groups is carried out by using the LISREL tacility to
conduct a simultaneous multiple group analysis. This facility
allowt for the fitting and estimation of the structures in several
groups simultaneously through the use of a joint oltimution
function. The differences in the mean struoturo- betwcen groupe is
tested by comparing the difference in tit botwcen a model in which
the mean parameters are specified to be equal across groups and one
in which they are allowed to be estimated independently of the
values of each other (le Free, in LISREL notation). This model
employs the chi square ratio test which is known to be sensitive to
departures from the model assumption of multivariate normality.

An alternative formulation of the ANCOVA model is ?tclcntod in
Figure 4.11, In this model the mean structures of the group are
not specified, rather the treatment effect is assesssd by the
influence of the variable 'T', which represents group membership,
on the dependent construct. In this model the data is analysed as
if it was all from the same group but, that members of the group
differ on the characteristic which denotes exposure to the

treatment. 1In the case where the data are drawn from N groups this
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Tigure 4.10 ANCOVA Model with Explicit Stxucture on Mean of Dependent
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‘formulation requires that gi;hptgéhbership be denoted by N~1 dummy
variables. Different strategies of coding the dummy variables can
be ‘employed to investigate various contrasts between groups (Kenny,
;%979£V'Bray and Maxwell, 1982). The advantage of this model over
the former is that it removes the need to rely on the chi square
ratio statistic in assessing the statistical signifiéance of the
treatment effect, which is assessed instead in this model by the
standard error for the parameter indicating the effect of group
membership.

If the principal focus of an investigation is to estimate the
magnitude of the means for different groups, in addition to the
testing of differences between them, then the explicit modelling of
the structures of means is necessary, as in the former model.
Indeed, it is probably always necessary to model the data by the
explicit structures on means if it is the means of groups which are
the focus of the research. Only through such models is it possible
to asgeas the substantive importance of any difference between
groups, in addition to testing for the statistical significance of
any dit;eraxico between means. The model in Figure 4.11 allows for
the statistical tcaéinq of the difference batween being in one
group as opposed to another. It does not furnish any direct
information on the means. »

In addition to the flexability in specifying the most
appropriate identifying restrictions for the particular model at
hand, these formulations of the ANCOVA model allow for the
investigation of differences in mean structures within the specific
context of the covariance structural relationships in the groups
and the assessment of model fit. A model which does not fit
satisfactorally may indicate that important covariates have been
omitted, hence that the difference between groups may be highly
sensitive to the particular specification of the model employed in
the analysis of the data. Analyses with the standard ANCOVA model

leave the regearcher substantially uninformed as to these dangers
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to inferences and conclusiona‘Qrawnctrom the analysisf“;nvgddig;on
the standard ANCOVA model is not glways appropriate when subﬁeégs
are assigned to treatmehts on the basis of particular non-ranéom

strategies, where _there may . be error of measurement in the

variables or, when the number of subjects varies significantly

acroes groups. Each of these problems can be geparately and

jointly addressed in the formulation of models in a a more geneta;
structural modelling context, although the restrictions required to
identify a particglar model will always mean choosing between a

fixed set of alternative constraints on the model.

5.00 Discussion and Other Issues

The approach of this paper, has been .to. give the ‘reqder a
non-technical conceptual overview of the scope of the LISREL model
and to discuss a selection of models comonly employed in -ocial

lcienca within this framework. These models have been discuased in
a heuristic way so that researchers interested in extending their

modelling techniques to include the more general approach of LISREL
can see where it fits into the general application. of linear

models.

Anyone who refers to the more detailed literxature will soon

realise that there are several issues not so far mentioned,
problems may be found in the fallure of the iterative estimation

process to converge to stable estimates. The estimates for some

parameters may occcasionally be implausible even when the model has

A particular example of this is Heywood

an acceptable overall fit.
errors of

solutions, ie negative estimated variances for the

measured variables (el § )1 or for construct residuals ().

Methodological problems in deciding on criteria for comparing

the measurss of fit for different models

gtill to be resolved. The issues rest on the
that is, more or less

pased on the same data are
criteria for

camparing models which are not nested,
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restricted versions of one another, and upon the susceptability of

scme of ' the neasures of fit to sample size. version V of the
however, include new measures of model fit. We will
ge measures distinguish between the

The sampling distribution for

ptogramchoeé,
have to wait to see how well the

fit of hédels which are not nested.

these new indicies of model fit are unknown, thug they do not

provide an opportunity for the gtatistical testing of the

differehces between models.

ad hoc solutiéns to these problems are adopted to
y situation. In some cases more
a wider range

In practice,
suit the particular investigator
'yules of thumb' are being developed to cover
Many of 'these issﬁes are as unresolved and

important for other forms of the linear model and for some other
article,

g the sub~models discussed in this

general
of applications.

methods of estimatin

also.

This brings us to the one area in which the LISREL method of
ictive assumptions about the variables
Maximum 1iklihood estimation

produces estimates with desirable properties provided the data

a multivariate normal distribution. This is generally
sumption to make in respect

estimation makes moxe restr
and data than some other methods.

confom to
considered to be a highly restrictive as

of data in social science lituutionl.‘ Methodse

properties of data in this respect are available
Models based on estimation

of assessing the
but are not widely

known or applied (Gnanadesikan, 1977).
procedures employing Ordinary Least Squares O Generalised Least
Squares techniques make less restrictive aistributional assumptions
about the data. Version V of the LISREL program has an option for
selecting an estimation procedure based on the method of tinweighted
Least Squares (ULS). However the technical and computational

information about the precision of

problems of computing sampling
Thus the

ard errors) have not yet been solved.

ULS estimates are accompanied by less information on the £it of the
egtimates than the ML

the estimates (stand

model and on the precision of parameter
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estimates. In some cases it will be useful to coh@ﬁte model
estimates by both methods. Whe

conf ident that they are not artefacts
of a highly skewed nature jt is best to opt for the ULS estimates

ag the ML method 1s known toO be sensitive to the effects of

re they are simiar we can be more

earcher is prepared to assume that
an underlying true distribution
ie one which is relatively

skawness. 1f£, however, the res
the observations are drawn from

which is not significantly skewed,
then it is posible to utilise an option in

nomally Aistributed,
he observed

the measurement scale of t
and to rescale the values so that
In doing this the weights
le for the observed

the program to treat
variables as ordinal in nature
the variable is normally distributed.

given by the categories in the measuring sca
4 and new weights calculated from the

in each category. The correlation
then calculated from &

measures are disregarde
frequency of the observations
between two such ordinal variables is
contingency table and is known as a polycholoric correlation.

4 in the same Wway as the ordinary

These corrslations are use
{Pearson product-moment) correlation coefficient as intermediate
ML methods in the program.

input for further analysis by ULS or

In this section I have attempted to indicate some of the areas
1 modelling raises unresolved

in which the - methodology of LISRE

h methods in general, however, 1 also wish to
as of such issues is itself a majox step
aim to present didactic discussions
1ling and the robustness of
preparation

questions about suc
stress that the new awarene
forward. A set of papers which
eatures of structural mode

of various f
ed in estimating models 4is in

the estimators us
(Cuttance and Ecob, forthcoming) .

of the method, but for data @ ¢’
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A GENERAL APPROACH FOR TESTING
FOR CORRELATED ERRORS IN LONGITUDINAL DATA

Joan K. Gallini
University of South Carolina

Apatract,fu o

The present study utilized structural equation methods
(LISREL) to estimate models of the pre-posttest paradigm. The -
data set comprised a group of 6 - 8th grade students involved
in a gifted and talented program. :

Two types of analyses were conducted. The first analysis
was applied to test the validity of Bloom's taxonomy under-
lying performance on the achlevement measure used in the program,
the Ross Test of Higher Cognitive Thinking Skills, For the most
part, the results demonstrated the existence of the structure,
such that analysis skills were precrdered with respact to synthesis

and evaluation skills.

The second LISREL analysis was applied to asseas the model of
"best £1t" among a set of alternative models that varied in the
correlations specified among the measurement errcrs. There was
a significant improvement in model fit when measurement errors
were allowed to correlate, as compared to the zero correlation
specification on the errors in the null structure, Generally
speaking, a nonzero covariation specification between errvors
associated with all similar measures across the two occasions
resulted in. the most efficient estimate of ability change. The
study pointed to the efficacy of LISREL-type analyses in longitudinal

data,

" Presented at AERA 1983, MLR Special Interest Group
Not refereed by editorial staff
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1. Intréduction ' o

The recent emergence of gifted and talentad programs across the
nation has givon considerable actancion to the appropriate identificatio
of individuals for cuch progrnun The movement has simultaneously
evokad concern over the evaluation of student progress, once studentsg
are selected into these differentiated programs. Various quc-:ionnairea,
norm-referenced standardized c.nts, and critaricn-referanced tests
pnvg been dcvolopcd nnd/or -uggcntcd for 1don:1£1ca:ian and cvalua:iva
putpooul (c.g.. ccnopolo, 1982' Pcrronc and Chen, 1982; Renzulli, 197s;
Vermilyea, 19681). o o "

A numbor ot ditfcrnut tnchniqunl lhould bc employed in the
a-ccllnnac ot abilities and lkilll !or gi!:od programs, A major
criccria 1n the choice of the 1nc:tunnne- is chnc thy reflect the
objectives aud charactaristics of the 1ndividual program (McFarland,
1980). For example, a student lolt-tcporiing quastionnaire might
be used to alccrﬁain students' perceptions of activities implemented
in the pfostnn. A criterion-referenced test, on the other hand, will
be more suitable to assess pesrformance on those activities, and probably
more nppropfincc than a global norm-refersnced measure of achievement.

Gifcad and talented programs in the schools typically focus
the academically or intellectually-gifted dimension of "ereativity."

(For studies on factors of creativity, see Davis, 1980; Guilford,




1975; Klein, 1982). Thus program objectives will oftentimes emphasize
the development of higher cognitive thinking skills. These include
such aptitudes as éroblcm awareness (formulating a problem), fluency
(generating many and ﬁew ideas), flexibility (producing a variety

of idess), problem solving (analyzing situations), and divergeat
thinking (exploring alternative solutions). Valid standardized

tests for evaluating “creative" thinking may be useful to tap such
dimensions of a giftad and :alcn:cd»program.\;ﬂnuever,*i: is extremely
important that the selacted instrument(s) represent cognitive thinking
levels that are indeed represented in th.‘progr;nqu;ccivitics.

‘ The Ross Taest of Higher Cogn;tivc\?roceslop‘(Roqs,and Ross, 1976)
is a standardized test used in gifted and talented programs. The
Ross is designed to serve a general population and gifted students.
The test can validly be used as a screening instrument to identify
the scademically gifted, It can also be employed in the assessment
of special programs emphasizing critical thinking inquiry methods,
problem solving, and logical thinkiag, or the development of mors
complex thinking skills. Another major use of the Ross test lies
in the sssessment of individual student performance. Such usage
may iavolve a pre-posttest design to determine growth in & studant's
higher level thinking skills over & period of time.

While its usage may vary, the overall intent of the test is to
neasure ability in levels of higher cognitive thinking. The specific
levels, named according to Bloom's taxonomy (Bloom, 1964), are analysis,

synthesis, and evaluation.




o

Analysis relates to an individual's ability to break down information

into its constituent parts. Syathesis refars to the ability to
forn a new whole. And evaluation is concerned with the ability
to judge the value of material for a given purpose. The learning
outcomes in these three levels basically represent higher intellectual
lavels. Synthesis generally stresses creative behaviors, with emphasis
on the formulation of new patterns or structures. The behaviors
in the taxonomy were attempted to be categorized by complexity, with
analysis rnpicsen:ing a lower level thnn'gynthcsic and evaluation.
Evaluation Tepresents the highest level in the cognitive hisrarchy.
The present study'cnpiricnlly examined the hierarchical sctructure
o of the Ross test (as modified for the particular gifted and talented
program under study). Structural equation methods were enployed
co_nnlciu the validity of Blooa's taxonomy of higher skills as a
reasonable reprasentation of the test's underlying structure for
3 a given dats set, The model represents a confirmatory factor analysis

model. That is, the structure hypothesized to underlie performance

ou the Ross is specified prior to the snalysis, Maximum likelihood

sscimation procedures (Joreskog, 1969; 1970 3 Joreskog and Lawlay, 1968);
j_ of the LISREL coumputer program (Joreskog and Sorbom, 1978; 1981) are then
| applied directly to the model specifications.

A second objective of the study was to assess student change

ia higher cognitive skills ability over the duration of the program.

A series of "nested" structural models described by the pre-posttest

paradigm wers formulated. The models primarily varied in restrictions




on correlations between the errors associated with the measurements
across the two occasious. The LISREL analyses were employed to
identify the model 6! "best fit" in describing changes in ability
(Sorbom, 1979). ar

2. The Instrument

The Ross test consists of 10{ items &Q;igned to assess the higher
lavel Cbiqk;ng skills, analysis, synthesls, and evaluation. A
desgriptionxofvthe subtests and the nﬁmhefhot items are shown below
by cogni:ivo 1¢§ci. . o o

Analysis. Three subtests relate to the analysis level:

(1) analogles = abilicy ;o pgrceivc analogous relationships between

pairs of words (14)

(”) miauing prcmisoa - abili:y to identify :h.'éiiiing‘prcmises needed

to completl a logical syllogism (6)
(3) analysis of rolcvant and 1rr¢1evan: information - ability to
analyze data (14). ( : '

Synthesis. Three subtests relats ¢o the synthesis laevel:
(1) abstract relations - ability to study data and synthesize a
logically consistent scheme for organiziag them to form a conceptual
framework (14)
(2) sequential synthesis - lbiliﬁy to organize sentences in proper
sequence (10)
(3) analysis of attributes - ability to formulate and appropriately
modify hypotheses (10).

In :hc-pros.nc study sequential synthesis was excluded. An




Y'evaluation of arguments" subtast of five items from the . Watson-Glagser :

Critical Thinking Test (Hh:aon—Glasor, .1964) was aublti:uccd, since

:hn 1ccns tnln:cd more appropriately to the objectiv.c of the parcicular

gifted program iu the prasent study. . The cvaluacipn of arguments

’i:cma sample ability to distinguish between strong/fcievan: and

weak/irrelevant .arguments to a particular question at issue.
Evaluacionf Two subc;acs relate to the evaluation lavel:

(1) d;ductiéc fciaéning -‘ibilicy to analyze statements in logic (18)

(2) quoltioning lcrttcgiol - ability to avaluate methods of Obtaining

data (17). .

3. Tha Models

A lcgpc;urgl equation model was formulated to rcprﬁs;ﬁc the
structure of Bloom's taxonomy said to underlie partorﬁyncc‘on the
Ross teet. ggg Figure 1. The uﬁdcl shows three coﬁntruc:s.
‘analysis, synthesis, and evaluation, so ordared by complexity. The
uodgl Telates three indicators for analysis and synthesis, and
two for evaluation. Descriptions ot‘chc iAdicucOts has been provided
ia the prcvioga section, Postcest ecores on the Ross, reprasenting
student achievement after nine months in the program, constituted
the data bgoo for this analysis.

The changc‘in abilicy models are shown in Figures 2 and 3.
The subtests of the three skills domains - analysis, synthesis,
and evaluation - were aggregated. Thus, the basic structure
reflects pre and posttest as latent variables, with the same three

domaing as indicators for both occasicns.




Model A specifiaed zero covariations between errors (measurement

errors or residuals existing after variance due to true scores is

extracted). Model B allowed errors to correlate batween measures on
the same occasions. The assumption is that the tests measure common
traits not included in the modal. Models, C, D, and E additionally
allowed for covariations between the same measures across the occasions.
Such covariation is likely to aexist in longitudinal data, due to the
correlation between the abilities at the two occasions as well as
extraneous influences due to the similarity of testing at both times

(e.g., recall.of gest items; practice effect; nature 0f the tests

themselvas). & wii.o 7 oso 5o pRSRSITER

I [~

4, ‘rcchniqg._: .

The study's sampla constituted 337 6-8th grade studants earollad
in a gifted and :ulentcd‘progrlm in a soucheastern school district.
The program is oriented toward academically gifted children. Among
other selection criteria, students in the program scored at the 33th or
higher percentile on tha Comprehensiva Test of Basic Skills (CTBS)
(McGraw=Hill, 1974).

Pre and posttast administrations of the Ross test took place
in the Fall 1981 and Spring 1982, The maximum likelihood estimation
procedures of LISRELL ware applied to the posttest data to evaluate

the hierarchical structure said to underlie test performance.

1 The LISREL LV computer program was used in the present analysis since
LISREL V was unavailable at the time of the analyses.
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s1usschanges .across the :two occasions.

= -+ of the analysis, synthesis, and evaluation skills domains;®

N

‘Aéaigion;llLISREL analyses were conducted

B&

#

Table 1 shows the means and standard deviations ‘forithe subtests =

*The covariance
.. matrix for the variables appears in Table 2.

T )

, - Ew e
] ! Y

The LISREL estimates (unstandardized) have been ‘included in
Figure 1, along with their associated standard errors. ' Some of the
error variance estimates are questionable, due to the relatively
large standard errors. The Yi1 Pach (analysis to synthesis) loses
importance, as ﬁiili“bfcﬂychnzlsrgc standard error. .

Ovarall, hov-vqr, the model was accepted as a plausible structura
for the data, based on the pbclincd_chi-oqunro value of 18,116, df=17,
. (p=:38) ., :Note that the path diagram portrays a nonzero correlation
. 'across the equations. . The specification was aecessary to obtain a
tenable structurs, “Conceptually, the specification was reasonable since
the data were longitudinal, A sero opoct!ieacion resulted in a poor
model fit, with & chi-squars of 31,773, dt=18 (p=.02).
The second set of analyses was conducted to determine the model

that best represented ability change among the studenca during their

participation in the program. Table J shows the means and standard




Variable

Analogias

Missing Premises
Irrelevant Information
Abstract Relations
Attribute Analysis
Evaluation of Arguments

Deductive Riasoning

Questioning Strategies

Y X2 0%

3.073 '

1.098 3,301

1.627 1.698 6,448
796 J767 1,399
693 .790 2,797
218 .072 .433

1.495  1.915  1.820

1.157  1.032  1.804

Table 1
Means and Standard Deviations
Higher Cognitive Thinking Skills Variables

Mean

10.715
4.59
6.598

11.569

10.263
3.161

13.445

8751

Table 2
Covariance Matrix for the Subtests of )
the Higher Cognitive Thinking Skills Instrument

Y

3,247
1.232

481
1.201
1.023

Y2

6,636
+693
1.801
.867

Standard

Deviation
’ 1.753
1.817
2,539
2,291
2,576
'1.373
2.882
1.834

Y3 Y, Ys

1.886

.481 8.308

- 099 1,611 3.364
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Table 3 :
Means and Standard Deviations . o
of the Three Skills . Lok
Domains for Pre and Post Administrations
Domain Mean Standard Deviation (. o
Pre~Analysis . 21.912 4.5 SN B CEEE:
Pre~Synthesis 21.832 3.79 o S
Pre-Evaluation 22,197 3.86
Post-Analysis 25.474 4,15
Post-Synthesis 23.912 3.18
Post-~Evaluation 24,289 o 3.039
Table &

Covariance Matrix for the Cognitive
Skills Domains of Both Occasions

Pre Post

Analyeis Synthesis Evaluation Analysis Synthasis Evaluation :
1 2 h) 4 L} 6 o

1. 21.669

2. 7.2 16,347

3. 9.2 4,89 14.896 '
| 4. 1.8% - 3.832 7.662 17,266 | |
: s.  3.928 4,711 3.586 6.410 11,007 %

2.830 6.010 '7.796 4.2711 9.237 \




S

Band daly
all,

O Y o ”:

deviations for the pre-and post-analysis, synthesis, and evaluation
%

‘:Eich pre-posttest model stiucture was evaluated for overall fit
to the data. The individual chi~square values obtained from LISREL are
reportad in Table 5.
The zero covarlation specification in the variable errors for pre
and éosctclt administrations lcd to a rejection of both modals A and
B (p <.01). See Figure 2. This is not surprising, given the nature
of the data. In addition, the first-order derivatives suggested most

of the off-diagonal terms in the error covariance matrix were nonzero.

Modal € included a corro;ation between the arrors in the analysis
vnriablc‘ac both’tiggq,%b?;‘:hcfmodcl vas rejected (marginally at p<.01).
Therefore, it bnc;ﬁa nnﬁcs-nry to a&d a covﬁtiaciou between the synthesis
eTrors, as shown in model D, (See Figure 13, Hoytvot. modal E yielded
the beet fit in allowing for covariations between all three similar

neasures across time,

All four models (B-E) that allowed for some degree of correlation
between the variable errors offered significant improvement over
model A, with model E showing the greatest degree of improvement
for the associated dngro;n of freedom (chi-squara ditﬂct.né‘ of

30,467, df=5), Table 6 shows the chi-square differenca statistics




Table 5 s
Individual Fit for the Models ‘
of Ability Change
.
Yodel X -valye  df
A: no correlations 30.662 8
batween errors
B: arror correlations = °273 6 : +0003 :
wvithin occasions !
Error Correlacions Across i
Occasions:
|
corralation 15.433 5 .0087 |
batwaen 4, ¢ :
D add &3¢, 7.440 4 . 1144
correlation
g add §j¢, <1932 3 +9784

correlation




Posttest
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correlations batw en measurement arrors

A I B TR Sy

L RN,

latiou €=,

B: correlations

between measurement arrors wichin a given occasion

‘?tgurc 2. Pretest-Posttest Structural Equation Models: A null model and
an dlternative to the null,
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The ability change
the unstandardized
value below ig the

path coefficient {g shown, The
LISREL estimate and its associa
standardized estimate,

value above the arrow is
ed standard error; the
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Model C
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Model D

§) «»Ang Analysis ¢—c¢; ‘

1.001(.173)

85 —> Sy jasis &€

§3->Evdluac tion<-e3

D: The §3¢2 correlation is added.

Model

§) ~pAna; yols gt}

+713(.062)
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4 je=eEva) Eval }ation,£3 g f

E: The 3jejcorrelation is added.

*‘.-'igun 3. Precest-Posttest Structural Equatiop Models: Correlatad P
Measuremant Errors across tha Iwo Occasions. :

*

The ability change path coefficient is shown. The value above the arrow (s the |
unstandardized LISREL estimate and it3 standard ervor;the value >elow i3 the !
standardized LISREL estimata. 79 ‘




Table 6

Model Comparisons

“Model Comparison

>
LI I I I B I )
(2]

H

Toowwwy»
HmMUMmUOm

difference

5.387
15.229
23.222
30.467
10.139
17.835
25,077

7.993
15.2378 .

Y 7.26448

<.01,7wich‘:hc exception of the A-B comparison (p <.65)

)
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for the model comparison tests.

6. Discussion

The study's findings lent support to Bloom's taxonomy of higher
cognitive thinking skills as the underlying structure of the Ross
tast (as modifiad for tha‘particular program). Further analyses
should follow in an effort to obtain more efficient estimates.

Confirmatory factor analytic mathods were applied to a pre-
specified model representing the hintn;chy of analysis, synthesis,
and evaluation skills. fht ;i:ccc path bc;uncn synthesis and
evaluation was relatively lnrie. The results gave credenca to the
theoretical notion about vertical learning (Gagn‘, 1970). fhnt is,
the learning of subordinate rules facilitate the occurt:ﬁc- of
higher-order lcgtning. More importantly, the results have implications
for the importance of proper sequencing of instruction so that such
transfar of learning does aceur,

There was some departure, howevar, in support to the above
premise. Reference is made here to the wesk direct path batween
snalysis to synthesis. It is possible that some modificacions made
in the synthesis component of the Roses test for the given sample
could {n part have contributed to the departures. Another plausible
explanacion is perhapse the inplemented curriculum did oot necessarily

precede synthesis activicies with analysis sctivities.

Additional hypotheses were investigated regarding correlation

between tha errors in the longitudinal data set. Conventional




models used in data analysis (i.e., classical factor analysis, single-
equation regression) impose restrictions on the error terms. However,
the general LISREL approach to covariance structural analysis can be
used to ddccﬁ: nonzero covariations between error terms and consequently
identify the mnnsuicundc model of “bcsﬁ"’fic.“rhi evaluations of
longitudinal data sets generally offer better representations of reality
‘by nilouing cotrnla:i&n: across the observed occasions. That is, th;
effects of prcvioul c.nting are likely to carry over to the posttest
sitnn:ion and contribute to nonrandom or systematic error. In the
prcscnt modcls, thc nbili:y chanze path coefficient (standardized)
tnngcd ttom a .77& to a .969. th. modal :hac allowed for correlations

’ bctwccn all three sinilar measures across the two occasions yielded

a rclacivcly highcr offcct- path thnn did the model with the zaro
co:rcl¢C1on constrainc. Hotc ‘{mportantly, the standard error assoclated
with the altdfﬁncivc structure was smaller. The consideration of
information that contributes to systematic error in the estimations
shodld result in a more accurate uuumnc_ot ability change over

time,
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A PERSPECTIVE ON MULTICOLLINEARITY

John T. Pohiman
Southern illinols University, Carbondale

Multicollinearity occuré when a set of predictors in a
regreasion model  are correlated. When one or more
predictors are linear combinatlions of other predictors,
exact multicollinearity exists. The moét t?pical case
encountered in practice 1is some imperfect, but possibly
strong, assocliation among predictors. The sampling
variability of regression coefficients \s, in part, a
function of the correlations among predictors. High
interpredictor correlations will 1lead to less stable
estimates of reéreseion weights., This relationship éan be
problematic if a regression weight's variability obscures
soma functional relationship of interest to a researcher.
The multicollinearity problem, then, is an unacceptably high
standard error of a regression weight t?at occurs because of

high interpredictor correlations.
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require models  with highly correlated »predictors. ‘A
qga@gqtic;cgrQe;fitpipg . model requires a predictor and its
squared value as independent vari#bles. HIfw‘ﬁﬁé predictor
takes only positive integer values, the correlation between
the predictor and its squared_ value will be extremely high.
There are also.instanées‘iﬁﬁwhich a researcher, desiring to
measure some construct reliably, uses a number of highly
correlated, but fallible measures of the construct. Using
both WISC and Binet scores as measures of intellectual
ability would be an example of such multiple indicator.

models.

ﬁ'fhégliﬁpaét of * multicollinearity in any particular
) application’ dgﬁénda on the roles taken by the variables

RN

;VAff;éééA: v\éfédictors in S regression model may take one of
‘éQo ééiéé; they may be investigative variables or control
vafiéblel.' Investigative variables are those predictors
whose influence on the dependent variable constitutes the
primary interest of an analysis. Control variables or
vdovariateo are included in a model in order to statistically
adjust both the dependent variable and 1investigative

predictors for some contaminating influence.

Multicollinearity might occur within or between such
classes of predictors. A model can be formed using multiple
control variables measuring the same construct. Using a
number of IQ tests to measure the construct mental ability
exemplifies this approach. In these cases a rasearcher

should not interpret the partial tests performed on the

86




separate weights assigpgd’to‘thg»quividgalﬂ;g,@qugges,“but
instead should treat the collection of 1IQ ﬁes£s“;;h ;;sét.
In this context the researcher is interested in C;A€£§i;iﬁg
for the influence of the IQ construct represent;d(‘ﬁy tﬁe
multiple test scores. The individual partial tests ’are

irrelevent to this reéearch problem.

Similarly, a set of investigative variables might be

multiple measures of the same construct. If mental ability
was an investigative construct of interest, the above
comments would apply equally in this case. Setwise

regression methods would be the appropriate response to this

problem (Cohen and Cohen, 1975)

A third possibility exists; an investigative variable
and a control variable are highly correlated. The

researcher has been 1lead to this position in pursuit of an

answer to a meaningful research question. Multicollinearity
in such modelé is a legitimate and unavoidable consequence
of posing the research question. Under these circumstances
the researcher will either have to endure the problem, or
with a slight amount of prior planning, corract for the

impact of multicollinearity.

How can a researcher reconcile the legitimate need to
estimate coefficlents in models with highly correlated
predictors and the inevitable imprecision associated with
such problems? Ridge regression (Hoerl and Kennard, 1970)
and similar methods (Smith and Campbﬁll, 1980) have been
proposed. Ridge regression methods . tend to adjust

coefficients closer to zero than the corresponding ordinary
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least squares (OLS) estimates.' Ridge regression methods’

yield estimators of coefficients that exhibit lesé sampliﬁg’
variability but can be biased.  1In theory the estimaticn
bias is offget by smaller mean square errors of estimation:
The mathematical Jjustification for ridge estimation ig based
on an existence theorem (Draper and smith, l981, p.316)
which simply states that there always exists an estimate of
a regression weight that will deviate from the true weight
less than an OLS estimate. "Unfortuneately, in any specific
application of ridge regression there is no guarantee that
the sample estimate isg a member of the class of more
accurate estimates. The efficacy of ridge estimation
depends upon the extent of prior information the researcher
has regarding the population model. If the prior
information is cbfrecé}h and the ridge estimators accurately
refleetpthis prior information,' then the ridge estimates
will be more precise than their OLS counterparts. A
researcher in possesion of prior information could
Justifiably use ridge estimation as a vehicle for a Bayesian
analysis. The use of ridge methods without a clear
specification of the implied prior constraints is
unwarranted, Another approach, the one advocated here, is
to uge OLS estimates, but plan for the potential problems of
multicollinearity. This paper will -focus on the
consequenses of multicollinoarity for the most common

applications of statistical inference in linear models.

Multicollinearity and Model Assumptions

The illustrations provided in the remainder of this
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paper will make use of a threé'prediétor,regressidﬁ problem.
A three predictor regression model for a dependent variable

may be expressed as
(n Y = Bo +81X)+ 82Xz + B3X3 + F

where Y is a vector of values for the dependent
variable , (xl Xy 01Xy ) are the predictor vectors, (81,
B, ., andB3 ) are the least squares weights and E , the
residual vector. Researchefa then usually interrogéte the
functional relationships implied in their model via
statistical inference directed at the model's coefficients.
From a random sample of observations and the resulting
estimate of thé model, confidence intervals miy be placed

about the coefficlent estimates or tests of null hypotheses

may be performed. A test of Hig =c is conducted -as

follows:

1. A full model estimating (1) is fitted to sample data
using the least squares criterion

(2) Y=b

4b X +b X +bX +
Obn 22 33 E(f)

2. A restriction is imposed on (2) by ueﬁting the
welght under test equal to the value specified in the

‘hypothesis, B; = c. The rastricted model then is estimated

+
(3) Y = by + eX, + b,X, .+ b3x3 +. E(r)
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where E'(£)E(f) and E'(r)E(r) are the error sums of
squares for the full and restricted models respectively,
m(£f) and m(r) are the number of weights estimated in the

full and restricted models and n is the sample size.

In order for the F statistic given in (4) to follow a

central f distribution, it is assumed that

+“1J The elements of E(f) are n(0, o2 )

]

2. The weiéhﬁéméétiméféd in (1) and (2) satisfy the
Dy AT AT LA e Y . e

least squares criterion.
bprhhiing: detat-babulibuniuid bt
e T

"3.' The variance of the residuals is homoscedastistic.

4, The sample is randomly drawn from the population.

S. The null hypothesis is true.

. It 4is important to note that no assumption is made
reagarding the correlations among the predictors. The type I
error rate for such tests is unaffected by
multicollinearity. Hence a researcher rejecting Hi need not
be concerned about the multicollinearity problem for that
test. With the current interest in multicollinearity it was
inevitable that some authors (Loether and McTavish, 1980: p.

331) would include uncorrelated predictors as an inferential




assumption. Recently,  Hawkes and ‘'Mosely = (1982)

questioned this extreme interpretation.’% XL ’
McTavish are simply wrong and have thereby misled‘ their:!:
readers. We must now be prepared for the onslaught’. of "
papers that will use all sorts of suboptimal methods citing’’

Loether and McTavish.

Multicollinearity, Interval Estimation and Power

The correlations among predictors can affect the type
II error rate of tests and increase the range of.confidence
intervals. These effects obtain as a result of the
increased impreciesion in the estimation of weights that is
assoclated with multicollinearity. This can be.demonstrated
with the expression for the standard error of a regresaién
coefficient. Scaling all the Yariables in a model so that

their variances are equal, the expression for the variance

error of the regression weight assigned to X, is given by

(Winer, 1971) o |

(1=0212)

2w ye

(3) cbl . 1o, )
n Pl.23

whare 9;‘12’ is the coefficient of determination for

the model in (1), V%.g, is the coefficient of determination

for the model

(6) xl - 8, + szx2 + 33x3 +E




;:;:and n'is; the sample size.,AAn unbiased estimate of i

L

Ub &m@

is obtained, by replacing the coefficients of - determinationfu

in (5) with the respective sample 'R squares “and using (n-
m(f)) in place of n. Inspection of (5) ‘shows that as °¥'§§Q
increases .so does °§l . In the extreme case where -
D%.23 =1, °§1 is undefined. The variance of a regression
coefficient is therefore a function of three
factors: O;ng ' 9%'23, and n. High interpredictor
correlations are not sufficient evidence of a problem.
Sample size and model validity can compensate  for
multicollinearity ., Table ' 1 illustrates: . the inter-

relationships among the terms in (5).

e . . . R e e e e
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Table 1,

2e Combina £ p2. 2 and n
Three Combinations o py'u3 ’ pl .23

That Yield Equal Values of G:l




The three examples given in Table 1 show that many
combinations of sémplé size, D;:‘zg";analbélz3yiéld the same
standard error for a regression weight. One couldv not’
assert a multicollinearity problem for cases 2 or 3 in
contrast to case 1, since all three cases produceﬂthe‘qame
varianée error. In order for a problem to exist, the
variance error of a weight must be greater that some desired
value. Hence a researcher must specify, before the
analysis, a desired value of the standard error of a

coefficient of interest.

As noted earlier, multicollineafity does not affect the
type I error rate of téats on lineaf models. Type 11 error
rates and the width of confidence intervals will, however,
be influenced by interpredictor correlations. A researcher

can correct for these effects when planning an analysis by

selecting a sample size that can compensate for any degree
of multicollinearity.' When interval eétimation of B, is
planned, the researcher can spécity.og.lz, ' 9%-23 and the
desired value of °§l . Given these values, (5) can be used
to solve for the sample size that will give the desired

degree of precision.

For example, a researcher might be planning a path

analysis of school achievement in the 5th grade (Y) with a

structural model that includes attlitudes toward teachers

(Xx,), attitudes toward school in general -(X,) and
achievement in the 4th grade DS). The model that would be
1]

estimated is




R Ry

Y =8y + B8 X) +B8X, +8,X, +E

of.

If we assume all of the variables in this modei have

been scaled to a common variance, then the coefficient 51

may be treated as a beta weight and (5) gives its variahcg

error. The researcher might decide that an acceptable value

of agl is .01. A review of the literature or a pilot study

might yield estimates of 0;.123 and p2,,. to be .7 and .5

respectively. Substituting these values in (5) and solving

_for n, ghe rquisite;aample‘size‘yg.foupd‘to be 60. “¢ the

to be more cautious, a larger value of

s B

_Tesearcher wanted
pf b3 . Gould Dbe  used to accommodate stronger
vmu;ticollinearity_effects. If ezza were set equal to .8

the requisite sample size becomes 150. With this sample
;size the researcher would know that the estimation of 81 is
sufficiently precise even allowing for stronger than

anticipated multicollinearity effects.

A similar approach might be taken if the researcher ie
uiing hypothesis testing methods. A powar analysis can be
performed to determine a requisite sample size that will

‘provide a desired power for a tast of Hi 81 = 0.

The least squares method along with the assumption

€ v N(0, 42 ) (Winer, 1971) insures that
2
b] ~ N ( ﬁl ’ Ub] )

that will yleld the desired

The standard error of p

1




power for this test when 81 =4 is

[of
b
! 2(1 - a) + (1 - 8)

where & = the significance level, 8 = the type II

error rate desired and zp = the unit normal deviate at the

px100 percentile.

Substituting (7) for db] in (5) and solving for n

gives . )
Z1.) * 2000 (- 250,

(8) ne

A2 1 - 2.
( 91.23)

Formula (8) may then be used to determine the requisite

sample size so that a test of H: 8, = 0 at significance

level a will have of power of (1-8) if 6, =4 . given the

2
value
lues of py-tza

(one talled), power = .80, 4 =.30, p;_m

and p},, - For example, letting a =.05

| = .70 an? Ple23
= ,50 ylelds an n of 42, If the researcher chose to

accommodate a latg;r value of pf,zs , (8) could be applied

to determine the necessary sample size tb'cbhéénaaté' for

stronger multicollinearity effects. If in'éﬂgﬁ%§}35léus

example °%~23 is changed to .8 the réquired““iamplé size

becomes 104. A sample of this size WOuld then Alioh for the

effects of multicollinearity and ‘btovide a test with the

desired power.

These examples have shown that it is possible to use

L]
OLS estimation and still allow for multicollinearity.

Sample size was ugsed as the compensatiné parameter, but it
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. : % ey :,W'«; i
is possible to use - °;-123 in a similar - fashion.

collinearity effects could be countered by addlng.covarietes§»

Hence

to a . model that are highly correlated with the dependent

variable. It is extremely important that the research

question not be compromised if this approach is employed.
Summary

Multicollinearity effects can result in imprecise
estimation of regression coefficients, but small sample
sizes and low model coefficients of ‘deeerminetion can

produce the same effects. Multicollinearity does not result

in a violation of the assumptions that underly statistical

sEE ey e

inference on linear models. This implies that a researcher

wishing only to protect egeinat type I ‘errors need not be

concerned ebout high interpredictor correlations. The

researcher concerned about - the powerl of tests vshould
1ncorpe;ete a consideration of multicollineerity into the
planning of an enalysia. "It has been shown here that it s
possible to compensate for any degree of multicolllnearity
by inereasing sample sizes or model validity. The use of
these methods insures that the researcher will be able to
benifit from the valuable sampling characteristics of least

squares estimation; the sample coefficients are unbilased

estimators of’their respective parameters.
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POTENTIAL PREDICTIVE VALIDITY LOSS
IN ARBITRARILY WEIGHTED PSYCHOLOGICAL
CONSTRUCT COMPOSITES

Pouran Raeiss! and Douglas R. Glasnapp

The University of Kansas

The recommendation for analysis in correlational studies involving
change or discrepancy score concepts 1s clear and consistent, “avoid the
use of change scores and allow the individual variables to function sepa-
rately in the analysis" (Cronbach and'Furby. 1970; Linn and Slinde, 1977).
This recommendation would appear to be appropriate for any arbitrarily
we{ghted composite, whether the intent {s to define a change or discrepancy
construct or a'summatcd (additive) construct.’ However, in spite of this
recommendation, the appeal of the concept of arbitrarily weighted composite
constyucts persists. Educational and psychological theorists continue to

think of equally weightéd composites of two variables as attractive methods

for defining constructs théught to have significance within the framework

of a‘theoretical network of variablés. Constructs have been defined merely

by adding or subtracting the scores of two othet variables, thus forming a

composite through the arbitrary assignment of a “plus one" or a "minus one"
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weight to the original variables. These arbitrarily we'ighted composites

commonly have been used as pred1ctor or criterion variables in corre]ational

studies.

1)

2)

3)

4)

5)

6)

7

——
P

Examp]es include the following'

Job satisfaction has been defined both as a change construct (dif- -

ference between real and ideal ratings of job{facets) and as a
summatedvcomposite of ratings of job facets (Wanous and Lawley,
1972.) ‘

Self-concept has.been defined as a difference construct (ideal
vs. real) (Nylie. 1973).

Salkind and Wright (1977) have reconceptualized the measurement

components of cognitive tempo to.define a.weighted composite
impulsivity construct based on standardized error and latency -

scores (I = z1 -z ) and a weighted composite efficiency con-

“struct (€ = z1 +2 )

An “attitude toward disability" was operat1ona11y defined as the

difference in a "spread score“ and an "{solation score" (Cordaro

1

, and Shonty. 1959).

The concept of Erg in Catell's theory of motivation where Erg =

Drive - Goal Satisfaction (Madsen, 1961),

Use of change or gain commonly obtained in developmental studies,
e.g., intellectual growth (McCall & Johnson, 1972).
The study of attitude change and 1ts correlates (Triandis, 1971).

While study of change, growth or discrepancies {s a fundamental focus

of much scientific fnquiry 1in education and psychology, the methodological

inadequacies of using raw change scores as variables in data ana1yses have

been clearly identified in terms of both statistical and measurement defi-




ciencieS'(e g-» Cronbach and Fufby, 1970; Harris, 1963; Linn and Slinde,
and L
Furby (1970) 1ncluded in their discussion of gain scores the use’ of dif— -

1977 ; McNemar, 1958; 0 Connor, 1972 Wall and Payne, 1973) Cronbac '

ference scores as def1n1t1ons of constructs. They indicated that.~“there
is 11ttle reason to bel ieve and much empirical reason to disbelieve the
contention that some arb1trar11y weighted function of two variables will
proper1y define a construct. More often, the prof1tab1e strategy is to
use the two variab\es separately in the ana]ysis so as to allow for
complex relationships? (p. 79). L1nn and S]inde (1977) agreed with the g
latter conclusion to a1low'each variable to assume a weight in a linear ‘

composite determined‘by'the data rather than assign arbitrary weightings

of “one" and a “minus one." Wall and Payne (1973) essentially reached

the same conclusion stating'"... we strongly agree with this advice offered

by Cronbach and Funby (1970) that 'deficiency,' 'change' or 'gain' scores
should be avoided,‘and raw scores only should be used" (p. 326).

In spite of the above recommendations, researchers in psychology and
education continue to use "change," “gain" or "difference" score exten-

sively. Reflecting this persistence. recent writings on change scores

have attempted to 1dont1fy those situations and/or methodologies where
the use of change scores {s moan1ngfu1 usefu1 and methodological]y sound

(Corder-Bolz. 1978; Labouv1e. 1980. Maxwe11 and Howard, 1981; Zimmerman

-and Williams, 1982a,b). Zimmerman and Williams, in particular, have

{ndicated that “... under realistic experimental conditions, change and

growth measures determined from individual examinee's test scores can -

A B it TR I b B e L i A

have excellent predictive valuef (p. 962). They identified conditions

under which change scores can have high predictfye potential and can be. . '!‘

_reliable. They also demonstrated that the potential ranges of the pre-

A
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. dictive validity and reliability of change scores are dependent on the;y
ratio of the standard deviations of the two measures (X and Y) 1nvoived
.in the change score. As this Jatter ratio deviates from one (equaiity
of variances), the potential ranges of change score (Y - X) validity and
reliability coefficients increase dramatically. This is particularly
true for the validity coefficient when Y and X are differentially cor-
related with the{criteribn variable Z, f.e., r yz'f L
The evidencé presented by Willfams and Zimmerman (1982a) would appear
to be ‘at odds with previous recommendatfons. ,However, Glasnapp'and |
~Radissi (1983) : idemonstrate that the conditions identified by Niiliams f
and -Zimmerman :under which high change score predictive validity coef- ‘
,‘;fic1ents#resyit‘a]so,define soppvession conditions within the context
_of the thnee‘vEriebie‘iineerihegnession nodei.. ihey reexamine the
concept of, change score comoosites bykreiating them‘to suopression
- conditions and map the‘domeinaof conditions necessary for the emergence
of a weighted change score composite as the'underiying construct in a
regression model. Glasnapp and Raeissi niso addfess the information
Toss fron‘the‘data when arbitrarv assignment of weights is made.
Drawing on the work of Glasnapp and,Raeissi (1983), the intent

of the present paper is to demonstrate methodological {nappropriate-
ness of using arbitrarily weighted composites as defined variables in
correlational research. The domain'of potentiai information loss is
mapped‘using a specific example from the 1{iterature. For the latter
purpose, the cognitive tempo constructs of impulsivity (I-score) and
efficiency (E-score) provide convenient arbitrarily wdighted‘COmposftES
reflecting both a difference and a summated composite (salkind and
Nright,‘1977).




Background Methodology

Glasnapp and Raeissi (1983) reexamine the concept of change score

compdsites by relating them to suppression conditions within the con-
text of the three variable 1linear regression model. ‘They §tate,

 The rationale for recommending that Y and X be allowed
to function separately in an analysis stems from the arbi-
trariness of assigning weights of 1.00 and -1.00 when change
score composites of Y-X are formed. The arbitrary assign-
ment of weights necessarily restricts the kind of informa-
tion which will emerge about the relationship of Z to X and
Y. MWhether investigating the relationship of Y-X to Z or
some least squares linear composite of Y and X to Z, the
information used is embodied in the values of the inter-
correlations Tz Tyz? and r_, and the variability ‘indices
s, s, and s_.""If ¥%change §¥ore construct has a dominant
ré]atxonshipzto 7 in the data, it will emerge‘and be defined
by the regression of Z on X and Y as separate variables, .
Weights defined by the data through least squares will maxi--
mize the relationship between Z and the Tinear composite

of X and Y and will identify the dominant structure of the
composite containing X and Y while also identifying the
relative contributions of X and Y to the composite and its
relationship to Z.

For a change score composite to emerge as the domi-

nant underlying dimension in the relationship of X and Y

to Z, the regression weight for Y would be positive and

the weight for X would necessarily be negative. Assuming
the variables are all scaled in the same positive direc-
tion, a negative weight can occur for X only {f X has the
characteristics of a suppressor varfable in the regression
model. When a potential change score composite is examined
from a perspective which views X as a suppressor variable,
the conditions under which the concept of change will result
gg a dominant varfable can be further delineated {pp. 6 and

While Glasnabp and Raefssi focused entirely on change or discrepancy
composites as defined by regression suppression conditions, the comple-
mentary conditions for redundancy in a regression model can be identi-
fied as the conditions for which a summated composite will occur from
a regression analysis of the data.

Given a three variable regression model (two predictors and one




criterion variable) the conditions necessary for. suppression and re-
fdundancy among the predictors have been well defined (Conger, 1974,
Tzelgou and Stern, 1978). Three suppressor classifications have been
identi‘ied' classical (Horst 1941), negative (Darlington, 1968) and
reciprocai (Conger. 1974) suppression. Conger has shown that under
all suppression conditions, the inclusion of the suppressor variable
in the regression equation increases the predictive validity (beta
weight) of the other variabie in ‘the equation. Assuming a three vari-
able regression model with X as the suppressor variabie Y as the pre-
dictor. and Z as the criterion,_the_foiiowing define conditions where
each type of suppression wili resuit.‘ j‘
glgggiggl By definition. X wiii be a ciassica] suppressor only when
.00 (Conger. 1974) Under this condition and the
‘Jconditions that Tyz > .00 and ey .00. X always will
“be a suppressor variable and enter the regression equation
with a negative ueight, thus defining a weighted change
score composite,
Negative: Negative suppression occurs when a variabie receives a
negative weight upon inclusion in a regression equation when
o a1l variables have positive intercorrelations (defined by
i ; Dariington (1968) and labeled by Conger (1974)). Similarly,
. | it the pairwise correiations are all negative, negative sup-
pression has occurred 1f a varfable enters the reqressfon
equation with a positive weight. Tzelgov and Stern (1978)
have mapped the necessary domain of conditions for negative

suppression in‘the three variable regression model. Given




'Recigrocalz
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> 00 and ry ) r xz? negative suppression
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will occur if:

v

-

XZ
r

yz

The conditions for reciprocal suppression are slightly more

rw>

complex than those for classical or negative suppression;
In the latter two cases, the pairwise intercorrelations
'are consistent in sign (rxz = .00 in the classical sup-
pression case), but the sign of the regression coefficient
for the suppressor variab]e is inconsistent; opposite that

and r In the reciprocal suppression case, the

yz’
intercorrelations are inconsistent.

of rx
One of the pairwise
correlations must be of sign opposite the other two. In

fact, the definition of reciprocal suppression {s even more
restrictive. Tzelgov and Stern (1928) have broadened

Conger's (1974) formal definition and have shown that

reciprocal suppression will occur whenever the intercor-
relation between the two predictors (rxy)lis of opposite
sign of the ratio of the'two validity coefficients (rxz/
ryz). Reciprocal suppression will occur for the follow-

ing patterns of intercorrelatfon signs in the three var{-

able case.
Pattern Txy Txz Tyz
1 . + ' - +

2
3
4




Redundancz Occurs under al conditions where suppression does not

“occur. |

I'and E Score Composites

and
The pattern of intercorreiations for arbitrarily weighted composites
of efficiency (E) and impulsivity (I) constructs (Salkind and Wright,
1977) were selected to be mapped and reexamined against the suppression
and redundancy conditions within the three variabie regression model.
The definition of E and I scores represent examples of "summated” and
”discrepancy“ composite scores. As background efficiency (E) and im-
puisivity (I) are two composite constructs defined by Salkind and
Wright (1977) based on an»arbitrary weighting and combining of error

7

(e) and iatency (]) scores obtained for an examinee from performance

sAEL Vi

_on ibtching Familiar Figgres Test (MFFT) The test is ~designed to
PR I T b o s d g i
’_measure the cognitive tempo of chiidren._ I and E scores are calculated
by the foiiowing formuia.

I -Z -Z f

! r,'i

E Iz ,+Z]
' & 1

- where I, = impulsivity for the 1th individual; E = efficiency for the ith
individual; zei = a standard score for the 1th individual's total errors ;
and 211 * a standard score for the 1th {ndividual's mean latency., Large
positive I scoras indicate impulsivity, and large negative I scores {ndi-
cate reflectivity, High positive E scores indicate inefficiency and high
negative E scores indicate efficiency.

The opposite scaling of error scores from the typical direction for

a variable (Tow scores are “good" scores) results in some confusion when

conceptually relating error and latency scores to suppression and re-




dundancy conditions. Errors generally wiil be: negative'ly correiated with

a criterion which is positiveiy scaled, Latency,scores,ﬂy:i‘;(]wg% po g]y

correlated with the same criterion and errors and latency wiii be .nega- 7,,

tively correlated. In fact. reviews of studies investigating cognitive
‘tempo have shown that correlations between errors and latency wi 11 range‘;v:
from - 04 to over -.70 with the median value in the -.50's. Given this

pattern of intercorrelations, Tec
negative, the °impllsivity ' composite (1 =z -2y ) really represents the |

= negative, r] = positive. and r el *

summated composite while the efficiency score (E -=ze +2y ) s determined
from a discrepancy composite. Reversing the error scale changes the
signs of the weights forzé in the 1 and' E composites and also for‘rec
and Tal® Under these conditions, the I-score composite corresponds to
the redundant conditions and the E-score composite to the suppression

conditions in the linear regression model.

Procedures

To map the domain of potential predictive validity loss for I- and
E-scores within the three variable regression model, correlation coef-
ficients between error scores (e) and a criterion (c) and Tatency scores
(1) and the criterion were manipulated systematically. The correlation
between errors and latency were fixed at two values (-.60 and -.30) to :
represent a range found in the 1{terature, The values of Tac used viere
-,80, -.60, -,40 and -,20, The values of Me ranged in ,10 intervals
between -1.00 and 1.00. The actual potential range for r;. {s dependent
on the specific values of Tec and Tel (Stanley and Wang, 1969). For
manipulated combinations of Foc 20d Tgps the following indices were cal-

culated for each value of et 1) the least squares beta weight for errors
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and ‘Tatency when regressing ¢'on'é’and 15 2) Rc el’ the multiple RS Wheﬁ;u
regressing ¢ oneand 1 3) rCIz- the’ squared correlation between ' ‘¢ and
the I compOsite, 4) rCE ’ “the ‘squared’ correlation between c and the E =~
composite. and 5) indices of information loss, for I and E score COmposites

formed by subtracting the ratio of rcI /Rc el and rCE /RC o1 from one,: .

Results , .
The attached tables present the results for the various indices under

the conditions manipulated In each table, the values of req 2re identi-

fied which combine with the specific values of Ry el and Tee to define clas-

sical, negative or recipny

the. least squares regression modelq These conditions are labelled for

n«m 4%{&.};,4.;*1

suppression or redundant conditions within :

specific values of el ig each table.. It should be noted that the I and

»»{’% Wi e
E composites are independent of each other (r .00) For this reason,

0’\(&*

they account for orthogonal portions of criterion score variance. In fact
I and E scores as separate predictors of the criterion partition the Teast

squares regression multiple R squared into two’ orthogonal parts, i.e,,
2 ‘z:«'"’ 2 Load
" Reiar® "cr tre
The information Toss proportional indices, L0SS I and LOSS E, will always

add to 1,00, as each gives the proportion of Rczel which 1s unaccounted -

for by the relationship between the criterion and the arbitrarily weighted

composite, 1 or E. The potential magnitudes of 'CIZ and 'CEz thus are

2
ceel’

It follows that the potential predictive validity coefficients for either

restricted by the size of the other coefficient and by the size of R

I- or E-scores can only be high under those conditions where Rcze1 is high.

Also, 1f the validity coefficlent is high for one arbitrarily wefghted -

composite, 1t cannot be high for the other composite too.




RCE=-0. 80

REL+:0'760
RCL. BE - 8L R2C.E. R2C.I R2C.E LDOSS I LOSS €
1.00 . Coefficient out of range - :
0.80 -0.a1 0.66 0.82 0.90  0.01 0.01 0.99
0.80 -0.50 0.50 0.80 0.80 0.00 . 0,00 1.00
Redundant =~~~ 0.70 -0.59  0.34 . 0.72 0.70 0.01° - .0.02 0.99
. 0.60 -0.69 0.18 0.66 0.51 0.05  0.08 " 0.92
0.50 _ -0.78 0.03 0.84 0.53 0.11 . 0.:8. . . 0.82
0.40 -0.88 -0.13 0.6% 0:45 0.20 0.31 0.89
) 0.30 -0.87 -0.28 0.68 0.38 0.31 0.4% 0.
Negative 0.20 ~-1.08 -0.48" 0.76 0.31 0.45 0.59 8.2?
0,10 -1.16 . -0.%9 0.87 0.25 0.61 0.71 - 0.23
Classical 0.00 -1.25 -0.75% 1.00 0.20 0.80 0.80 0.20
=0.10" e . ' :
""0.30
.« -0.40 T : '
_g';g . "% Coefficients out of range
=070 RS :
¢ =0.80"
Table 2
REL=-Q.60 RCE=~0.60
RCL * ' BE 8L R2C.EL R2C.I R2C.E LOSS I LOsSs &
Teemememessscseqn 0T~ 0.00 1.00  1.00 0.80. 0.20 0.20 0.80 |
[N 0.90 -0.0S 0.94 0082 0070 0011 0-1‘ 0086 :
: o - Q.80 -0.19 o.ge 8.88 0.681 0.0%5  0.08 0.82 " |
. 0.70  ~0.28 0.53 34 0.33 ° 0.01 0,02 "7 0,88 |
Radundant 0.80 -0.38 0,37 '0.45  0.45  0.00  0.00  1.00 .
. 0.%0 -0,47 0.22 0.39 0.30 0.01 0.03 0.97
T _--9&43’ -0.58 OOOB 0038 0.31 0.05 0014 i 0-95 X
0.7 -0.68 -0.08  0.37  0.25  0.11  0.31  0.68
Negative 0.20 -0.73 -0.28 0.40 0.20 0.20 0.50 0.50
On!o -°¢84 R -0041 °¢47 0.15 r0.31 - 0.87 - - 0.33
Q_’:EE!&S!L_‘_- _Q‘_OO_- -0094 -0086 0138 0011 0145 0-90 PR \O.ZO
Reciprocal ~0.1¢ «1.,03 -0.72 0.69 0.08 0.61 0.89  0.11
acte .=9,20_ ~-1.13 -0.88  0.85  0.05 0.80 0.94 - 0,06
~-0,30
-0.40
-0.50 R .
:g:.s,g Coefficients out of range
-0.80
~0.90
~1.00
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Table 3

REL=-0.60 RCE=-0.40
7}- . o . ;" N : ) e
' RCL -BE BL RZC.EL R2C.1I R2C.E LOss !
1.00 - Coefficieat aut of range
. . A -0 0.22 1.03 0.84 0.53 0.31 0.37
Negative ' 0.80 0.12 . 0.87 0.65 0.45 = 0.20  0.3%
‘ 0.70 0.03 0.72 0.48 0.38 0.11 0.23
~=gJ60- -0.08 . - 0.56 0.36 0.31 0.05 0.14 -
) S 0.50 ' ~0.18 0.41 0.27 0.25 ~ 0.0t 0.05 ..
Redundant 0.40 =-0.25  0.2%5 0.20 0.20 0.00  0.00
. =-—gT20~ "0044 -0.08 - .36 0.112 0.05 0.31
_Negative . . 0,10 -0.53 -0.22 0,18  0.08 .0.11  0.59

T S —— 2 -0.63 -0.38 0.25 . 0.05  0.20  0.80

- Z0.20 -0.81° =-0.88 :.,,0.46 0.01  0.45  0.87
R“’i"““l L, i=0.307 " =0.917=0.84 0.00 - .0.61  0.89
: " 21.00 -1.00 0,00 '0.80  1.00

R

C«Htcienu out of range v

‘h.,._v' o . ._l:

Lo . RELw=0.80  RCE=-=0.20
'RCL' o (=14 - Bl RZE.EL R2C.1 R2C. & LOSS I
: 4-1;.___ o ‘ ‘Coefficlent out of ran~e

0,60 0,83  1.22  0.68 0.38 0.5t 0.62

0.80  0.44 1,08 0.78 0.3t 0.45% 0.58

o 0.70 0.34 0.81  0.57 ...0.25 . 0.31 0,53
Negative 0.80 0.25 0.75 0,40 0.20 0.20 0.%50
_0.50  0.18  0.%9  0.27 0.5 0.11 0.42
0.40 0,08 0,44 0.18 0.1 0.0% 0.91
-=030~ =0.03 ©0.28 0.09 0,08 . 0,01 0.14
Redundant 0.20 =0.13 0.12  0.0%5  06.0% 0.00 0.00
Nagative -~p710~" -0.22 =0.03 0.04  0.03 0.01 0.31
T Classiealo—IITIMOTS -0.31  -0.19 0.08 =~ 0.01 0.05 0,80
~3.10 " -0.41 ~0.34  0.i2  0.00 0.1t 0.87

"0'20 -0.50 "'0.50 0020 0-00 0-20 1-00

-0.30 =0.58 -0,68 0.32  0.00 0.3t 0.89

Reciprocal -0.,40 -0.68 ~-0.81 0.46 0.0t 0.45% 0.97
~0.50 ~-0.79 ~0.€7 0.84 0.03 . 0.6G! 0.96
-0.70
:g'gg Coeflicients out of range
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Table 5

REL=~0.30 - RCE=-0.80
RCL - BE BL R2C.EL R2C.I R2C.E - LOSS I - LOSS
é:gg Coefficients out of range
mmmmemmoTeT 70,800 -0.62 0.62 0.98 0.98 0.00 0.00 1.00
0,70 ~ =-0.83 0.51 0.87 0.87 0.01 0.01 0.99
0.80 -0.68 0.490 0.78 0.73 0.03 0.04 0.96
tedundant 0.50 =-0.71  0.29 0.7t = 0.65  0.08  0.09 o:ad
' 0.40 -0.73 0.18 0.687 0.55 0.11 0.17 0.83
o , 0.30 -~0,78 0.07 0.64 0.47 0.18 0.28 0.72
legative 0.20 ~0.81 -0.04 0.64 0.38 0.26 0.40 0.680
lassical 0.00 -0.688 -0.26 0.70 0.2% 0.46 0.65 0.35
reciprocal - -0.20 ~-0.85  -0.48 0.85 0.14 0.7 0.84 0.16
- =0.30 -0.88. ~0.59 0.96 0.10 *0.86 0.90 0.10
T -0.40 .. i o , .
=0.80 L L ' . . :
S =0.79 , Coefficients out of range
a1 =100
Table €
REL=~0,30 RCZ=~0,60
RCL BE -1 R2C.eEL R2C.I R2C.E LOSS [ L.08s
1.00 : Coafficient out of range '
""""'""'“‘""""'""0790" "0.35 °l79 0193 0087 0.08 °n°7 ' 0093
w0 Q.80 ¢ =0.40 0.68 0.78 0.73 - 0,03 0.04 . 0.86
0.70 -0.43 0.97 0.688 0.63 0.014 0.01 0.99
Redundant 0.60 -0,48 0.46 - 0,59 0.3 0.00 0.00 1.00
0.50 -0.49 0.35 0147 0147 0001 0.02 0.99
0.40"' =0,33 0.28 0.41 * 0,38 0,03 0.07 0.93
0.30 -0.96 0.13 0.38 0.31 0N.08 0.17 0.83
____m_____,;___o.zo -0.%9 0.02 0.36 0.2% 0.11 0.32 0.68
Negative 610" -0.83 -0.08 0.37 0.19 0.18 0.49 0.5
Classical 6,600 -0.86 ~-0.20 0.40 - - 0,14 0.26 0.85  0.33
mEmEmmseseemm s 29,18 -0.G9 -0.31 0.45% 0.i10 , 0.3% 0.78 0.22
* -0.20 ~-0.73 ~0.42 0.52 0.08 .0.48 o.a . 0.12
Reciprocal ~0,30 -0,76 - ~0.33 0.6t , 0.03 0.38 0.94 0.06
' -0.40 -0,79 -0.54 0.73 0.02 0.71 0.98 0.02

-0.50 -0.82 -0.73 0.87 0.00 c.86 1.00 0.00

Coefficients out of range




REL=-0,30 RCE=~0.40

RCL BE BL RZC.EL Rr2C.I R2C.E toOss 1 Lt
1.00 . Coefficient out of range .
ke - =~0.14 0.886 0.83 0.65 0.:18 . 0.22 0.
0.80 - -0,18 0.75 0.87 0.55 0.11 0.17 0.
8.70 -0.21 0.64 0.53 0.47 0.086 0.12 0.
.80 -0.24 0,53 0.41 0.38 0.03 0.07 0.
Redundant 0.50 -0.27  0.42 0,32 o0.31 0.01 0.02 o,
¢ 0.40 -0,31 0,31 0.25 0.25 0.00  0.00 1.
0.30 -0.34 . 0.29 0.20 0,19 0.01 0.04 o,
: . 9.20_ -0.37 0.09 0.17 0.14 0.03 0.17 0.
-Negative . 0410 ~0.41 -0.02 0.186 0410 0.06 0.40 0.
TTCIassIical 000~ -0.44 -0.13 0.18 - 0408 0.11 0.65. o,
; =O'.TD"_ =~0.47: ~0.24 .. 0.21:. 0.03 0.18 0.84 "0,
-0.20° -~0.51.  -0.3% 0.27 - 0,02 0.26 .. 0.94 0.
“ Reciprocal . = -0.40 -0.57 -0,57 0.46 0.00 " 0.46 . 1,00 0.
SR © ., =0.50° -0.60° -0.68- 0.58." 0.00 . 0.58 0.99 0.
" ~0.80" -0.64" -0.79 0.73 0.02 0.71. 0.98 i ]
_=0.70 . -0.67 ©~0.90 0.90 0.03 0.88 . 0.86 0.
' ‘_3:88' S Cociliclents out o7 range
-1.,00 .
©, Jable 8
REL=~0,30 RCE--O._ZO
. RCL BE BL R2C.EL R2C.! R2C.E LCSS8 ! Las
1.00 " Coefficiont out of range
S U;E'U'f’. 0.08 . 0.82 0.82 0.47 0.38 0.43 0.5
Negative 0.80.. .0.04.. 0,81 0.84 - 0.38 0.268 0.40 0.6
0.70_‘ 0.01 0.70 0.48 0.31 0.18 0.368 0.6
TTO0E0TT 0,02 0.59 Q.38 0.29 0.11 0.32 0.6
0.50 -0.03 0.48 0.23 0.18 0.06 0.2% 0.7
. 0040 -0009 0137 °l17 0114 0-03 0117 0.9
Redundant 0.30 . -0.12  0.286  0.10  0.10 0.01 0.07 o.9
0.20 -0.15 0.18 0.08 0.08 _' 0.00 0.00 1.0
4__0_.10__ —0019 0-04 0104 0.03 0.0l 0117 O-B
___g;g!is_‘l“_u-_bf_oa__ -0.22 -0007 0104 0.02 0003 O.SS 013:
. "6| ro "0.23 -0l19 0007 ) 0-00 0.08 . 0.94 0-0‘
~0.20 -0.29 -0.29 0.11 0.00 0.11 1.00 0.0¢
-0,30 -0,.32 -0.40 0.18 0.00 0.18 0.99 0.0
Reciprocal -0.40 -0.,33 -0.51 0.27 0.02 0.268 0.94 0.0!1
-0.50 -0.38 -0.62 0.38 0.03 0.39 0.91 0.0
-0.60 -0.42 -0.73 0.32 0.06 0.46 0.88 0.1
=-0.70 -0.43 -0.84 0.67 0.10 0.98 0.86 0.%«
0.1

-0090 -O!‘B -0195 0.85 0014 0171 0084

:?:gg Coefflcients out of range

li2




When examining the pattern of resuits for the domain of conditions
investigated, several salient points are evident. First, the efficiency
(E) composite validity coefficient is higher than the impulsivity (I)
coefficient only under moderate to extreme suppression conditio_ns. For
less potent suppression -conditions ‘and all redundant regression conditions,
_the I-score ‘i/alidity, coefficient will be closer to Rc.el and result in less
information loss as a predictive index. These patterns are consistent
with the underlying ch'aracteristics of the erhitrarily weighted I and E
. composites. The I composi te is a sumneted composite and when'redundant'
conditions exist. the underiying least squares regression model is a sum-
mated model, 1In contrast, the E composite is a discrepancy composite and
when suppression conditions exist, the underlying least squares regression
model {s a discrepancy model. It is only for those conditions where the
arbitrarily weighted I and E composites fit closeiyj. the underlying ieast
squares regression model that the potential validity coefficients\'” for I
or E are maximized, For all other conditions, some information ‘Ioss will
be evidenced. It should be noted, however, that there is aiways a ‘trade-
off between the validity coefficients for I and E. when the conditions are
such that one 1is maximized the other must of necessity be minimized

The latter point is best iiiustrated by identifying those conditions
where an equally weighted 1inear composite wiH resuit from the regression
analysis, {.e., where the abso'lute vaiue of the beta weight for errors
(ﬂe) 1s equal to the absolute value of the beta weight for latency ().
The sign of the weights will determine whether an underlying, equally
weighted least squares composite is a discrepancy or a summated composite.
The data from the tables verify the conditions ‘identified‘ by Glasnapp
and Raeissi (1983) which will result in an equally weighted least squares




‘compOfite. The absdlute values of the beta weights for errors and latency
Lwill be equal when the absolute values of the validity coefficients for
" errors and latency are equal, i.e.,l/f l '/3 l when [rce’ l cll Given
the sign pattern of intercorrelations expected among errors, latency and .
the criterion, an equally weighted summated composite will result when
| equa]s e but the coefficients are of opposite sign. For example,
when ee ™ <40 and ¥, ol ™ .40, /? = -.25 and }% .25 for r, = -.60
| andlﬁ% = -.31 and l? 31 for r ] = . 30. In both instances, redundant
regression conditions are defined and r. I is maxim{zed, while eg ® -00,
1.e.4 reiz)emkcze].
are’ defined. e. g., * 7.40 and r ].. - 40 the beta weights are equal,

In contrast, when reciprocal suppression conditions

but a discrepancy composite is defined and the validity coefficients for

E-scores are maximized. .Under the conditions that Tea ™ -.40, Tl ™ -.40,
. | 2,p2 .

and re] = "'.30’ ﬁe = -c57’ 4 - -‘057 ﬂnd rcE RC‘Q] Wh'”e T'CI 0000

2
When ro) = -.60, 4, = -1.00 and 4 = -1.00 and rc" = R Fon all

2
ciel’
_ other conditions;‘where lrce‘ # ‘rcj‘. potential predictive information
loss will occur when using the arbitrarily weighted I and E-score com-
posites., | |

In addition to the potential predictive validity loss identified by the
comparisons of rCI2 and rCE2 to Rc?ei’ the arbitrary equal weighting of
error and latency scores in the 1 and E composites also masks the true
relative contributions of each variable to the prediction of the criterion

for the conditions specified, Canparisons of the beta weights for the

"least squares regression model indicate that the variable with the higher
validity coefficfent will dominate the weighted 1inear composite. .when
the validity coefficients are quite discrepant, the domination of the
higher coefficient is quite severe. This is best {1lustrated if one




examines the conditions for the’ ‘values of r‘“iwhich 'separate ‘redundant ‘

from negative suppression ‘conditions in the tables.”Negative ‘suppression
will occur when 'rei| >.|n¢]/rce|.‘ However, when‘re]l= ‘rcl/rce‘the'heta
weight for .latency will equal zero, i.e., Jz = ,00, and errors will domi-
nate totally the predictive relationship with the criterion. Approximate

equality of r i to the ratio of rc]/rce is given in Table 1 for r .60.

el ©
Under this condition./9 = -.78 andAg The 1 composite correlation
with the criterion is still.quite high (rCI ‘.53) leading to the con-
clusion that errors and latency conbine equally to predict the criterion
at a high moderate level.. Contrary to this conclusion, the truth {is that
the correlation of errors with the criterion (r . = -.80) results in the

high value of 'bez and iatency score contribute little to the prediction,

Concluding Comments

Whiie the constructs of impuisivity and efficiency have been used to
illustrate the 1oss of information when using arbitrarily weighted composites
in correiationai studies. the procedures and results can be used to identify
potentiai 1oss resulting from the use of any arbitrarily weighted composite
Only under those conditions where the ieast squares iinear composite approxi-
mate an equaily weighted composite wiil the arbitrarily neighted composites
validity coefficient be maximized Under other conditionz nhe;e‘theﬁarbi-
trarily weighted composite s vaiidity coefficients appear high the beta
weights in the regression modei indicate which variable dominates and
contributes differentially to the apparentiy high validity coefficient.

Where I- and E- scores are used in correlational studies, the conditions
whehe E will be highly correlated with a criterfon are very restricted. As
the discrepancy construct, highlpredictive validity coefficients will po-
tentially occur only under moderate or extreme suppression conditions.

Suppression conditions are ones which have been shown to occur infrequently




in practice., This . leads one to conclude that while an efficiency construct
5kmakes conceptual sense, the likelihood that it will occur as a salient
.Jconstruct from empirical data is extremely small. . In contrast, the im-

pulsivity construct will have higher validity coefficients over a wider
. range of condi tions because it corresponds to the redundant conditions

in a regression analysis. However, except when r__ and e are equal in

ce
. magnitude, the potential predictive information level is reduced from

Rcze] In addition to predictive information loss, the relative pre-
dictive importance of the individual variables forming the composite
is lost when arbitrary weighting occurs, .

The general conclusion arrived at by Glasnapp and Raeissi (1983)
would seem to hold for I- and E- scores. . If investigators insist on
'clinging to the summated or discrepancy concepts of I and E in studying
relationships of cognitive tempo to other variables, they should examine
their variables closely to see if the potential pattern of relationships
follow'those conditions which potentially could result in high I or E
validity'coefficients. Even then, infornation Toss will occur if the
varfables are arbitrarily welghted. The recommended procedure evolving
from the current examination is sti1l to allow thevindividual error and
latency variables to function separately in the analysis. If an E score
composite is a dominant variable in the data, suppression conditions will
occur among the intercorrelations, the regression model will {dentify
the effective weights 1n the change score composite and the relationship
with the‘criterion will be maximized. If an [-score composfte {s a domi-
nant variable in the data, redundant conditions will occur among the
1ntercorrelations. the regression model will identify the effective weights

for errors and latency in the summated score composite and the relationship

with the criterion‘will be maximized.
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3: Multiple Linear Regression members .. . .

| from Keith McNeil

_We need articles submitted to Viewpginta' The main reason

you haven't seen much of Viewpoints lately is that the Editor )

doesn‘t have anything to put in it! You must have some new ideas

or new applications——or at least some questions or suggestions!

Remember, authors can request that papers be referred or not. If

you have questions or suggestions or incomplete thoughts, then

you probably wouldn’t want the papers referred. On the aother

hand, we have a user—friendly editaorial board waiting to provide

invaluable feed-back. : i

Four SIG:MLR sessions are planned for the 1984 AERA:

o Informal discussion session on "Expressing log linear maodels

_in MLR terminology.” There will be a brief introduction by
Isadore Newman followed by audience discussion, led by Janet .
Rice and John Kennedy. Bring your thoughts and logs.

o Informal discussion l.sninn on "Time series analysis and the -
'probl-m'.of autacorrelation,” led by Brad Hiutema.

o Business Meeting and Address by the old chair, (K. McNeil)
entitled "Random thoughts on why the regraession o
discontinuity design is not widely used in Chapter 1
evaluation.” L

gy, b

. & Papar session including the following:

Testing the Hypothesis of a Difference Bstween Pgevapdwg,:
Using Indepandent and Dependent Samples. Kenneth C. Hoedt,
‘Isadore Newman, University of Akron -

The purpaose of this study was to demonstrate a
generalized method for testing significant differances
batwaen two independent r‘s as well as two dependent
r’'s. Minium (1978) reports that thare is no entirely
satisfactory test for the latter situation.

This paper presents a modifiad Monte Carlo approach
which will allow us to compare two different approaches
for testing significant differences between r’'s with
knawn values.

Tasting Hypothesaes in a Repeated Mwasures Design on Employee
_attitudes with Large Samples. John D. Williams, The
University of North Dakgta; Jdole Aon Willjams, Grafton State

Tha following design was used to test the effect of
moving into superior facilties on employees in an
institution for the developmentally disabled:

Graup One O, X Oz Os
Group Two 0, Oz X O=
Group One O, Oa Os
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o The N for this group of Ss was relatively large (N =

7 .183), precluding the use of binary coding for the
subjects effects. Also, specific hypotheses of research
interest are addressed in a linear model format using
full and restricted models. S o

Matching Pupils and Teachers To Maximize Exﬁgcted Outcomes.
~doe H. Ward, Powell Systems, Inc.; Alan Roecks, HQ/ESC usaF,
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