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MULTIPLE LINEAR REGRESSION VIEWPOINTS

VOLUME 156, NUMBER 1, SUMMER 1986

L Catyalyii'ck Variables for lmprdvihg
Personnel Classification and Assignment

Joe H. Ward, Jr. and Richard C. Sorenson
Navy Personnel Research and Development Center
San Diego, California

~INTRODUCTION

Placing personnel into jobs to maximize expec‘fed pevlormancel of the organization is
a basic problem In large organizations.” The solution to this problem requires prediction of
the expected perforinance of each person on each job.  These estimates are frequently
obtained by developing a separate performance prediction systen for each job category.

The predictors In thesc separate systeins consist of inforination about each person
(e.g., age, aptitude scores, interests, experience). After the predictions are made for
each person on every possible job, It Is desirable to assign each person to a job to
maximize expected future perforinance,” This can be accomplished by one ‘of several
avallable comnputing algorithms (Langley, Kennington, & Shetty, 1974).

I it is necessary to use different sets of prediction weights to make accurate
predictions for the various jobs then there Is interaction among the people and jobs, and |t
Is linportant to pay careful attention to the assignment® process. However, if it Is
possible to predict perforinance accurately using the sane sct of weights for all jobs, then
all possible assignments of personnel to Jobs will yleld the same overall average
perforinance.

The lmportance of Interaction between people and jobs has been described by Ward
(1983). Recognition of the signiticance of interaction in the predicted payof{ array
highlights the fact that a constant can be added (or subtracted) from any row or column
of the person-job predicted payolf array without changing the particular configuration of
assigninents of persons to jobs which maximizes the payoll.

lWe inake no distinction arnong productivity, payol{, and perforinance.

2/‘.s.silg,mne-m relers to a general class of personnel actions that includes classitication
Into alternative carcer fields or job types, assigninent to specific job position or location,
and other actions such as rotation fromn one billet to another.




By recognizing that the'prediction equations can consist of two types ol terins--those
that represent the interaction of persons with jobs and those that are additive--we can
refer to one set of predictor variables as interactive variables and the other as additive
{or noninteractive) variablgs. Since the noninteractive variable terins can be removed
‘fromn the operational predi"::ion equations without limiting the assigninent process, there
is no requirement to have these variables available in calculating predicted payof{s for
the optimal assignment of people to jobs. These noninteractive variables are required
only to develop the prediction equations in conjunction with the interactive varjables.
When noninteractive variables Increase the amount of interaction (i.e., dilferential
classification potential) of the interactive terms we refer to these noninteractive
variables as catalytic variables.3 Catalytic variables are needed only to develop the
weights 1o be used by the interactive variables, but are not required for making optimal
assigninents of people to jobs. Therelore, variables can be considered as
potential catalytic variables when there is reason to believe that, when they are added to
the prediction systein in a noninteractive way, they may increase predictive accuracy and
increase the person-job Iinteraction and that there is good reason to consider eliminating
them fromn the operational prediction equations. Candidates for catalytic variables ares

1. Variables that have been used operationally but must be eliminated because time

is_not available to collect the variables. For example, If it is necessary to reduce testing
time for the ASVAB, it inight be possible to use some subtests as catalytic variables for
the others without loss of classification effectiveness, These catalytic subtests would be
used In a noninteractive way to determine the weights for the interactive (or operational)
subtests. The catalytic subtests would not be required for operational adininisteation to
new applicants,

3The Interaction by which we dilferentiate catalytic varlables from interactive
variables Is between predictor variables and jobs (i.e., of varlables represented in u set of
regression equations to predict perfortnance in several jobs, those having similar welghts
for the ditferent jobs are catalytic those having different weights for the different jobs
are Interacting). This Interaction Is contrasted with that occurring in the case of
moderator variables where the interaction is between sets of predictor variables (i.e., the
weights assigned to one set of predictors are a function of the values for the other set of
variables (inoderator) (Sanders, 1956). Suppressor variables, on the other hand, are
variables which are not theinsclves significantly correlated with the criterion (job)
variables, but which are significantly correlated with other predictor variables which are
correlated with the criterion. These variables then "suppress" or control for predictor
varlance not related to the criterion variable(s) (Horst, 1941). Suppressor variables and
catalytic variables are simnilar in that they both effect a change in the weights assigned
other predictor variables when they enter the equation.




2. Variables that have been used experimentatly but will not be used operationally,
For example, the Vocationa! Interest Career Examination (VOICE) has been administered
to Air Force personnel in conjunction with the Arined Services Vocational Aptitude
Battery (ASVAB), Although the VOICE variables are not used operationally, the

classification value of the ASVAB might be enhanced by using the VOICE scores as
catalytic variables,

3. Some predictor variables may be very expensive. These variables may be -

collected on a small numnber of subjects in conjunction with less expensive interactive
{operational) variables. The expensive variables can be used as catalytic variables to
enha;ncc' the operational variables: Therctore, cost of the expensive variables s
eliminated. ' ‘

CATALYTIC VARIABLE CONCEPT

Description of Available Infornation

Assume that information is available for performance (on the job or at a school) for
many Individuals on many different Jobs and that each person has performed on one and
only one job, Also, assumne that the same predictor Information is available for all persons
and that all perforiance measures are in the saine units,

)

Let

Y“ s the obscrv;:d perfornnance of person | on job I T l‘ and
, L] '.a ey ).

‘x'k = the observed value for Interactive predictor variable k for person |
who has performance Y“ onjob jik = b, .. K)

’C“ s the observed value for potential Catalytic“ predictor variable £ for
person | who has perforinance Y, onlob | (£a1,...,L)

U 2 @& vector of Is with dimnension ll + 12 oot IJ = N, the total number

of individuals for whon criterion information has been obtained.

This inforination is shown in the arrays in Table |,

I‘Caml) tic variables will be more formally defined in a later section.

3
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Developing Prediction Equations From lnteracting Variables
Y

To determine the least $quares regression weights in the usual manner, these data can

be used to define the vectors (see Table 2) of N'elemems (N = ll + l2 too ot IJ):

Y = avector containing the observed performance Yij’
UG) = a vector with elements equal to | if the corresponding element of Y
involves job j, 0 otherwise. R
=

X(jk) a vector with elements having a value for variable k if the corres-

ponding element of Y is from job j, 0 otherwise.
E(1) = anerror vector,

“In this report, symbols in parentheses following a capital letter aré used to distinguish

U(j) (sce Table 2) is a vector with eleinents equal 10 | if the corresponding
element of Y is froin jop j or equal to 0 otherwise

the value for variable k if an element of Y is {ror
error vector for Model }).

vectors (e.g.,

i X(jk) is a vector with elements equal to
M job j or equal to 0 otherwise; E(1) is an

The regression equation coefficients can be determined by solving for the coeffici-

ents A‘. B]k for jal, v .43, ks, ,, o K In Model | shown below. HK +1) regression
cocfficients are In the model, )

Ya AIU(I) ‘ B“X(ll) + B]ZX(IZ) teead Blkx“k) teaat BIKX(IK)

-

A2U(2) * BZ'X(ZI) + BZZX(ZZ) Yot BZRX(ZR) Yoot BZKX(ZK)

e

-

A’U()) n B“X(jl)_o BpX(jZ) Yees 4 B'.kX(ik) Paee ¢ B‘KXUK)

LS

>

AJU(J) + BJ|X(JI) + BJZX(JZ) LI BJRX(Jk) taaae BJKX(JK) + E(1),

This single regression inodel determines a prediction equation for perforimance on
each job from infornation on the predictor variables (X variables).

However, the
fegression equation for each different job can be

L]
coinputed separately since the vectors
dssociated with each job are orthogonal to the set of vectors associated with each and
every other job,

The regression coefficients can be displayed in the array shown in Table 3.
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Table 3

The Array of Regression Coelficients

A B
]

A| ! B“ BIZ o BIK
]

Ay B2 By +ov Bk

L] ‘ . . LN L3
)

L] ' . [ ] . e e .
)

. | . . (S B
|

Ay 1 By By, +or Bk

Using the Prediction Equations

After the prediction coelficients have been conputed, they can be applied to the
predictor information for future groups of personnel to predict future perforinance for
each person on every job, The prediction equations should be applied to a set of people
whose data were not used to calculate the regression coellicients. This analysis indicates
the degree of confidence that should be placed In future predictors. Since Brogden (1935
has shown that for any assignment of people to jobs, the sumn of the multiple regression
criterion estiinates equals the sum of the actual criterion scores, a further evaluation of
the prediction equations can Involve comparison of the average perforinance estimates
with that perfornance from alternative assignments,

Once we have confidence In the prediction equations, the regression coefficlents can
be applied 1o a set of data obtained for a total of M subjects (see Table 4).

Let

U : acolunn vector of 1s of dimension M.
X = amatrix of predictor varisbles of dimensions M by K.

a columnn vector of regression coefficients of ditnension J.




B = amatrix of regression coefficients of dimensions J by K,

'A' =__ the transposc of A.
B' = the transposc of B.

The data set could be new or the same sct upon which the prediction equation was

developed, in which case M = N= ll + I2 Voot IJ.

Table &

‘Predicted Performance Array

. ) [ ' T
' p—
|
. [ oa
: (1x3)
: Ps= U : X . . -
. (Mx3) | (Mx1) 1 {MxK) ‘ B
; (KxJ)
l I
[
' ' L '
] . 3 ' "

]
Py Pz o0 Pp ' :x“ Xyg oo
¢ e ccanamanman
. N
| g ’
Pyy Pag oot P = | :le Xa v+ Xax| {®nBar ¢+ Ba
[}
[] [} [N ] . . |. . ¢ 0 . [] N ] []
[}
. . 'R [ ] .o ] e s . . ) .
N
L[] . 00 . L ] .' ) [ BN » ] LI I .
]
[]
P Paz e Py) IR Xz *0 XK b kB - By

Table 4 represents the computation of the predic ted score inatrix P of dimensions M
by J. The predicted perlonnance array P can be Input into an optimnization algorithim t

assign persons to jobs 1o maximize total overall systemn perforinance.




Interaction Between Predictor Information and Jobs

It is important to observe the characteristics of the predicted perforinance array, P.
It there Is “no-interaction® between the people and jobs, then it makes no difference
which persons are assigned to which jobs (Ward, 1983). “No-interaction® conditions
between people and jobs in the array, P, means that

Pn - Pru = Ps‘ - Psu z V‘u (a common value) for r=l,. .. M1 s=srel, 000 Mg

=], 000 d-ljuztel, 00y :

This can be written as

PPyt Vi

and

Pst E PSU + V‘u ) . ‘

But the conditions for "no-interaction” are equivalent to

Prot Pou® Peu* Py

This indicates that the sum of the predicted performance values will be the same for all
passible assigninents of people 1o jobs,

The conditions for "no-interaction" imply that the regression weights for the
corresponding predictors could be Identical across all jobs (Ward, 1973, p. 143). Qs very
important to recognize that even though the weights for the corresponding predictors
could be Identical across all jobs and have the “no-interaction" conditions in P, 1t _Is not
necessary that the corresponding weights be Identical. For if there is linear dependence
among the predictor vectors for a particular job, then there could be an Intinite set of
welghts that would produce the same predicted values for that particular Job. 1t is not

possible, in general, to estimate the "amount of interaction” by exaimining the differences
anong the corresponding regression coefficients across all jobs,

On the other hand, if the "no-interaction” conditipns are not true, it Is said that there
1s Minteraction® between the people and the jobs, If there Is a “large amount® of
interaction, then it is important to seek more optimal assigninents. In the presence of
such interaction, randoin assignments could result in extreinely poor overall predicted

performance. The amount of interaction can be investigated by imposing the restrictions




of "no-interaction” on the prediction systemns and examining the loss ol predictive
accuracy (error sum of squares) when using a single set of weights for all jobs. hnposing

the restrictions for "no-interaction” will be discussed in the following section.

AT E

* “No-interaction Situation
s b . .

Assume that the “no-interaction" conditions are true for the predicted scores
obtained from Model 1. This would be the case if:

By = By zeer =By = B
Bjg = By =:.. =By, = B
By = By reee =By s By
BlK «,lf'BZK [ ] BJK“‘ . BK&

Since this is never exactly true for real data, we can obtain soine indication of the
extent of Interaction by Inposing these restrictions on Model | and obtaln the restricted
no-Interaction regression model, Model |r

Ya A U) ¢ B X(11) ¢ BX(12) Coe s BX(IK) ¢ s BX(IK)
; + AU B X(21) + a'zxm) $er e BX(2K) 4 ey By X(2K)
4 ')

+ A

u(j) + le(“) + 52X(i2) Saaet 'BkX()k) oot BKX(jK)

}

4 s

AJU(J) + B|X(Jl) + 32X(JZ) Yoo BkX(Jk) Y BKX(JK) + E(Ir),




Y =

Letting

glves Model Ir
Ys

I the sum of

which can be simplified to

A,U(:);Azu(z)..... AUG) .o+ AJUO)
BOX(UD + X(21) o o vu o XGI) +uv' o XQN)
By(X(12) + X(22) + o oo+ X(jD) ¢ o0+ X(2)

Bk(X(lk) + X(2Kk) 4 oo v X(GK) 0 00w+ X(IK)

Ny
LAY

By (XUIK) + X(2K) + .+ + XKD + 4. "s X(IKD) » EIr).

-

XC) = XU + XD+ v + XGI +400s XD
X(2) = X(12) ¢ XQ@2 v v+ X2+ 000 s X(2)
X(K) 2 (1K) # X(2K) 4+ 000 4+ X(K) ¢+ o vy ¢ X(IK)

X(K) & X(IK) ¢ X(2K) + 400 ¢ XGK) ¢ 000+ X(IK),

AU + AZU(Z) Vo r AUG) ¢ AGUO)
B’X(l) + Bz)((Z) L EEER] ka(k) L ENER] BKX(K) L4 E(lr)a

squares of the elements of restricted model error vector E(lr) is
significantly larger than the suin of squares of the error E(1), then Interaction exists.
However, If no interaction (or a "simall amount® of interaction) exists, it makes no {or
little) difference which pcople are assigned to which jobs. To observe this, consider
assigning any two persons, r and s, to any two jobs, say t and u. Under the assurnptions

that the prediction weights are identical, the predicted scores will be:

Pl'l

su

P
ru

Psl

"

"

A‘oB1 xrl’BZXrZ""'BKz(rK

AU‘BI st‘BZXSZO"'.BszK

A
u'ﬂl er’BZXrZ"".BerK

A'oﬂlxs‘OBZsto...oﬂkxsK.




..The toml predu.tcd per(onnance o( assigning person r to job t and person s to job u is
the same as assigning person rto job uand person s to job t.

Pt P Pry? Pst

At'Au'BI(-xrl’xsl)'”"BK(er’x )=

sK

A+ A + By (Xep* xsl) et BK~(er\ 4 XsK)'

It is necessary to have a large ainount of interaction between people and jobs in order
for alternative assignmems to nnprove the total predncted performance. It is desirable to
have a prednctlon system that provldes accurate :perlormance prediction and maintains a
large amount of Interaction between people and jobs. This observation leads to
consideration of catalytic variables. .

Introducing Catalytic Variables

In some situations It Is possible to add new predictor information that will increase
the accuracy of performance prediction, and also increase the amount of interaction
between people and jobs. However, requiring additional predictor information can be
expensive, difficult, or in some ‘cases quite controversial, Therelore, it would be desirable
to add additional predictor Information on a sinall sample that would be required only for
developinent of the prediction equations. But the new, information would not be required
for future opcratlonél assigninent of people to jobs. Predictor variables that increase
Interaction but are not required for future operational use are relerred to as catalytic
variables,

Catalytic variables were identified in the introduction without definition. They are
shown in Table | and are designated (as described above) bys

"C. 0" the obscrved vélue for a poteﬁtial catalytic predictor varlable € for
person | who has perforinance Y,, on job (L = 1,0y L)
P i

We will augment Model | with the catalytic variables, but require that the
coellicients associated with these variables be identical across all jobs. New vectors can
be defined:

CG¢) = a vector with elements having a value for catalytic variable € if the
person performed in job j; 0 otherwise,

12




Y=

Where W £ is the coelficient associated with catalytic predictor £ for all jobs IER T

+

AlU(l) + Bl

AZU(Z) + le>((2|) + BZZX(ZZ) +

AJUG) + B, X(1) + BioX(G2) 4 o

AyU) + By X(31) + By X(32) 4 .

Then, Model 2 can be written as:

lX(l N B|2X(l2) +

«o+ B

F

oot BlkX(lk) teaat BIKX(IK)
veet Bkauk) et BZKX(ZK)

.+ Bjkx(ik) + e t BjKX(iK)

kauk) "., eet BJKX(]K)

w.Cun wzcuz);.‘..‘ WZCU{) v o W CUL)

WlC(2l) + W2C(22?0

W'C(H) + WZC(jZ) Y

cee t “": C(Zt'

s

JeoWe Clj¢

V.. L+ wcly)

by

Yoeuns ¥, L)

W,CON ¢ W)COvuis WECAE) 1aur ¥ COU) 4 EQ),

). Also, Modetl 2 can be rewritten ass ‘

Ys

AlU(l) + BHX(“,) + BIZX(IZ) ‘e
AZU(Z) + B“X(Zl) * "22’“2” 4.

AUG) + B X(GD ¢ BoX(GD) 0 o

)2

AJU(J) + BJlX(JI) ‘. BJZX(JZ) ‘.
\l’l(C(Il) A C2D) v CHD 0,
\l’z(C(IZ) +CRD+...1CLHD .

\u‘- (Cl¢)+ CL2L) 4o s CUL)

\\L(C(IL) +C2L) + ...+ CL) 4

13

vet Blkx“k) teaet Ble“K)
eod By X(2K) i BZKX(ZK)

e Bjkx(jk) teeod BjKX(jK)

ot BJkX(Jk) Yeeet BJKX(JK)
.o CcOn) '
o CO2

IS of A RS ) |

« oo+ COLY + EQ2),




Define the new vectors
PR SRR &

&

P _C((l) C(U) 2+ C21) 40 e s C(i2‘) et C’(JZ) :

S
~
"

c@14) ch(ze)ﬁ Y o] () R o8 I

CL) = CUL) 4 CL) 4+ vs LY 440+ COL).

Then Model 2 can be.wrinen as:

Y = ' A‘U(l) + B“X(ll) + BnX(IZ) Yeoot Blkx(lk) Yeast BIKX(IK)
+ AZU(Z) 0 821’“2” ¢ BZZX(n) ‘oot QZRX(ZK) KRR BZKX(ZK)

4 e
* .;A]U(?)f ?il).‘pv”' B’ZX(R)o e fX’Bst(i'k_) + e + B,KX(iK)

‘ o A *
* e

)t (N

) Yoot Bka(Jk) Yoot BJKX(JK)

12X02
+ WIC(I)t\VzC(Z)O see ¢ W£ C(d) 4 10 # “LC(L) + E(Z)-

+ AJU(J)'O BJ‘lX(JI) +B

There are now J(K+ 1L regressloﬁ Acocklliclentvrs 10 be computed. Notice that the new
vectors C{1), C(2),.. »C{L) are not orthogonal to any of the vectors used in Model .
Therefore, the comnputational procedure for Model 2 Is inore complex than for Model 1.

The regression coeflicients can be applied fromn Model 2 either to the data set from
which the coeflicients were derived or a new data set by auginenting the tnatrices X, A,
and B with the two matrices

C s amatrix of potcbmlal catalytic predictor variables designated as lci )
in Table I, ‘

w « & matrix of regression coelficients ol ditnension J by L with elements
defined as shown below in Table 3 (i.e., the rows are identical).

w' z the transpose of W,

Then, a matrix of predicted values, Q, of dimension M by 3, can be obtained as shown
in Table 6.
14




Table 5
Regression Coef{ficients for Catalytic Variables

WL

\\‘L

- ‘Bl,wz...’w_‘;

Qbserving Predicted Scores From Model 2

Consider again assigning any two persons rands o Jobs t and u.” Then, the four
predicted scores from Mode! 2 are:

Qo * At ByXe * BXep v et BucXex
QW‘C” zc 2'...'chfL'
qu s A ')(‘l ’BuZXsZ""'Buhx

¢+ ch‘l ' ch‘z Yaoeot WLCIL'

Qru . /\ +B lX u2xr2°""BqurK
,’ Wl C” 4 Wz C‘_z Ceest chrL'
Q“ . A'QBuX"OB‘ZX'zo...oB‘KX
+« W C

1Ca*Walyg e e e W Gy

It can be observed that the difference between the two suins resulting {ron two
dillerent assigninents, person r to job t and s to job u, and a second assigninent of, person
r 1o job u and s to job t, is given bys

(Qr( ! qu) B (Qru * Qsl) :

vee 4B LX)
(B”X 'BlZXrZ ""’BthrK’Bulxsl 4Bu2X52 + + Bk Xsk

rl

- +B X o...oB X OB X
ul

fl w2Xr2 u I’BlZX t...+B X )

s2 tK7sK




ST P ——

.
.

<"E o’
o U .
ot .
oy e
)
~ &
< :cn
H ) ' .._
L . L< :m"
2 5
3 2 &
>
B4 . N
- . )
_>_~ . .
;8 N 'A' -~ ﬂ!] ! ~N o~
- - - ~N
8 =3 ialikd JU
™
E x g
T o3 T EE
§ vE -
E - W eSS A e . »:w :
o~ o [ ]
- (%4
* X o
2 2 X xm
’ .3 .
- ~N
z 1 2 | X %




The difference between these two payolf scores is determined only by ‘the Bs and the
Xs and there is no nced to use the As, Ws, and Cs, The estimates of Bs in Model 2 were
made using the inforination from the catalytic variables, Cs. Therefore, It is not

necessary to know the values of Cs for making optimum assigninents of future groups of
people to jobs. )

The addition of the new predictors (Cs) will make the interaction between people and
jobs in the new array, Q, larger than the person-job interaction in the original array, P.
Greater person-job interaction will allow for greater differential assignment potential, A

hypothetical example is presented in the next section to jllustrate the effect of a
catalytic variable,

A _Hypothetical llustration of a Catalytic Variable

Assume that there are four jobs (J = 4), one interactive predictor variable (K = 1), and

one catalytic predictor variable (L = 1), The data analysis might produce the following
results for Model 13 A

Y Al U(l)08” X (1)
¢ Az U(Z)'BZI X (21) '
+ A’ U(J)tﬂn X (31)
¢ AI'U(‘J) v B“ X (41) + E(1).

With nuinerical values for the As and Bs inserted, Model | becomess

Ul e X (11)
U(2) + .2 X (21)
U+ .3 X (31)
U4 « .1 X (41) + EQ),

This regression imodel can be represented graphically as shown in Figure I,

Adding the catalytic predictor varlable C(1) to the prediction systemn might result in
Model 21

Y s A U e B X () '
+ AU 4B, X (21)
+ /\JU(J) + B)l X (31)

¢ AL UG B, X (41) W, C() + E(2)




IR B

Y= OU+ 1.1 X QD)
Do 202 e W8 X (21)
T P I £ 1) I
4 X (1) + 3 CU) + E(2).

#5US‘0) + .

u.aThe regression todel can be represented graphically, as shown in Figure 2, when the

value of C(1) = 0. Ali other graphical representations would differ fromn Figure 2 by the
amount 3 C(1).

;

~ Now, consider the assignment of one person with an interactive predictor value of 2
. and a second person with an interactive predictor value of 8 to jobs | and 4 (Any other
combination of persons and jobs could have been considered.)

Using Model | gives the predicted values:

Job 1 Y

, Person with X =2 Py e6) e 82 Py, 11) + 12
. . +  Person with X =8 Py * 6(1) + . 4(8) P“ = 1(1) + .1(8)

Then, compare the predicted payof{ sum obtained trom assigning the person with X = 2 to
job | and the person with X = 8 to job 4 with the predicted payol{ sum obtained from
assigning the person with X = 8 to Job | and the person with X « 2 to Job 4 Taking the
difference glves: ; |

(e Do (Pgy o Py » (601D 4 82) 4 1(1) 4 118D < (6(1) 4 8N4 11D o 12D

+P
21784 o 4(2) + 2 1(8) - L4(8) ¢ .1(2)
1 10(2'8) - c'(z"a)
s (L4=.1) (2-8) = -1.8.

Observe that the dilference betwen the two sums (-1.8) is determnined only by the product
of the ditference between the B's (.4 and 1) and the ditference between the Xs (2 and 8).

Making the saine comparison using Model 2 gives the predicted values:

Job 1  Job ¢

Person with X = 2 le « 0(1) « 1.1(2) + 3C(1,2) Pu s K1)+ 0(2) 4 3C(LD

Person with X 2 8 Py, s o{1) « 1.1{8) + 3 C(1,8) Pgy (1) + .u{8) + 3 C(1,8)
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Figure 1. Prediction equations using Model 1.
{Without Catalytic Variable)
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Then, comparison of the two sums gives the difference

(PZI + PSQ) - (PSI + le‘) = (0(1) + 1.U(2) + 3C(1,2) + X1) + .9(8) + ‘3 C(1,8))
-{o(1) + 1.1(8) + 3 C(1,8) + 5(1) + .4(2) + 3 c(1,2))
= (1.12) + .4(8)) - (1,1(1,8) + .4(2))
= 11{2-8) - .4 (2-8) . '
= (11-.4) (2-8) = -4.2,

Again the difference between the two sums (-4.2) is determined only by the product of the
difference between the Bs (1.1 and .4) and the difference between the Xs {2 and 8). The
values of the catalytic weight \!’l = 3 and the catalytic values C(1) are not needed for the
cotnparison. The difference (-4.2) using Model 2 is Iarger absolute value than the
ditference (-1.8) using Model 1. Comparison of other differences would indicate a
tendency for Model 2 differences to be larger than the correspondmg dll(erences of Mode!
l. This would be true because the amount of interaction exhibited in Model 2 is greater
than the amount of interaction in Model I. The comparison of interacuons in Model 2
(with) and Model | (without) potential catalytlc predictors is discussed later,

In this hypothetical Wlustration, the introduction of the cétalytic variable has
Increased the amount of person-job Interaction {and possibly significantly increased
predictive accuracy). But having perforned lts‘catélytic function, the catalytic variable
and its regression weight are no longer requlred to make optimal asslgnments that
maximize the sum of the predicted perforinance values.

No-interaction Situation Using Catalytic Predictors

We can assuine no-interaction (i.e., the regression coellicient for each predictor
variable Is the same for all jobs) and write the same restrictions as before:

Byy * By ».vv By B,

BIZ s 822 LR BJZ-BZ




prediction systein can be investigated by comparing the error surn of squares from the
!our models (1, Ir, 2, and 2r). Alternately, the squared multiple correlations, Rlz. R2 Ry

% A 5

However. Imposmg these rcstm.tlons on Model 2, we obtam Modol 2r°

A U(l)OB X(ll)*B X(|2)0...¢B X(lk)#...oﬂ X{IK)
+ AZU(Z) + B|X(Zl) + BZX(ZZ) Tt BkX(Zk) Peset BKX(ZK)
e ,
¢ AUGYBXGI) ¢ BoX(2) o 4 BXGK) o - o B XKD
+ .o.’ ) ' ‘ )

+ AJU(J) + BIX(JI) + BZX(JZ) PR X(Jk) Paoot B X(IK)
+ W cu).w L@ vy Wy C(().....w CL) + EQ2)

Sunphlylng as before we obtain Model 2

AU(I)’A U(z)f..-'A,U(')’...’A U(J) LY
P 'j:BlX(l) + BZX(Z) ‘0 .’. v e BkX(k) Yot BKX(K) |
W C WL e e Wy T el e W) CL) 4 EC2D

M thé sum of squares of the elements of restricted model ercor vector E(2r) is

. signl(icamly larger than the sum of squares of the error vector E(2), interaction exists. 1
more Imetactlon exists in Model 2 (when compared to Model 2r) than exists In Model |
(when compared to Model 1r), the. .potential" catalytic predictors may be truly called
caulytlc. e -

Comparing Models With and Without Catalytic Predictors

The catalytic elfect of predictors that have been added noninteractively to a

2

o {roin the four models can be commpared, In each of these models we havet
SSE, (sum of squares of error for Model 1) . NG:(I-R?),
SSE“ (sun of squares of error for Model Ir) = NG:(I-RL),

SSE2 (sum of squares of error for Model 2) = Nai(l-Rg), and

SSE,_ (sum of squares ol error for Model 2r) = N6§(|_R2 )
2r).

22




Then, computing the differences
2
D) = SSE| -SSE, = N8 y(R -R“,)

. 2
DZ = SSEzr-SSEZ = NGy(Rz-R

provides a basis for examining the catalytic effect of additional predictors. Dl is the sum
of squares associated with interaction without potential catalytic predictors and D2 is the

sun of squares associated with interaction in the presence of potential catalytic
predictors.

v

It is necessary to devise ways to decide if the additional predictor variables have a
catalytic effect for dullefenual classification of people to lobs. Observe that D2 is larger
than DI only when (R -k ) Is greater than (R - R ) This means that when the
potential catalyuc vanables are added to the interactive (orm of the operational
variables, they imust increase the accuracy of predncuon by a larger amount than when
. they are added to the noninteractive form of the operational variables. Therefore, even if
(R - R ) Is significantly large (l.e., absolute prednctlon Is linproved with the addition of

he catalyuc variables), there could be a decrease in person-]ob Interaction when the
potentia! catalytic variables are added (See Horst (1950, 1955 for discussion of
differential vs absolute prednctlon) In this case, there would be less reason to consider
using the addntlonal varlablcs in the catalytlc lorm. On the other hand, i D2 Is larger
than DI (and (R2 =R ) Is greater than (R - R )) we can say that there Is an increase in
the amount of lnteractlon with the lncluslon of the catalytic varlables. In such a case we
would want to use additional variables in catalytic forn.

1t is possible 1o Introduce consideration of a super prediction model (Model S) and its
squared multiple correlation, Rg. This model allows for the investigation of the Increase
In predictive accuracy and interaction when the potential catulytic variables (Cs) are
allowed to have different weights across all jobs (i.e., to join the Xs), Other coinparisons
among the squared inultiple correlations (Rlz, Rfr, Rg, R;r. Rg) might be helpful in
making decisions about the proper role of the potential catalytic variables. For examples

- i1 D, ismuch larger then D, {indicating increased interaction), and

- i R; is inuch farger than Rf (indicating an increase in predictive accuracy), and

- il Rz, is insignificantly larger than Rg, then we might conclude that the
variables would perform very well using only their additive, catalytic forin
{Model 2).




Further study and experience is necded to develop descriptive, statistical,

practical methods of decision-making about catalytic effects. .

APPLICATION OF THE CATALYTIC VARIABLE CONCEPT

The procedure for introducing catalytic predictor variables will be illustrated with
: data from the military. The first example involves four jobs, one interactive variable
i (aptitude test) and four potenual catalyuc variables. -

(s : RPN S 1l i

Description of the Information from Example |

. Yli « Perfonmance measure of individual | on job j:
There are 300 Individuals from each lob providmg a total of 2000 individuals.
’ )XW e the obscrved interactwe pred:ctor (aptitude test scorc) for individual

‘ W|l0 ha! pe”o""a"ce '“ on ,ob ’ (wl‘h one ‘“‘erdc‘lve Varlablc.
LbE . E
PR oy ')

the observed value !or potentlal catalytlc predlctor variable < for

(In the examplc, each cnalytlc varleble Is a mutually excluslve, categorlcal binary-coded

predlctor varlable.)

V) s avectorof 1s with ¢lmeﬁslon 2000.

The example data would appear as displayed in Table 7.

Developling Predictlof\ Equations {rom the Interacting Varlable

For the example, the least squares regression weights can be determined in the usual

manner by delining the predictor vectors:

Y « a vector containing the observed perforinance Y. with N = 2000
eleinents. )

u(j) « | if an element of Y is fromn job j; or 0 otherwise, j = 1, 2, 3, 4.

X(jk) = anability test value if an element of Y is from job j; or 0 otherwise.

an error vector.




Table 7

Observed Information for Example 1

Performance Interactive Catalytic
Data Predictor Predictors
Y, U, ik i
i i
123 P2 3
5 - - - 1 32 1 0 o0 o
63 - - - 1 65 0 0 o0 1
4500 82 - - -1 P! 1 0 o0 o
- % - - s 0 o0 1 o
- & - - 66 o 1 0 o
(12300 - 2 S 3 0o 0 o0 1
, Y | [3) 0o 1 0 0
. -9 - 1 » o 1 0 o0
(1ye300) - - 8 - 62 o 0 0 0
N 4 o 0o o0 |
. N @ 1 0 0 o
1,230 - - - 82 1 » o o o0 |
(N+2000)

Notice that the - in the Y“ array Indicates unknown performance information, since each
person bertorms in one and only one job. However, the 0 values for the mutually exclusive

categorial variables represent nonmembership in the particular category.




. ‘Then the regression coeflicients can be determined

coetficlents Ay, Ay Ay Ay By Bap By By
mple, since there Is only one interactive pre

1 in"this"exa
‘example) is:
Ye AU B, X an

ALY U(2) + B, X (21)
T Ay U0« By, x (3D
¢ AU+ By X (1) 4 ECD.

Yai

i As indicated previously, this single reg
- for b,e}vlbdr'u'\ma‘nce on eac r jol
_can be computed separately since the vectors associa
h the other three jobs.

ted

"the set of vectors assoclated wit

by solving for the regression

in regression Model 1. Observe that K =

dictor variable. Model 1 (tor

ression model deterimines a prediction equation

h of th'émihddrjobé. 4Ho§we've‘r, the vregr“eg‘ﬁiydf\ ecju‘ét”i“o‘n for each job

with each job are orthogonal to

The vectors are illustrated in

- Table 8.
o . Table 8 |
Vectors for Determining the Regression Coefficients for Example |
Y U xun o u@ o oxEn o ug xon U@ X(41)
35 . ! 32 0 0o 0 0 0 ¢
63 1 65 0 .0 0 0 0 (




The regression coefficients can be displayed as shown in Table 9.

Using the Prediction Equations for Example |

The prediction equations can be used to determine the predicted perfonnance of each
of M persons on each of the four io’bs.‘ The predicted performance matrix P of dimension
M by & is computed by the matrix multiplication as shown in Table 10.

The predicted periormance array P can be put into an optimization algorithm to
assign persons to jobs to maximize total system performance. In the example shown,
there are only four jobs represented and M people. Usually, there are job quotas for each
job such that the sum of the job quotas is equal or very nearly equal to the tota} number
of people to be assigned (M in this case).

Interaction Between Predictor In(onnation‘(ability test measure) and Jobs

As mentioned above, if there Is no interaction between persons and jobs, we would
have:

Byy*By sBy By, =B

Since this Is never exactly true for any real data, somne Indication of the extent of
interaction can be obtained by imposing the restrictions Indicated above and solving the
restricted no-interaction regression model, Model irs

Y A‘U(I)OBlX(ll)
+ AZU(Z) ’ B’X(Zl)
N A,U(J)o BIX(JI)

+ AaU(‘J) ‘+ BIX(‘OI) + E(lIr)

’

which can be simplified to

Y= A|U(l) + AzU(Z) + AJU(J) + A,‘U(‘o)

' BI(X(I 1)+ X(21) + X(31) « X(41)) + EQI1).
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__Table 9

The Array of Regression
Coefficients for

Example 1
A B o
ke A‘ 4 '
| P
3f < A’ N
Poteny 3 :,‘ : ¥
' _ o ~ Table 10
g ‘ Prédicted Perlorm;me Array for Example |
' R Palade Ve e g .._ i —
{ —
| N"\
'
P ] U ' X (1x4)
[ I8 oy N
(Mx4) (Mx1) | (Mx) .-
| B
! L(lxh_)_
bwwen ! —t
=
X1y Ay A A A




Letting X(1) = X(11) + X(21) « X(31) + X{(41) give Model 1r:
Y= AU« AUQ) AjU0) « A U + B, X(1) + EQtr),

i the sum of squares of the elements of restricted model error vector E(lr) Is
"significantly" (statistically and/or practically) larger than the sum of squares of the error
vector E(l) (Rlzf smaller than Rlz), then interaction exists. If interaction is not Indicated,
individuals can be assigned (e.g., arbitrarily or randomly) to any job without affecting
total predicted perfonnance.

i . B ]

Introducing Catalytic Variables e !

Catalytic variables were defined earlier as predictor varlables that increase interac-
tion between people characteristics (i.e., Interacting variables) and jobs, but are not
required for future operational use (i.e., do not interact themselves with jobs) to optimally

"

classify people into jobs. .

In our example, Model 1 will be augmented with four catalytic predictor variables.
However, as indicated earlier, the regression coelficients associated with each of these
four catalytic predictor variables must be the same for all four jobs. There should be no
Interaction between catalytic predictor variables and jobs.

Then, four catalytic predictor vectors can be defined in our example,

C(1) =« & vector for catalytic variable 1, which, In the example, Is a binary-
coded predictor having a value of | i the observation comes from the
first mutually exclusive category and 0 otherwise,

C(2) a a vector for catalytic variable, 2 which, In the example, is a binary-
coded predictor having a value of | if the observation coines the
second inutually exclusive category from and 0 otherwise.

c()) a vector for catalytic variable 3, which Is defined similar to C(1) and

C(2).

C(4) = a vector for catalytic varlable 4, which Is defined similar to c),
C(2), and C(3).




Then, the final forin of regression Model 2 above can be written as:
Y = AlU(l) + B“ x{n
+ AZU(Z) +B,y x(21) o
G 4 A,U()) + BJI X(31)
* | + vA,‘U(O) + B“ X(u1) J
ST e W) e WG s WCO) e W ClH) s EQ).
The predictor vectors C(1), C(2), C(3), and C(4) are generally not orthogonal to the
other vectors. Therefore, the computational procedure for Model 2 is more complex than
for Model 1. It is important to note that the least squares estimates of the values for AI'
Az. A,. A,‘, B”. BZI' BJI' and Bbl are not generally the same in Models | and 2. After
. solving for the coelficients in Model 2, the predicted perforinance matrix Q of dimension

.. M by .4 from the inatrix multiplication, as shown in Table |}, can be obtained,

U R TR A i + g : L ;

No-interaction Between Predictor Information and Jobs Using Catalytic Predictors

e

. The hypothesis of no-interaction can be investigated as before by assuming in Model 2

thats ... .. . ‘ . p

5“152‘ IB’l IB“ lBl

v

and imposing these restrictions obtain the restricted model, Model 2rs,

Yo A UM B XUD
A, U2 + B, X(21)
Ay U0) 4 B X(31)
+ A, U0 + B X(41)

>

+*

+ Wl Cll)+ WZC(Z) + W’CU) + W“C(‘o) + E(2r).

As before, if the sun of squares of the elements of restricted inodel error vector
E(2r) is “significantly” (statistically and/or practically) larger than the sum ol squares of
the error vector E(2) (Rgr sinaller than Rg). then it can be concluded that interaction
exists. }f more interaction exists in Model 2 (when comnpared to Model 2r) than exists in
Model | (when compared to Mode! Ir), the "potential" catalytic predictors can be truly

called catalytic.
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Table 11

Predicted Perforinance Array With Catalytic Variables for Example |

[} ! = =
Q : u | x | c A
(Mx4) (Mx1) 1 (MxD ) (Mx®)| | (1x4)
i B
i {ixy
wr
(laxli)J
- i e T =
Ui Rz Qy QX 1€y € S5 CllA A Ay A,
! ]
C21 Q2 Qy Quu[tiXp i C Cpp Cpy Cpyffrmmereeeeenes
P
: R 1 |
A | S S R | TR I T
. . * . l:. :. . . .
B Oz Qs Quf 11 XMl Cur Cnz Cus Sud |0 Y v W,
v, W, W, W,
Yy ¥y Wy W,
W, W, W, W
Yo Ve Yy Yy

Covqggrlng Interactions With and Without Catalytic Predictors for Examples

As indicated above, the catalytic elfect of predictors that have been added
noninteractively to a prediction systesin can be Investigated by comparing the error sum
of squares froim the four mmodels (1, 1r, 2, 2r).

For the example | data with N = 2000 we obtained:

20,2 2 2,2
D,-D, = Néy((Rz-Rzr) - (Rl-R“))

DDy = N&Z(1930-178 9-1832-.1705)

NG; (.0018) = 2000 33 (L0518).

3l




The fact that D -DI Is greater than zero Indicates that some catalytic etfect is due

_to the four predictors C(1), C(2), C(3), and C4). Also, the Increase in absolute predictive

accuracy (Rg - Rf) Is statistically significant. Other information would be required to
declde if the catalytic variables are practically useful.

2

A second random sample of 2000 subjects was chosen and the analysis was repeated.

The ditference {from Sample 2 wast

DZ-Dl

A2002 02y (r2.p2
N ((R3-R3,) - R{-Ry )

D

. DbyD

| = NOZ(160-13)-L s71-.1471)

. N8§ (.0010) = 2000 63 (.0010). -

o indicates statistically significant increase in absolute

The second sample als
greater than D|). This

prédiétlon, and an Increase in ‘the amount of interaction (D2
suggests the possibility of using the catalytic variables.

P

Example of Noncatalytic Elfects .

“potential” catalytic varlables that result in

' Example 2 has been chosen to illustrate
This example

'decrease In interaction and, therefore, become noncatalytic variables.
one Interactive variable (aptitude test) and 2 potential catalytic

consists of three jobs,
In the examnple, 2317 subjects from job 1, 1836

‘variables. There are a total of 7043 people
subjects from job 2, and 2890 subjects from job 3

For this example we can compute the difference between the interaction sum of

squares without and with potential catalytic varlabless
202 nl 2,2

D,-D, NG;((.3607-.3623) - (.3385-.3369)

. Nai(-.oom

70«333 (-.0012).



The negative value of D,-D, indicates that there is a decrease in person-job
interaction (differcntial prediction) when the potential catalytic variables are added.
However, there Is a statistically significant increase in absolute predictive accuracy. It
would be doubtful that the addition of the catalytic variables would be of practical value
in this case. o ’ ‘

Catalylié Effects in Operational Situations

The actual catalytic effect in an operational situation depends on the particular set
of people and jobs under consideration. The predicted scores P (without potential
catalytic predictors) and the predicted scores Q (with potential catalytic predictors)
should be computed for a payrticular set of people and jobs. The interaction sum of
squares for the P matrix (designated D ) can be compared with the interaction sum of
squares for the Q inatrix (designated D ) in the same inanner as above, As before, it is
suggested that, if Dq is larggr than DP' thery, for this particular set of people and jobs, the
additional predictor variables have a catalytic effect.

As the interaction between people and jobs increases, it becomes more important to
assign the "right person to the right job"

CONCLUSIONS

if there is no interaction between people characteristics and jobs in the prediction of
job performance, then It makes no difference In overall systein performance which people
are assigned to which jobs, To Increase Interaction (and, therefore, differential
assigninent potential), it is usually necessary to add new varlables to the operational
variables In the prediction system, The addition of new variables can be costly, tine
consuming, and frequently controversial. The approach described herein suggests adding
predictor variables In a noninteractive way to the operational (interacting) predictors to
increase the possibility of more Interaction between people and jobs. 1f these additional
noninteractive variables can increase interaction, they are called catalytic variables.
Catalytic varisbles (which enter the prediction systemm in an additive way) are not
required for use in the assignment of people to jobs to maximize overall system

perforinance.




The statistical and practical significance of the catalytic effects approach should be
studied to deyelop guidelines for making cost-benefit decisions about the use of catalytic
__variables.

_ To gain imore knowledge about the catalytic process, data already collected for

people, jobs, and potential catalytic variables should be studied.

Data sets involving perforinance measures requiring a wide variety of attributes, and
a large number of different jobs should be used to maximize the prospects ol finding
catalytic predictors.
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SUMMARY

Organizations have a fundatnental problem of placing personnel into jobs to maximize
expected perforinance. Whether or not placing people in speci(ic jobs really makes a
, ditlerence ln overall expected system pcr(ormance depcnds on the interaction of people
”characteristlcs with jobs. 1t is desirable to Increase the interaction of the people

characteristics, as measured by predictor tests, with the jobs.

The purpose of this e”ort is to suggcst a procedure lor using one set of perlonnance
predictor variables in a snnple noninteractive way to enhance the duﬂerennal clas-
sification potential (person-job Interaction) of a set of opera(ional prednctor variables.
The noninteractive variables are required only in determination of ‘the regression
coeflicients for the operational predictors, but are not required for operational use in
future dillerential classification actions.

Separate equations are developed to predict performance on each job. The equations
are determlned so that the welghts for the operational predictors are allowed (if
necessary) to vary across the various jobs. However, one set of predictors (the potential
catalytic vaflables) Is requlred to have the same regresslon welghts across all jobs
(nonlnteracﬂve). If this noninteractive set of predlctors can increase the amount of
_person-Job Interaction In the new predicted performance values, then the potentlal for
linproved assignment has been increased. These noninteractive variables are called

catalytic,

Since catalytic variables are used in prediction systeins in a noninteractive way, they
are not required for future use in the classification system, Therefore, this procedure will
allow personnel classification systein developers to use & set of catalytic predictors to
enhance the dilferential classification potential of a set of operational (interactive)
predlclors, but not require these catalytic predictors for future classification. "
catalytic varlables can be found, savings in time and money might be possible with little

loss in classification e{fectiveness of the operational predictors.

This approach should be applied to prediction situations in which data are already

available and it is desirable to enhance the classification effectiveness of a set of

operational predictors without requiring the operational use of the catalytic variables.
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Testind Different kMo,:dk‘el Bu‘ildl’ng Procedures
Using Multiple Regression

Jerome D. Thayer
-Andrews University
One of the‘-o-l appealing aspects of multiple regrellion to beginning
lultlple regreasion students is the‘hlnzlng feat performed by a stepwise
regression conphter prbgran) The'prdceu‘ of selecting the "best" combination
of predictors io ef!orileolly and eff!clentl& creates an overwhelaing urge to
use this procedure and the cbnputeb pfogra- that accomplishes it for i multi-
tude of tasks for which it is 11] suited. Many textbooks on multiple regres-
slon claim that abuse of this technique is common. Draper and Smith (1981)
give a mild statement that "the stepwise procedure is easily abused by amateur
statisticlians (p. 810), while Wilkinson (1084) is much more dramatic:
Stepwise regression is probably the mast abused
computerized statistical technique ever devised. 1If you
think you need stepwise regression to solve a particular

problem you have, it e almost certain that you do not.
Professjonal etatisticians rarely use automated stepwise

regression. (p. 196)

Cohen and Cohen (1078) suggest that mode) building should proceed
according to dictates of theory rather than relying on the whims of a
computer. But since in the social and behavioral sciences theoretical models
are relatively rare (Neter et al., 1983), Cohop and Cohen suggest that the
stepwise method is a "sore temptation" to replace iheory in these situations
(p. 103). '

The authors of current multiple regression textbooks suggest the follow-

ing considerations for selecting & subset of predictors for a regression

mode) :
1. Selection of variables for a regression model should not be a
mechanical process (Chatterjee and Price, 1977; Draper and Saith,

19681; Neter et al., 1983; Younger, 1979).
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No one process will consiatently select the “best” model (Rerenson et
al., 1983; Gunst and Mason, 1980; Kleinbsum and Kupper, 1978;

Morrison, 1983; Pedhazur, 1982; Younger, 1978).

5.

3. There s no oge "best" mode) according to any cosaon criterfon such ae
the maximus R¢ (Chatterjee and Price, 1077; Freund and Minton, 1979;
Neter et a)., 1983).

4. The stepwine method should not be used to build models for explanatory
research (Cohen and Cohen, 1975; Pedhazur, 1982).

u_!n addition many authors point out that the stepwise -ethgd_hql limited
\uuo(ulnell when the predictors are highly correlated QChqtterjoe and Price,
1077; Kleinbaum and Kupper, 1978; Neter et al., 1983), l{)g ‘ey ueg of vari-
sbles work in combination (Younger, 1979), or when cuppre’llon exists (CBhen
and Cohen, 1973). Chatterjee and Price 1!07]) suggest !Egt‘uj}hynu)ticollln-

“,earlty(the buckwqrd method is preferred although other nulhorl'suggalt that
the backward method should not be used in thie case because of computatjonal
_inaccuracy that may occur If‘lultlcolllncgrlty is severe opd & near singular
matrix is inverted.

In spite of these suggestions, there are still many research studies
reported in the literature in which these guidelines are violated. Results
are reported of a mode) “"selected" by the computer, usually using the stepwise
method with no indication that this mode) might not be the “correct” or "best"”
one. The discussion of the selected model e done in a mechanica) fushion
with no indication given of a careful critique of the adequacy of the ‘
computer-selected model. Explanatory interpretations are frequently made
(Pedhazur, 1982) which often take the forms of considering varjables selected
by the computer to be "good" predictors of the dependent variable because they
have 8 “significant relationship” and variables not selected by the computer
are considered to be "poor” predictors because they do not have a "significant
relationship”. A variable that may be one of the best predictors when studled
individually and that fits nicely into an exjsting theory will be considered
to be a “poor"” predictor simply because it does not occur In the selected

model even though its omiasjon may be due to predicting the same variance as
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other predictore already fn the model] that are no better predictors than it

There are many other -competing procedures that can be used to select i
varjables for a regression model other than the .stepwise method. Three major
ones mentioned in many regression textbooks are the forward, backward, and
beet subsets methods.. This paper will endeavor to compare the stepwise method
with these selection methods to determine the ;ypes of models that each would
be likely to select and in so doing determine the strengths and weakneases of

each method.

Method

The procedure used was to apply each of the common selection methods to a

number of data sets of various types and evaluate the differences between the
models chosen. The source for each of the data sets used in the analysis ls
described below., In Table J the number of subjects and number of predictors
for sach data set {s listed.
Data Sets Used

1. GMA1 -- Data Set Al from Gunst and Mason (1080}

2. GMA3 -~ Data Set A3 from Ounst and Mason (1980)

8. GMAG -~ Data Set AG from Gunst and MQnon (1960)

4. GMA8 -- Data Set A8 from Gunst and Mason (1980)

8. GMiB1 ~-- Data Set Bl from Gunst and Mason (1960)

6. GMR2A-GMB2B -- Data Set B2 from Gunst and Mason (1960)

7. TAL -- Project Talent data from Lohnes and Cooley (1968)

8. ENRI-ENRS -- 1986 freshman enrollment data from Andrews University

9. LONG -- Data from Longley (1967)
10. HALD -- Data from Draper and Swith (1981}

11. SUP -- Date generated from a contrived correlation matrix
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Nine of the data sets were sclected from textbooks that ueed the data
sets to illustrate interesting and/or unusual applications of regressjion thut
would be braught out by the data. All of the variables were not included in
some of the sets. Some of the variables in the GMA3 set were not used because
there were iore variables than lubjecgs. -One yar!able was removed from the
GMB1 set due ‘to tolerance problems (its tolerance uéi;below ,61, and thu; was
automatically excluded from the BMDP2R program although it would not bnve been
tncluded in‘any of the models if tolerance had been ignored). -The categorical
varjables from the TAL set were not used.»i 5o .5 ib o 4

The SUP data was generated using a program described in Morris (1975)
from a contrived correlation matrix described below that included variables
that illustrated suppression. To get a correlation matrix with suppression,
three variables were constructed composed of random numbers with the first
variable detlchated as the dependent variable and the other two designated as
independent varfables.” A fourth varjable was then constructed which did not
have a high correlation with the dependent variable by itself but yielded a
high multiple correlation with the dependent variable when combined with the
two previously chosen independent variables. The correlation matrix from this
data was then used as input to the Morrie program which generated a new set of
data which gave the same correlation matrix but was “sarginally normal." The

correlation matrix used was:

1 2 s .
1100007 4de L202 .307
2 1.000 -.195 -.088
3 1.000 -.827
. 1.000

An alternate approach that would have given an equivalent matrix would

have been to use the method suggested by Lutz (1983).
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GMB2 was run twice using a different dependent vuriable each tlle. The
ENR data woe analyzed with & d@llerent sets of predictors. The varlablaa uued
for the ENR dats scts were lelected(fron 86 variables which in turn were
selected from a larger data base that included 499 vnrlublel. A prlnclpal

conponentu factor anulya]n was conducted utlnz the 86 vnrlableu and the

variables loadlng on the 14 factorl with the hlgheat elgen vuluel (nll above

1.3) were used in the 5 sets of predlctorn,

ENRY had 1 predictor frou each of the flr.l 1 tactora,

ENR2 had 2 predlctora from each of the tlr-t 1 tactora.

Sy

ENRI had 4 predlctorl from each of the llrs! 7 fuctorn.
ENR4 had ) predictor from each of the 14 factors.

ENRS had 2 predlctoro !ro- ench of the 14 factoro.

The computer programs uaod to’leloct the beut lodel fron ench dotu -et

T e §

bl

wore BMOP2R for the ltepwlue. forward und backuard oolutlonn. and BMDPOR for
the best subsets lolutlon. The otopwlue und {orward lothodo uoad an
F-to-enter limit of 2.0 and the ltcpwlco method uuod an P- to-rcuove limit of
1.00. These limits are in }ine ulth recommendations made for proper use of
stepwise regression which suggest that the F-to-enter limit selected should be
fairly low 60 as to allow more variables a chance to show their worth in the
final model. The backward method used a comparable F-to-remove limit of 2.0,
The BMDPOR program selected the mode) with the lowest Cp value, which is the
dufault vaiue of the proéra-. An ideal Cp value js one that s oduul to or
lower than the number of parameters in the model (predictors + 1). Dixon and
Hrown (1979) suggest that this criterfon wil)l give models in which the
varfables in the mode)l have F-to-remove values above 2.0, making this
criterfon similar to that used in the other three methods. Of course, the
specific models selected would differ if other criteria were used, but the
overall characteristics of the four selection methods should not change. To

evaluate a different criterion, on some comparisons it will be noted what the
41




relultl would havb been 1f an F-to-enter/remove level of 4.0 had been used

“ruther than 2.0.

Ty
2%

Table 1 reports the characterlltlc- of the |ubleln selected by the 4
selection methods with the 16 data letlL..Por‘the stepwise method the number

‘of predictors le)ected 1. reporled along with the R2 for the selected model.

gy

For the other nethods lnfornatlon is only presented if !he model selected was

diflerent from the nodel lelected by the ltepwl-e method. Additional

information provided for these models lncludea the nunber of predictort in

H

that model} that were not tn the ttepw!le lodel and the nunber of predictors in

:

the stepwise model not included in that model.

gt

Reuulta

On 9 of the 16 data letl. the 4 Iethodl chone dl!ferent sodels u-lng

the injtial crlterlu of .,P to enter/renove ot 2 0 und ‘the lowest Cp. In
comparison wlth theé‘toﬁwlne ucthod tho fornerd uothod chose a different
Ceag boos

uodol on & datn aetu, the backuard nethod cholo a dlfforont ‘mode) on B data

1

sets, and the belt subsets -ethod chouc . dlfforont nodcl on 7 data sets. The
backward method and bou( subsets method differed on 4 data sets. For each of
the data sets on which differences were found, the differences will be
described in detalll

GMA3 -- The stepwise, backward and best subsets mothods selected the same
model which had 1 less variable than thet selected py the forward method. If
P-to-enter/remove 1limits of 4.0 had been used, the ltepwl;u and backward
methods would have removed one additional varjable giving a 4 predictor model
while the model chosen by the forward method would not have changed, thus
having 2 more predictors than the stepwise and backward methods.

GMA6 -- The backward and best subsets methods gave the same model which
had an R2 more than twice as much as that found by the stepwise and forward

methods which gave the same model. The R2 values found were .150 and .347.
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The stepwise/forward model had 2 predlctor- and the backward/best subsets
mode] had 7 predictors. The -ﬁépw!-e)torward methods did n6t enter a third
variable because the highest P-to-enter was 1.96. The worst variable in the 7
variable backward and Selt uub!et.!lodel had a F-to-remove of‘3.25. If an F-
Lto-enter Jimit of 4.00 had been used, theré ﬁ&uld have been no varjables
fncluded in the ntepwlle/léruard wmode)l since the first variable entered had an
P-to-edier‘of 2.50 thlevthe b;ckw;rd method ubuld have removed the seventh
variable leaving a 6 variable model with an R2 of ,300. The stepwise method
gave much iouer Rr2 value; at‘F-to-enler Jimits of both 2.0 and 4.0. The'cp
valjue for the sackw;rd/beai subsets model was 4;02 for vibredlbtofu while the
utepwlle/fﬁruurd wmodel had a Cp vai&e of 6.54 for 2 ﬁbedlclorn. indicating the
7 predictor model cho.en‘by‘the:backward and best subsets methods was a much
better model. ? 4 v

GMAB -- The stepwise, forward, and backward methods produced the same
model which was dlf!cfont from that chosen by the bost subsets method, The
best uubodta mode) had 1 less predictor, the last variable chosen by .the step-
wise/farward methods and the variable which would have been the next to be
dejeted by the backward method. The R2 values for the 2 models were ,886 and
.877. The C; values for the 2 models were about jdentical (1.8) for the
otopwlie/forwufd/backwurd mode] and 1.80 for the best subsets model). The F-
to-remove for the fourth var(ublo_lncludod in the larger mode] was 2.26.

GMB] ~-The 4 methods produced 3 ;odelc. with the stepwise and forward
methods selecting the same mode). The RZ values for the models were .716 for
the 5 predictor best subsets model, .727 for the 6 predictor stepwise/forward
model, and .739 for the 8 predictor hackward model, Al} of the variables in
the best subsets model were included in the stepwise/forward mode] with the
additional variable in the stepwise/forward model having an F-to-enter of

2.02. The backward mode! used 4 of the 6 predictors in the stepwise/forward

mode] and 4 additional predictors. The Cp values were 3.27 for the
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stepwise/forward mode) ln¢ 3.14 for the best subsets model. The backward
mode]l was not listed as one of the 10 beat 8 predictor models in the BMDPOR
best subsets lelecllon even though it had an R2 of .737 nhlch was hlgher than
9 of the 8 varlable lodcl: llnted 11 the F-to-enter and F- to remove limits
had been 4.0, both the stepwise/forward and backward models would have
tncluded 8 variables but pply 3 would have been common to both. The 5
varjable lodel R2 would have b?en .716 (or the stepwise/forward nod;l and .697

'

for the backward model .,

1

GMB2B ~-- The model oelected by the ntepw!-e and forunrd lethods had only
1 predictor ullh an RZ value of .1176. No vnrlable was even clo-e to being
considered for entry as the F-to-enter value for the best addltional second
variable was 9.16. The backward and belt subsets models were the same with 8
predictors and an R2 of .500. The worst varjable in the 8 prodlctor wode) had
an P-to-remove value of 0.03. The reason for the discrepancy between the
models was that 2 of the varloble- were only good predictors in combinatjon.
In the stepwise solution, onc of this pnlr uould have been the second varijable
added with an F-to-enter of 0.76 and increasing the R2 from .176 to .193. The
third variable added would have been the other member of the pair which would
have increased the R2 to .371. The better predictor of the pair in the second
step addad only .017 (.193-.170) while together as steps 2 and 3, the pair
added 198 (.371-.176). The fourth and fifth predictors increased the R2 from
371 to .509.

TAL -- All of the methods selected the same mode) but the order of entry
of the variables in the stepwise/forward and backward methods were different.
The last variable entered in the stepwise and forward methods wes not the same
as the variable that would have been removed next In the backward method. If
the F-to-enter/remove 1imit had been 4.0, the models would have been different
with the stepwise/forward method model having ¢ variables with an R2 of .368

and the backward model having 6 varlables with an R? of .306. The additional
1. /g



2 varinbles for the backward model were included because these 2 variables
would not have been good enough to enter alone in the stepwise/forward
methods, but together they were good predictors, making them renalp in the
backward method.

- ENR3 -- The 4 methods produced 3 models, with the stepwise gnd forward
methods selecting the same model.. The RZ values for the models were .520 for
the 8 predictor best subsets model, ,821 for the 8 predlctor utepuine/forgard
model, and ,525 for the 1) predictor backward model. All of the varjables in
the best subsets model were ‘ncluded in the stepwise model with the a¢d1tlonul
variable of the stepwise model having an F-to-enter of 2.02. All but one of
the varjables in the stepwise/forward model were included in the backward
sode] with 8 additional variables added, The 3 models selected were the best,
second best, and tied for third best in the best subsets method with C, values
of 5,68, 5.89, and 6.03. The other model with a C, of 6.05 was the second
boit 8 predictor model selected by the best subsets method, This model had 1
predictor different from the best model selected. It appears as if the
additional 2 or 3 variables of the backward mode)l were not needed to select a
good mode) but other combinations of variables would have given equally good
smaller models. If an F-to-enter limit of 4.00 had been used, the
stepwise/forward model would have contained 6 predictors with an R2 of 810
and the backward mode) would have had 7 predictors with an RZ of .817 with
only 3 of the same predictors as the stepwise/forward mode) .

ENRS ~- All of the methods produced the same modél but the stepwise/
forward and backward models had a different order of entry. If the
F-to-enter/remove limit had been 4.00, the stepwide/forward model would have
tad 8 predictors with a R2 of .338 and the backward model would have had 9
predictors with a R2 of .343 with 6 variables the same as those in the

atepwise/forward wmodel. If the ninth predictor of the backward model had been
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removed, the remaining 8 varlables would have had the same R2 as the
ntep;lle/toruard mode! (.338) with 2 varfables being dlfférent.

LONG -- The stepwise, forward and backward methods chosen by BMDP2R gave
the same 3 predictor model with an RZ of .985 and the best subsets mode) had 4
predictors with an R2 of .995. The addllionnlkpredlctor in the best subsets
model ‘was not included in the qther models due toklts hlgﬁ lnteréorrelatlon
(tolerdhce-.OOZ) with the fi;yi 3 predictors lﬁ the nédelﬂr BMDPOR (best -sub-
|etl) allows a ¢reuter degree of multicollinearity than aubéaa, ;6 thl;
problem was not encountered with the model chosen by that program. The
F-to-remove value of the fourth variable in the best subsets model was 5.93
indicating it deserved to bei!n the mode) if the low tolerance could be
jgnored. The cp value for the 4 p;edictor mode] was 5.24 ponparod to the 3
predictor value of 21,66, ‘The firat variable entered in the stepwise and
forward methods was the varjable that contributed ‘the most to the high
tolerance value for the fourth variable in the model (the correlation between
them was ,005), If a'3 predictor model had b@on chosan by al} methods
fgnoring the tolerance problem, the backward and best subset methods would
have chosen the same mode) with a higher RZ than that chonén by the
stepwise/forward method (.993 to .983). The Cp value for the 3 predictor
backward/best subsets model would have been 6.24 compared to the
stepwise/forwatd value of 21.66. The backward/best subsets model fe better
because the second and third variables entered in the stepwise/forward method
in combination pair much better with the fourth varfeble than the firet
varjable entered. The model chosen by the backward and best subsets methods
was never -valuated in the stepwise and forward methods,

HALD --The stepwise, backward, and best subsets chose the same 2 predic-
tor mode]l while the forward method selected 8 3 predictor model, including a
variable that was the first one entered but that later became redundant with

the addition of the second and third variables.
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SUP -- The stepwise and forward methods did not allow any varfables to
enter the model. The largest F-to-enter value was 1.99. The backward and
best subsets models were the same with 3 predictors and an R2 of .967, The
loweat F-to-remove value of the 3 predictors was 85.16 which if removed would
bring the R2 down to ,506. Each varlablevac;lng alone did not predict enough
to be included but only showed its high pred{ctlve power in combination with

the other varjables,

Conclusions

If models chosen by different selection methode were rela;lyely,ulnllar
in the ‘number of varfables in the model, the variables included, and the
amount of variance explained (R2), and the model was to be q'ed primarily for
prediction, not explanatory purposes, it would seem that thq lﬁggeqtlon of
Draper and Smith (1081) that the |tquloe wmethod might be preferred because of
ite practical nature would scem reasonable. The results of this study
suggest, however, that in some cases models that are severely inadequate are
selocted by the stepwise method and other consistent, but less important
differences between the models solected by the different methods also appear,
korward/etepwiee comparison

It would be expected that the forward method would be more similar to the
stepwise method than the backward or best subsets methods because the stepwise
method is an extension of the forward method with the additional proccdﬁre of
removing variables previously entered if they no longer contribute to the
model. In both of the data sets in which a difference existed between these
2 methods, the forward method gave a larger data set by including a varjable
that became redundant when later variables were added by both methods.
Backward/stepwise comparison

The backward method differed in a consistent manner from the stepwise

method in 2 ways. In each of the 5 data sets in which they differed the
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backward method selected & model with more predictors. If an P-to-enter liamit
of 4.0 had been used, the backward method also would have frequently given a
larger number of predictorn. Where the same number of predictors were
selected but with different combinations, the stepwise method was more
efficient, generally»huvlng the higher R2, In 2 of the 5 cases in which they
differed the R2 values were fairly close but for the other 3 the RZ values
were markedly different (.347/.150, .509/.176, and .967/.000) with the
backward method selecting the better model {n each case. These 3 data sets
all had a combination of variables that acted jointly to predict well but none
of the variables entered the model individually in the stepwise or forward
methods, These data sets {1lustrate that in certain circumstances the
stepwise and forward methods can select very inadequate models,
ackward/best subse ompar]son

On 12 of the 16 data sets the same mode] was selected by the backward and
best subsets methods. The worst discrepancy between the models selected by
the two methods was on the GMBI data set in which the models had 8 and 8 pre-
dictors and RZ of .716 and .139f\ It scems as if the backward and best subsets
methods can be counted upon to give models that are reasonsbly similar in
number of predictors and a-ohnt of variance explained, although 4f there is a
difference the backward method generally will give a larger model. In the 4
duta sets in which the 2 methods gave yttlcrcnt modele, the backward method
selected a larger model 3 times and a smaller model once (although this was
due to a tolerance problem).

“ ¢ ou "

Excluding the 3 cases in which the stepwise method was very inadequate
and the case with the tolerance problem, the nusber of predictors selected by
the stepwise method was the same as thst selected by the best subsets method

tn all but 3 cases where the stepwise method gave 1 additional predictor in

each case. The additional varjable In each of the larger models barely
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entered over the F-to-enter of 2,00 level and the diacrepancy should not be
considered jmportant but more of an indication that the F-to enter level of
2.00 was not exactly equivalent to the criterfon of the loueitycp value that
was used in the BMOPOR program.
» Beat subsets summary

The algorithm used in BMDPOR, which admittedly does not compare all
ponulﬁle models, will not always list all "good" models. In the GMB! data
set, the 8 predictor model chosen by the backward method was not even i;-tcd
as one of the alternatives in the BMDPOR output even though it had a higher R2
than all but one of the alternatives that were mentioned, The beat subset
method, however, does seem to work the best of all of .the prediction methods
with the data sets used here. It is especially recommended because it
encourages a non-mechanjcal selection process by glving many suggested models.

wa ) g e

The backward method can be counted on to give a mode) which will explain
about as much variance as models chosen by any other method but it may include
more varjables than are necessary to get s “good” model. A major danger
occurs with this method, however, when there is high multicollinearity. In
this case, computationa) inaccuracies may occur, so tolerance problems should
be consjdered before running & backward solution,
Stopwise_sussary

The stepwise method will generally give a mode] that comes close to max-
imizing the amount of variance explained for e glven number of predictors.
If conditions of multicollinearity, suppression, and sets of variables working
jolntly do not occur, the models selected by the ot;pwlue method can be
expected to be as good as the models selected by the backward and best subsets
methods. If these conditions do occur, however, the stepwise method may give

a model that s completely inadequate. To guard against this occurrence, the
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stepwise method should never be used alone to select a model, but only in

conjunctlén with the backward and/or best subsets methods. .. .
[orwa}d mary 4o vt A sho SR S

"The fofinrd method, although discussed in almost all regreesion text-
books, is rarely, if ever recommended as a reasonable alternative to the step-
wise method, and this paper supports the jdea that the method has little ‘erlt
If the stepwise Wethod §s“available. = = - o 5

Selectloﬁ'prbcéah‘iu‘uarxf & LS ooy o »

When a mode] is to be selected, it is fmportant to consider more than one
péoceduré.’ If one method is to be used, it would appear that the best subsets
wethod is the best of the methods examined here since the computer program
generates many models from which a “best" one can be selected. The virtue of
running a backward and/or stepwise solution in addition to the best subsets
method would be ‘to Identify differences in the models that point out
characteriatics of the variables and/or data set that might be overlooked
otherwise. Using the best subsets or backward procedures, it is unlikely that
an extremely poor mode) would be chasen, but this is a real poasjbility with
the stepwise and forward methods, . For this reason it is recommanded that the

stepwise and forward methods NEVER be used alone in loloctlnn‘n mode]l for any

purpose.
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Table 1

Regresaion Models sélected by Different 8electibnvlethodl

Nunber’or Predictors Selected/Differences from Stepwise/R2

DATA Stepwise| FPorward | Backward | Best Subsets
SET N 1IV's # R2)e + - R2Z )¢ + - R2| 4 + - RO
Somes mee e IRt Eeiniedebidetiteid ELE L L e L EETE LI e

GMA) 49 6 3 .497| o

| |
GMA3 13 6 4 ,999] 5 1 0 .999| .

| : :
7 6 1 .347

{
|
|
{
| |
| |
| |
| [ | ‘ ;
GMA6 50 14 | 2 ,150 I |7 61 .347
| : | |
GMAB 33 9 | 4 ,ese | |3 0 1 .87
. | | | |
GMR] 60 14 | 6 .727| | 4 2 .73 86 0 1 .716
| | - |
GMB2A 40 8 | 4 .878 | |
! | |
GMB2B 40 8 | 1 ,176| |6 ¢« 0 ,509) 6 4 0 .509
| | |
TAL 805 16 | 9 .404 | !
| | *
ENR] 870 7 | 2 .049 |
| ce |
ENRZ 870 14 | . 7 .316 | '
| ' | . ,
ENR3 870 28 | o .821) j13 8 1 .825/ 8 0 1 .620
o x ‘ |
ENR 870 14 | 6. .089 Lo .
| I
ENRS 879 28 | 14 361 | i
' ! | | | »
LONG 36 6 | 8 .088) I | 4 1 0 .008
| | | |
BALD 33 4 | 2 .070)| 8 1 O .982| | )
| | |
sSUP 10 3 | 0 ,000f |3 8 0 967/ 8 8 0 .967

[ nu-beerf predictors seYected ueing F«2.0 for entry and F«1.99 for
deletjon for the stepwise, forward and backward models and Cp=2.0 for the

best subsets model.
L]

+ = number of predictors selected in this mode) that were not in the stepwlee
model

- = number of predictors in the stepwise model that were not selected in this
mode]
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o Microcomputer Selection of a S
Predictor Weighting Algorithm

John D. Morris
. Florida Atlantic University ’

An empirical method (PRESS) for examining and contrasting the cross-validated
Prediction accuracies of some popular algorithms for weighting predictor variables
was advanced and examined. The weighting methods that were considered were ordinan
least squares, ridge regression, regresasion on principal components, and regression
on an equally weighted composite. - PRESS was executed on several data sets having
varied characteristics, with each of the weighting techniques cbtaining the greatest
accuracy under some conditions. *The ree of advantage or disadvantage offered by
these alternate weighting algorithms relative to ordinary least ‘squares was
considered. . As it was not possible to determine 2 prjori which weighting technique
would be most accurate for a particular data set from theoretical knowledge or from
simple sample data characteristics, the sample specific PRESS method was proffered ¢
possibly most appropriate when the researcher wishes to select from among the sever:
altemate predictor weighting algorithms in order to achieve maximum cross~validatec
prediction accuracy. The feasibility of the use of a microcomputer for the
computation intensive PRESS algorithm was also considered, _
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Many empirical and theoretical studies (Darlington, 1978; Dempster, Schat zoff,
and Wermuth, 1977; Gibbons, 1981; Morris, 1979; Pruzek and Frederick, 1978; Wainer,
1976)_ have suggested that there are more accurate (in the eense of cross-validatjor
[(J&eg)xctor weighting strategies than the traditionally used ordinary least squares

Much of the effort has concentrated on ridge regression, with Darlington's
(1976) recommendations being by far the strongest in the behavioral sciences.
However, some more recent results (Morris, 1982, 1983) puggest a less enthusjastic
outlook toward ridge regression in the specific situations considered by Darlington
{1978), but a possibly more promising outlook under other data conditions (Morris,
1981). Additional evidence and reservations of others about ridge regression may b
found in Egerton and Laycock (1981), Pagel and Lunneborg (1985), Rozeboom (1979), a
Smith and Campbell (1880).

Similar controversy spanning at least a quarter of a century (Claudy, 1972;
Dawes and Corrigan, 1974; Dorans and Drasgow, 1978; Einhorn and Hogarth, 1975;
Gabriel, 1980; Laughlin, 1978; Lawshe and Schucker, 1959; Pruzek and Frederick, 197
Schridt, 1971; Trattner, 1963; Wainer, 1976, 1978; Wesman and Bennett, 1959) has
surrounded the use of equally weighted predictors as a substitute for OLS weights.
In addition, several investigators have proposed the use of reduced-rank prediction
methods to enhance cross-validation prediction accuracy, poesibly beginning with
?g;::tt (1964), to more recently (Morris and Guertin, 1977; Pruzek and Frederick,

It seems clear that claims for a "panacea” weighting technique to fit all data
configurations, such as ridge coefficients "will undoubtedly be closer to (the true
parameters) and are more stable for prediction than the least squares coefficients”
(Hoer) and Kennard, 1970, p. 72), or "Ridge regression is the best technique for a
broad range of intermediate values of validity concentration and is 1ittle worse th
alternative techniques at the extremes" (Darlington, 1978, p 1250) are unrealistic
Equally clear is that many simulation results strongly suggest that non-OLS welighti
strategies offer the researcher enhanced cross-validation prediction accuracy in ma
data configurations. The most important next step seems to be to determine the
frequency with which such data configurations that are conducive to non-OLS methods
oocur in the behavioral sciences and to examine the importance of the gain or loss
resultant from ucing these strategies. Given encouraging gains in a reasonable
proportion of available data sets, another step would be to generate mechanisms for
helping the researcher decide which of the alternate weighting techniques are best
for which data situations, and for estimating how much improvement or degradation
might be realized by using an alternate technique instcad of OLS {n a specific data
set.

Some simulation results (Morris, 1981, 19682; Pagel and Lunneborg, 1985;) have
ylelded some general suggestions for when to use which technique. One major factor
suggested by Pruzek and Frederick (1978) and explicated more explicitly by Darlingt:
(1978}, is validity concentration, the degree to which predictive validity is
concentrated in the first few principal components of the predictors. From
simulation results and theory (Darlington, 1978; Morris, 1982; Pagel and Lunneborg,
1985), it is know that as predictor variable collinearity and validity concentratio
increase, non-OLS methods usually become more accurate than OLS at some point. In
addition, Cattin (1981) has argued that in typical behavioral science data small
eigenvalues from the predictor variable intercorrelation matrix tend to explain mor




noise than signal. Thus as the validity concentration ig high, non-OLS methods are

However, this tendency is diminighed by an opposite trend in
favor of OLS regression as sample size and population multiple correlation increase.

concern (Darlington, 1978; Pagel and Lunneborg, 1985), Moreover, the same analytic
paper is generalizable to the task of examining errors
in estimating regression weights, o
However, even when limiting consideration to prediction, one must consider both
“relative” and *absolute" types of prediction accuraCy. Is the researcher interested
in generating a prediction equation that yields predicted scores that are maximally
correlated with the actual criterion score (relative), or is the goal to minimize the
differences between the actual and predicted criterion scores (absolute)? These are
not the same goals, and the com rative accuracies of the methods are partially a
function of which one is consi ered,

Some theoretical (Thisted and Morris, 1980) as well as empirical (Husgta?e, .
Marquette, and Newman, 1982) rules have been offered for determining when various
types of ridge regression may be helpful in enhancing prediction accuracy. These
rules do not epecifically consider the effects either of validity concentration or of
sample size, both of which have been shown in simulation studies to affect the
relative performance of OLS and non-OLS methods. Also, ae operating characteristics
for these theoretical rules have not been examined through simulation, it is
difficult to know how they would perform with real data, As well, the rules due to
’n\iatodtand Morris consider only ridge regression as an alternative to OLS
regression, ‘

- Although some general trends and suggestions may be gleaned from these studies,
it is at best Aifficult to suggest to an applied researcher what method to select
given the specific data characteristics of a sample. The results are useful
theoretically, but they are just not sufficiently simple to allow easily applicable
rules to be generated to use for specific data sets. Also, such rules would require
unknown population information for which one has no sample estimate, as in the case
of validity concentration.

More -important, very little, if any, information is available about how much
gain or loss in prediction accuracy one might expect by using non-OLS weighting with

teal data. What is the potential payoff or loss for the researcher in trying these
non-traditional methods?

Purpose .
The purpose of this paper was to advance and examine an empirical sample-based
method (PRESS) to be used for exploring the comparative performance of several
predictor weighting methods on a specific data set to aid in selectjon, and most
important, to assist in Judging the probable resulting gain or loss in prediction
accuracy in selecting a weighting algorithm. Although the specific technique is
different, the use of an empirical sample-based method to aid in selecting a




predictor weighting method is parallel with the suggestion of Dempster, Schatzoff
and Wermuth (1977, p. 106) that it would seem that comparison of the ]')redictive '

capabilities of various methods from one subset to another would provide a reasonable

empirical basis for selecting a particular method in a given situation.® To
demonstrate the technique, the PRESS algorithm was executed on several typijcal,
although not necessarily completely representative, sets of data. The feasibility of
the t;:e zg a microcomputer for the computation intensive PRESS algorithm was also
considered.

The PRESS Algorithm .
Allen (1971) introduced a technique that he labeled PRESS (PRedicted Error fum -

of Squares) to be used to select a multiple regression variable subset that would ..

]

yield a minimum sum of squared errors in prediction on cross-validation. This
algorithm is executed by alternately predicting each subject's criterion score from
the regression equation generated from the predictor and criterion scores of all
other subjects. The resulting squared errors of prediction over all subjects are
accumulated and the sum obtained serves as a criterion for cross-validation accuracy.’

Although most of the multiple regression literature dealing with this "round-
robin" subject deletion strategy references Allen and terms the technique PRESS, it
is not original with Allen. Perhaps the earliest explicit description of the .
technique was {n a paper by Gollob (1967), Many researchers, however, have ,
recommended the procedure for both multiple regression and discriminant analysis-type
classification cross-validation (Allen, 197); Allen and Cady, 1982; lachenbruch and.
Mickey, 1968; Mosteller and Tukey, 1968; Gtone, 1974). Additionally, the technique .
has also been descriptively termed "leave~one-out” (Huberty, 1964; Huberty and
Mourad, 1980). ~

Allen (1971) also provided a derivation for a computational simplification used
in calculating PRESS that requires only one matrix inversion, rather than the implied
D inversions, where n is the total number of subjects, This derivation was based on :
a matrix identity often attributed to Bartlett (1951), although no mention was made
of Bartlett's work. However, one also can f£ind the same identity in Horst (1963, p.
426) with no mention of Bartlett. Whether all three authors independently derived
the same matrix fdentity is unknown.

Although this algorithm was introduced to help select a subset of predictors

. that would yield the smallest sum of squared errors upon OLS cross-validation and to
give an csdmato of the resulting cross-validated prediction accuracy, the same logic
and algorithm can be used to judge the cross-validated prediction accuracies
(relative or absolute) of alternate predictor weighting methods; the idea is
completely goneral across any weighting strategy. PRESS can be performed for each
competing predictor weighting method, and the most accurate method can be chosen as
the one most probable to be most accurate on use in replicate samples, or the
researcher may decide that the gain, if offered by a non-OLS strategy, is not
important enough to warrant selection of a method that may not be well known.

The computational simplification offered by Allen (1971) is rather
straightforward for OLS. If one considers the usual model for multiple linear
regression, -

Y=BX +e,
where X i8 an pxp matrix of p - 1 predictor variable values and the usual unit
vector, Y is the vector of criterion scores, and e is the vector of error terms, the




:al solution for B, the vector of regression weights, is

< (x'%)-1 x'y,

deleting a subject would change both X'Y, and X'X, it would seem that both X',
Ll tﬁ matrix inverse (x')()':l would need to be recalculated as each subject is

e L] -~

However, if Y({) is a subject i's predicted criterion score when that subject's
:tor of predictor scores, Xj, and criterion score, Yj» &re excluded from X and Y,
len (1971, p. 11} showed that
)y =a- m)'lY;_l - 0301 - )7y,
ere Q4 = X'{(X'X) "Xj, Y; is the subject's criterion score ugzedicted from the
jression we %hts based on all the sample, and ¥j 18 the subject's actual criterion
re. Although this formulation avoids the numerous matrix inversions, it still
uires the calculation of the predicted criterion score and the Q;6 for every
Jject. This calculation route, which was found to be as much as an order of
gnitude faster than actually calculating the inverses in a recent comparison
);:318,1 1984), requires very little extra computation if one ordinarily calculates
s{duals,

The most obvious step would then seem to be to try to adapt this computational
>rteut for use with the non-OLS methods of interest. In fact, by recognizing the
lationship between OLS, principal component, and ridge regression, one not only can
opt the algorithm, but also can do the calculations for the methods essentially
multaneously. As well, the Allen formulatjon obviously fits the case of regression
an equally weighted composite, as regression on such a composite just turns out to

a case of simple regression. ,

In fact, in a later lication, Allen (1972) ftovided a version of the shortcut
-:mt()l? torkﬁd(ie regression. Given the usual simple ridge regression model of
« (X'X + =i X'Y,
len showed that it followed that PRESS can be calculated from the same formulation
with OLS except ?ut the XI would be added to the X'X matrix before inversion in
a calculation of and 8)

Bowever, thete “ apr iiem with this formulation. When the researcher decides
on a biasing "k" in ridge regression, it is added to the gorrelation matrix rather
an to X', Although one can center and scale the score vectors such that X'X = R,
we formulation is still incorrect since kI is being added not to the correlation
itrix, but to the correlation matrix decreased by the contribution of one subject.

1 an {llustrative problem with five subjects and one predictor variable (X = 2, 0,

. 3,9/ Y%3,4,4,7 61 and a Dempster, Schatzoff, and Wermuth [1977) RIDGEM k

r 2,73), the PRESS cross-validated correlation calculated by the shortcut formula

w =92, but the true PRESS cross-validated correlation calculated by actually
nverting p correlation "matrices” augmented by kI was -.07. This example is

ortainly not purported to be representative. Moreover, the difference would clearly
2 less ¥or samples of even moderate size and with smaller ks. However, it does
llustrate that the Allen shortcut formulation for ridge regression gives incorrect
esults,

Another difficulty, however, stems from the fact that for ridge regression, the
used 18 often derived from characteristics of the sample. Thus it is also a random
ariable. As the accuracy of the choice of k affects the accuracy of the resulting
rediction equation, the algorithm for that choice must also be cross-validated.

his task is clearly not accomplished in the Allen shortcut formulation. The same

57

A

e




argument can be advanced for any choice made using information from the data of the
sample that affects the prediction equation. Thus one also must cross-validate the
algorithm for selecting the number of components in regressing the criterion on
principal components, and for choosing the algorithm for deciding which variables are
*salient™ enough to be included in an equally weighted composite, if such judgments
are to be made from sample information.

If one adopts this philosophy of cross-validating the total choice process
involved in constructing a prediction model from sample data, then the only
computational route possible is to calculate p versions of each equation by actually
leaving a subject out each time.

A Pascal computer proytam was written that cross-validates OLS, ridge
regression, regression on principal components, and regression on an equally weighteq
composite via PRESS for any input data set. One of the difficulties with such
techniques as PRESS, bootstrapping (see Efron, 1979; 1983), and other resampling
plans is the extreme amount of computation required. When using a mainframe or
minicomputer, this translates into costly run times. As microcomputers are a “one-
time® expense, such computation costs essentjally nothing given the availability of
the machine and software. A disadvantage of the microcomputer i6 that it is slower
than mainframes and minicomputers. However, the degree of difference in speed is
rapidly decreasing with the continuing introduction of faster and more powerful
microprocessors, With this in mind, thie program was used with an MS DOS
microcomputer to illustrate and to examine the method on several sete of data, and to
assess the performance of the microcomputer in accomplishing these relatively
demanding computational tasks.

Method
Heighting Technigues
Thete are many possible choices for a k for ridge regression., Because of its
excellent performance and its ease of calculation, the Lawless and wm‘g (1976) k,

which {8 the inverse of the F ratio resulting from a test of the OLS R, was used for §

ridge regreassion.

Because of ite ubiquity, the Kaiser (1960) rule of selecting components with
roots larger than one was used to select the number of components in regressing a
criterion variable on principal components. One might aleo concider using a
significance test (e.g., Bartlett, 1950) to determine the number of predictor
components to use. One should note, however, that a subjective decision would be
necessary even though a significance test is used as the researcher must select a
significance level.

As is often the practice, equal weighting was accomplished by specifying a
threshold predictor-criterion correlation for inclusion of a predictor. The -
predictor then received either a 41 or -1 welght depending on the sign of the
predictor~criterion correlation. The resultant composite was then used to predict
the criterion. For the example data sets presented in this paper, predictor
variables with a correlation significant at the .05 level were included.

Obviously, if other non-OLS strategies were used, different results might have
been obtained. Likewise, with other data sets, results might have been different.
The purpose, however, was a demonstration of a method for examining and comparing the
accuracies of the weighting methods for specific data sets rather than a gencral
comparison of the weighting methods.




The

pata Sets
Twenty-one data sets of widely varying characteristics from the behavioral and
natural sciences were used in this demonstration. An attempt at sampling a variety
of types of data was made; however, the data sets are not advanced as representative.

‘The results were not intended and should not be interpreted as generalizable to all

behavioral science data sets. The intent was to explore and to demonstrate a
strategy for estimating what one might expect for a gpecific data set.

It also is important to note that the actual "real®™ data sets were used rather
than Monte Carlo simulations from covariance structures as has been done in some
studies mentioned previously. This procedure not only allows the characteristics of

_the data structures to vary as they do in nature, but also affords the unique =

distributional characteristics of a sample to affect the results, contrary to the:
situation in simulation studies in which multivariate normality is usually assured.

These data sets actually have been used in regression analyses. They are from
journal articles, paper presentations, or text books. Therefore any aberrant score
vectors are assumed to have been deleted. Before applying the PRESS strategy (or any
other analytic method), the researcher probably would wish to consider the removal of
"outliers” that manifest appreciable leverage. One may find it helpful to consider
the excellent review by Hocking (1983), as well as associated comments for :
information on methods for detecting such score vectors.

Results -

Tables 1 and 2 show the performance of the four weighting techniques for each of
the 21 data sets. In concentrating on relative prediction accuracy Table 1 furnishes
cross-validated correlations; Table 2 provides absolute accuracy as the mean squared
error in predicting the criterion score. 1n both tables there appears (a) a short
description of the origin of each data set (exact citations being available on
request), (b} the OLS sciuared multiple correlation calculated in the total sample
(RSQ), (c) the multicollinearity index due to Thisted and Morris (1980) (MI), (d) the
ratio of the number of subjects to predictor variables (n/p), and (e) the performance
of the methods, with the performance of the non-OLS methods shown as a percent of the
OLS performance. It should be noted that the MI criterion proposed by Thisted and
Morris is different when one considers relative and absolute accuracy.

The number of subjects ranged from 16 to 293, and the number of predictor
vaciables varied from 3 to 17. The largest raw score matrix analyzed had 271
subjects with 12 predictors.

An interesting characteristic exhibited in the results is the amount of variety
cbtained. The comparative performance of the methods ie clearly dependent on which
data set is being considered and on whether the criterion of accuracy of concern is
relative or absolute. In addition, the fact that the different methods performed
better with differing real data sets may lend some credibility to such differences
found in simulated data sets.

Belative Accuracy (Table 1)

Relative accuracy is discussed first. In 16 of the data sets of Table 1Q, 2,
3, 4,6,7, 9,10, 11, 12, 13, 14, 15, 18, 20, and 21) ridge performance was about
the same as that of OLS (within 28). However, within these same data conditions, the
accuracies of regressing the criterion variable on principal components, and of
regressing the criterion variable on an equally weighted composite were much less




consistent. Sometimes these procedures were also very close to OLS performance. In
one data set (10) they were about 10% better than OLS. Moreover, they ranged down to

being appreciably inferior to OLS regression for equal weighting (as evidenced in 11,

13, 14, 18, 20, and 21) to drastically inferior for regression on principal
components (6, 13, 14). .

Ridge regression was appreciably superior to OLS regression in relative accuracy
on four data sets (8, 16, 17 and 19) ranging from 118 up to 448 better than OLS
regression. However, for all these four data sets, at least one (in two cases both)
of the other non-OLS methods were considerably superior to ridge - - an outcome much
like that provided by the results reported in a previous simulation study of relative
accuracy (Morris, 1982). )

In one data set (5), ridge did very poorly on relative prediction accuracy, as
evidenced by yielding a negative cross-validated correlation (as principal components
did in data set 16). Yet regressing the criterion variable on principal components or
on an equally weighted composite performed much better than OLS. However, the
importance of this particular result must be viewed in context; even though the
squared multiple correlation was an appreciable .817, the cross validated OLS
correlation was only 028 8o that no meaningful prediction could take place on
replicate samples in any case.

(Table 2)

As for absolute accuracy (Table 2), the results were different. In 12 of the -
data sets, (1: 2; 3( 4' 6‘ 10' 12, 13' 1“ 15' 20; and 21) lldge wasg within about two
percent of the mean squared error produced by OLS regression. (It should be noted
that gmaller is superior for this measure of accuracy.) These data sets constituted
e subset of the 16 meeting this same criterion for relative accuracy, On these same’
12 data sets regressing the criterion variable on an 1ly weighted composite
followed the results of ridge fairly closely; althoug superior (ranging from very
slightly to appreciablx) to ridge regression on three data sets (3, 10 and 12) :
regressing on an equally weighted composite was inferior on the rest, Regressing the
criterion variable on principal components displayed much more variety within these
12 data sets. Performance wac about the same as ridge on five of the data sets (2,
3, 15, 20, and 21), superior on three data sets (1, 10 and 12), and ranged to
drastically inferior (4, 6, 13, and 14).

On eight of the data sets (5, 7, 8, 9, 16, 17, 18, and 19) ridge was appreciably
better than OLS regression in absclute accuracy, with the decrease in mean squared
error of prediction ranging from about 4% (data set 18) up to nearly 704 (data set
5). 1In four (5, 8, 16, and 19) of theee eight data sets both regressing the
criterion variable on principal components and on an equally weighted composite were
in turn considerably better than ridge.

In only one data set (11) did ridge not perform at least about as well as OLS on
absolute accuracy, with a mean squared error of about 21% more than that for OLS
regression. Both principal components and equal weighting also performed very poorly
on thie data set. It is quite interesting and possibly important to note that this
is not the same data set as the one on which ridge was o poor in relative accuracyi
on that data set (5), ridge exhibited its best absolute accuracy performance (only
31% of the mean squared error of OLS regression).

Although the results from this data set may need to be considered especially
cautiously because of the very small cross-validated correlation, the results also
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3id not agree between relative and absolute accuracy in other instances. The
decision of whether one is primarily interested in relative or absolute accuracy is
an important one.

For these data sets, the number of subjects per variable, multicollinearity, and
gample OLS multiple correlation all appeared to be of no use in helping the
researcher decide whether one of the non-QOLS methods would be worth pursuing. The
question of identifying the most accurate prediction method is really one of
classification. Can one "classify” a data set to the method yielding the greatest
sccuracy from sample characteristics? Using the *]eave-one~out"” strategy of
tachenbruch and Mickey (1968), these three sample characteristics were unable to
classify the data sets into the most accurate strategy (OLS or non-OLS) any better
than chance assignment would have for both relative and absolute accuracy. In fact,
when combining the results for both relative and absolute accuracy, the number of
correct classifications was exactly the same as one would expect by chance. For this
reason, it would not seem possible to construct rules for deciding a priori from:
these statistics arising from a specific sample which method would be likely to be
most accurate on application to a replicate sample.

Piscussion :

Any summative comments that could be made related to the relative performance of
the methods are necessarily only relevant to these data sets, Moreover, the purpose
of thie study was not to declare a best method, or even to derive rules based on
sample characteristice for deciding which strategy to use, Indeed, the inability to
explain easily the behavior of the weighting techniques from the sample !
characteristics presented argues for just euch a sample specific approach as has been
used and is being proffered. :

One generalization that probably can be made from the results, however, is that
none of the non-OLS methods offers a panacea for achieving maximum accuracy across
all data scts as some reports in the literature might suggest. The researcher stands
to Jose a lot of prediction accuracy by choosing any of the non-OLS strategies under
gome data conditions. Likewise, the researcher stands to gain a great deal in some
data conditions if a superjor algorithm can be selected. The problem is that it is
not easy to specify under what circumstances the realization of a superior algorithm
will occur from simple sample data characteristics; thus, the more compl icated PRESS
procedure may be called for.

, Although the data sets utilized in this paper ma not be representative, it may
‘still be reasonable to suggest that the performance of none of the non-OLS methods
was good enough often enough to recommend routine application of them in the same way
that OLS regression is used. At the same time, moreover, there are appreciable
‘accuracy gains possible in gome cases. If prediction accuracy is sufficiently
‘{mportant for the data set and situation at hand, the researcher may wish to take the
trouble to ferret out those occasions for which a more accurate non-OLS procedure can
dﬁ;‘nver greater accuracy; the PRESS algorithm is suggested as a viable strategy for
that task. .

The computation times for all the runs are included in Table 3. Most of the
runs only took a few seconds, with several taking a few minutes. The two largest
jobs in which the Project Talent data was analyzed separately by sex each took more
than an hour to run. Whether the times are reasonable or not is clearly a subjective
decision. However, even times of more than an hour don't compare unfavorably with




the batch job turn-around time that can be expected when using many large computers,’
The microcomputer used was a Sanyo MBC 550. This is an MS DOS machine with an

8088 microprocessor. It is similar in many ways to an IBM PC, but the 8088 clock . o m_gé
rate is slower (3.6) than that of the IBM PC (4.77). An 8087 arithmetic coprocessor Stat

was also installed to aid in speed and accuracy. Because of the slower clock rate, *
almost all IBM PC "clones” would run these jobs faster than the times represented, ;
The computer language used was Turbo Pascal. While a good performer in general, §i
it is certainly not the fastest ™number crunching® language available. For example,  §
a recent article in BYTE found the Microsoft Pascal compiler to run a computation % Hgareyett
intensive program utilizing the 8087 nearly twice as fast as Turbo Pascal. Microsoft ¥ .
Pascal, however, was unavailable to test. The Pascal program should run with no ;
modification, '
It should also be noted that newer, faster, and more powerful microprocessorg 47 |
are now commonplace. The 8086, 80186, and the 80286 of the IBM AT should all perform §
better than the times represented here. Therefore, for all these reasons, the timeg ' ¥
presented should be considered as quite conservative. Moreover, a 32 bit 80386 hag™' ¥
recently been released and will be much faster (probably by a factor of more than i ]
four) than the fastest of these (the 80286). Super microcomputers with the power of ¥
a VAX mini should be on our desks yery soon.
While microcomputer time is essentially free, a deficit in a long running job is §:
that the machine ie generally lost for other uses. However, there are now some good' W
multitasking systems available that will allow the use of the computer for other * 3¢ §
purposes, l.e. word processing, while such a computation laden job is number- s
crunching in the "background.® Such multitasking systems will almost certainly be 3" |
standard part of the operating system of the more powerful microcomputers that will !
be common in the very near future, e |
Although aeveral strategies can be employed to make the computing algorithm as ' ]
efficient as possible, a large amount of computation may result in any case, In ¥

: Peyc

general, in ?udglng whether the PRESS technique is worth pursuing a researcher would"’v ' ' stat
need to consider the size of the prediction problem and resulting costs of PRESS in*? ] Efron, B
relation to the relative importance of the goal of maximizing prediction accuracy. » (m“(

It is important to note, however, that most prediction problems seen in the . R egerton
behavioral science literature are not excessively large and that in any case the non- § nn&
OLS methods are really only contenders with relatively small samples. Further, the” ¥
trend of the decreasing cost of computational power is accelerating; rescarchers need

to plan their methods such that they can capitalize on this resource. Tukey's (1965) ¥
comments relating to our need to make sure that the statistical techniques we invent
anticipate the incredible resources of computational power that we will have in the -
near future seem especially relevant, _ .

A copy of the Pascal computer program §s available for those wishing it. It is

a QOM file and should work on any MS DOS microcomputer with a microprocessor {n the -
Intel 8086, 86, 286, etc. line. In requesting the program, please specify whether
the program can expect to find an 8087 arithmetic proceseing unit available. 1f the
program is of interest, send a blank DSDD diskette to: :

John D. Morris - ‘ Boerll:oﬁc.)
College of Education - IRDTE Horst, P
Florida Atlantic University ‘ and
Boca Raton, Florida 33431
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peiohting Methods' Relative performance (Cross-Validated

Correlation) for Several Pata Sete

Numer ical Designator

and
_ Data Set Descript ion

R ,m'

Method

OLS

Asadof OLS
s FC . Equal

Marquardt's Acetylené pata
Chew L2 (5) Predicts MRT
Hoerl's Kansas Corn Yigld

praper and Smith (p.‘204)

Golf score from Task‘ \Perf
Ha)d Data (D & 8, p. 366)
Hocking & Dunn RR Symp. ‘82
Hoer] RR-1980 Paper . -

1
2
3
4
5 Drehmer Data (EPM)
6
"
]
9

10 Rerlinger and Pedhazur, 292

11 Longley DeW p. 32

12 Journal of Exp. Education

13 Rulon: Pref & Buccess - Mech.
14 Rulon: Pref & Buccess = Oca
15 Rulon: Pref & Buccess ~ Pas
16 Retention from Demos & WISC
17 piers-Harris from I1Q & Ach
18 D & 5 Steam Data {p.352)

19 D & 5 Data (p. 233)

20 Female Talent Data CeL p. 345

21 Male Talent Data CiL p. 349 .41l 1.7

.820 1.0
.591 1.0
800 1.4
,914 1.1
.817 1.1
.848 1.6
.982 1.0
.620 1,0
966 1.1
.640 1.6
.99 1.0
W75 1.1
\261 1.9
.323 2.4
.252 1.5
.368 1.2
.185 2.2
.949 1.1
.816 1.2
,331 1.9

.920
.750
+854
927
028
912
.980
.318
979
+690
0992
+635
A4l
494
432
058
.108
«925
691
520
57

100.01 102.05
1oo.s4{1oo;so
100;21“;00.23
100,03 92.67
~192,43 379.01
99.99 47.40
100,32 99,11
132.67 230,95
100,21 100,17
100.46 109.69
99,63 95.61
101,27 104,27
96,59 26.49
96,68 2.5
99,01 94.61
144.11 ~40.94
111.96 61,88
99.06 89.44
111,05 121,17
100.58 97.78
101.17 100.54

99.71
10030 @
100,32 - o
Ceos2
131,28
99.98
100,27
230,59
100,17
109,80
92.57
104,42
92,62
74.61
97,25
520,58
142.59
86.92
118.50
88.15
94.97

Note. Additional informati
the abbreviated heading
text at the beginning o

on about data sources is available fr

t the top of each data col
tle section concerned with results.

umn are described in the

om the author;




e 2

1) for Several Data Sets ‘
mer §cal Designatot —Hethod
an !
m_&;_ngﬂimion RO MI OLS Ridage PC Equal
wrquardt's Acetylene Data 920 1.1 31.0 99.02 75.60 101,32
Chew LP(S) Predicts MRT 591 1.0 63.9 98.25 98.25 99.10
hoerl's Kansas Corn Yield  .800 2.1 142 98.27 98.37 97.78
braper and Snith (p. 204) 914 1.4 139 99.16 186.42 106.79
Dretmer Data (EPH) © g171.5 112 31,20 21.20 26.51
Golf score from Task Pecf 848 2.3 1,98 100,06 485.98 100.21
£a1d Data (D6S, p. 366) 982 1.0 8.49  83.49 141.20 106.61
Bocking & Dunn RR Symp. '82  .620 1.1 537 7257 31.25 31.38
Boerl RR-1980 Paper .986 1.4 2,98 90.31 62,58~ 92.62
 Rerlinger and Pednazut, P.292 640 2.2 .19 g7.63 79,39 19.29
Longley DiW p. 312 996 1.2 J18E+6 121,39 641,15 1066.6
' Journal of Exp. Education A75 1.4 9,89 97.89 93,62 93.41
\ Rulon: Pref & Buccess - Mech (261 2.4 2,42 100.09 123.62 103.65
« rulont Pref & Success - Oca  +323 2.7 2.65 100.21 130.26 117,00
s pulon: Pref & Buccess - Pas 252 2,0 309.7  99.89 102.17 100,86
¢ Retention from Denos & WISC 1388 1.7 ,BE45  84.15 81,97 58.07
7 piecs-tiarris from 10 & Ach  .185 3.4 209.9  92.12 93,89 93.33
16 D & § Steam Data (p.352) 949 1.5 .43 94.83 190.84 208.86
19D & § Data (p. 233) 616 1.7 .007 66,58 48.35 53.23
20 Female Talent Data Cil p. 345 2331 3.7 2.10  99.16 101,20 107.77
21 Wale Talent Data il p. 349 411 3.2 1.63 98.31 98.79 104.17

Note. The information presented in the Note of Table 1 16 appropriate for

this table.
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Table 3

Score Matrix Size and Corputation Times for Several Data Set

Numecrical Designator

Data s:tabngscrlption n p Time (M;S)
1 Marquardt's Acetylene ;Dét~a 16 3 2106
2 Chew LP(S) Predicts MRT 293 5 6:51
3 Hoerl's Kansas Corn Yield 51 B 6 2;02
4 Draper and Smith (p. 204) 21 3 108
5 Drehmer Data (EPM) u ' 2103
6 Golf score from Task Perf 120 « 151
7 HRald Data (DS, p. 366) 1‘,3§ 4 m
8 Hocking & Dunn RR Symp. '62 20 3 107
9 Hoer) RR-1980 Paper . 15 5‘ ;21
10 Kerlinger and Pedhazur, p.292 3,0‘ 4 123
11 Longley D&W p. 312 o 15 6’1 136
12 Journal of Exp. Education . 83‘ 4 158
13 Rulon: Pref & Success - Mech 9 3 | 138
14 Rulon: Pref & Success - Oca 66 3 Ry
15 Rulon: Pref & Success - Pas 86 3 133
16 Retention from Demos & WISC 29 10 1430
17 Piers-Harris from 10 & Ach 55 7 3140
18 D & 5 Bteam Data (p.352) 25 9 3129
19 D & 5 Data (p. 233) 16 4 113
20 Female Talent Data Cil p. 345 2N 12 93:39
21 Male Talent Data CsL p. 349 234 12 80:09

Note. The information presented in the Note of Table 1 is appropriate for

this table.
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Discussion of AERA 1986 Session 21.25
Applications of Multiple Linear Regression’

Bruce G. Rogers
University of Northern lowa

mmmwm:

Since T have not seen the full paper, I will need to base my conmments
on the short draft 1 reoelved It proved to be an u\novating appllcation of
both a utilltarlan phuosophlcal viewpoint and 1ntetaction 1n a sinple 2-way

| ANOVA,

'l‘he model is based upon the cr!teria of maximizing the leaming when
surmed across au atudenta. 'mis 15 reminisoent of one of the 19th century
phuoaophlcal discuaalons on ethics.‘ Jeremy Bentham (b 1748) developed the
concept that: the criterla of the qoodnesa ot a poucy was determined by
calculating t.he qood tor each u\divldual and then sunmlng up the individual
goods, mtima it is caned the calculus apptoach, in reference to
lntogratlon as tho summing of tho values. And that‘ 1s what is done in the
table cntltled "Optimality Index Values." For every poadblo way of
assigning the four students to the four teachers, the sum of the Optimality
values is conmputed. 'i?nn that particular assignment of pupils with teachers
which yielded tho maximum sum is chosen as the desired assignment,

Bentham was aware that sometimes the principle of the "greatest good
for the gieateat nunber," when applied to public pollcy, could come in
oconflict with what a particular individual peroelv.ed as their own greatest
good. I told Joe that many principals might be hesjtant about applying this
model for fear of confronting irate parents who wanted another choice. Por
example, if the parents see the table of Predicted Values, it is likely that




all of t.hem will request that their chud be plaoed with Teacher 1. Trying
to convince any one parent to allow their child to be put with a less-than-
best teacher in order to maximize some abstract "Optimality Index" may prove
to be very challenging. Indeed, it is my understanding that many principals
randomly assign pupils to the teachers, when several teachers are teaching
the same grade, in order to avoid possible charges of favoritism toward
teachers and pupils. But Joe assured me that in some districts (including
the one in which his wife taught) the principal and the teachets do consult
on how to best assign the students. Given that such decisions are to be
made, the Ward procedure has the definite virtue of providing an unbiased. ,
approach. & | R

The procedure uses a two—vay ANOVA lnteraction design It ’is'a
variation of the aptltude-treatment interaction, where aptitude is past
performance and treatment 18 the teacher. luchurd 8now. Lee Cro:bach, and
others, have worked extensively to ﬂnd sﬁch Mteructiona. with 1imited
success. However, lince the toacher 15 uuch an lnportant varlable in the
classroom, it is pouiblo that this approach wnl ptove to be an efficient
method of detecting such 1nteuctlom.

1 1’1ko the term "catalytic” vﬁriubh. In chemistry, we take two
compounds which react very slowly or not at all. However, when wo add a
catalyst, the reaction is speeded up, but the catalyst is not affected. 1In
Pigure 1, only a weak interaction is present, but when the catalytic
variable is ad'ded., a strong interaction is obeerved, as geen in Figure 2.
And the resulting "Optima.l sum of Payoff Values® is increased fourfold, as a
result of this interaction.

Let me conclude by making a practical suggestion to the authors.

Special computer programs were written to compute the tables. 1Is it




ossible to do this with regular routines in MINITAB, SPSS, SAS, BIDP. etc.?
(f 80, it would be useful to descrlbe how that is done, thus making the

orocedures easily available to a large number of readers.

W&Mﬂm—m

In the paper on Model Building, attention is given to a set of widely
used approaches to variable selection in nultiple regression. It is pointed
out that no technique should be used 1ndlscuminant1y. but rather, that user
judgment should be used to determine that set of predictor variables which
will be most 1nterpretab1e. '

These techniques wvere applied toa variety of data sets, ranging from '
real world data to oontrived data. 'me results 1n 'rable 1 auggeat that, Ln
general, the stepwlse method la a desirable ptocedure. but that exceptions
do exist. Therefore, the general oonsensus does seem to aupport t.he

author 's conclusions. ‘ ‘ ;
A suggestion might be ’made for this éaper; 'fﬁé "Best Subsets" prog:m\
was obtained from BMDP, but is not avallablerin §PSS. What are users to do
if only SPSS is available to them? A look at Figure ) suggests that if the
Stepwise and Backward procedures were run, and the highest R? selected, the
results would not be substantially different from using the Best Subsets
procedure. While this point is inplied in the paper, perhaps it could be
made more explicit.
Thayer's pupe; oh Dichotomous Variables ghows an enpirical example of
" the mathematical equivalency of several least squares statistics. The paper
ints out that a number of writers in the behavioral sciences have

e for data in which the dependent

first po

argued that regression is inappropr iat:

variable is dichotomous. Thayet chose not to attack the critics directly,




but used that well-known proof model from geametry, reductio ad absurdum. A\ o

set of data is analyzed twice, using the dichotomous variable first as the
dependent variable and then as the independent variable. The results are
shown to be identical, It is then concluded that if the reasoning of the
critics was followed to its logical conclusion, it would be necessary to .
discard t-test, ANOVA, ANCOVA, discriminant analysis, and mltiple »
regression, It would be intereétiﬁg to hear how the critics would respohd’
to this argument.

But let me suggest a reason why one might prefer a computer progran‘
specifically written for each of the above routines, rather than using a
regression program only. While it is possible to show tfxat, on a two—group
oorzparieon; the t-test, F-test, and simple correlation are mathematically
equivalent, the computer output for each is not in the same form. Thus, the" {
square root of F must be taken to get t, and a more conplicated
transformation must be made to get r to t. It is aleo true that a 2 group
discriminant a.nalyaia is the same as miltiple regreasion on a dichotomous
dependent variable, but again the computer output looks different. And for
more than two groups, the output is much dittorent. If the transformations
are not made correctly, then serious differences can result. While that is
not the situation that the critics had in mind, it is a legitimate reason
why a person might use a technique other than regression.

But I digress., This does not detract from Thayer's basic conclusion
that the underlying theory of the various least squares techniques is the
sane, and therefore all of them can be considered as special cases of
nultiple regression, canonical correlation, or multivariate analysis of

variance (SPSSX uses the latter procedure as an umbrella). Conceptually,




this is a powerful tool for helping the student to see Classical statistics
as variatijons on a major theme ‘rather than as a "bag of tricks."

My only suggestion for this paper is that the layout of the tables and
the use of the t values may p"rove' difficult for the reader to follow.
Perhape the author will submit the paper to a colleague or a student, and if
they have similar difficulties, revise the layout to strengthen the

presentation.

Conments on the paper by John Morris

The Morris paper begins by stating that the primary concem in
regression is the predicting of accurate criterion scores, rather than the
estimating of population tegryésaion weights, wWhile it is true that, in the
theoretical sense, these two criteria are comparable (i.e., you cannot have
accurate criterion prediction without accurate regression weights), it is
also true that the beta weights may change 1f a different type of regression
is used (e.g., ridge regreesion). But in both cases, the ultimate focus is
upon the accuracy of the criterion scores.

The PRESS Algorithm was designed to select a miltiple regression model
variable subset that would minimize the Sum of Squares on Cross Validation.
This is somewhat akin to the "best set® selection of which Thayer spoke.
The philosophy of cross validating the total choice process (p. 13) by
omitting one subject at a time is akin to the 'J-ackknite' procedure.

In the computer runs, "real® data was used Instead of data from Monte
Carlo sinulations. That definitely has the advantages that are mentioned
(p. 15) but also has the disadvantage that one does not l.mow a priori which
assumpt fons are violated and why, whereas with Monte Carlo data we can
specify and create the violations. Perhaps in a revision of this paper it




would be useful to discuss both the strengths and weaknesses of these
procedures., . .

The results show that, for most 'cases, the OLS is sufficient and even
better than the other methods. I like this conclusion. It is compatible
with my own philosophy of techniques. Some people complain that we use
statistics without carefully analyzing the data to see if it meets all the
assumptions., But I suggest that if the data even vaguely looks appropriate,
we can submit it for computer analysis. Thus, we can examine the results,
Do they make sense? If not, what violations might account for it? And how
might the data be transformed or the procedure modified to make better .
interpretable results? The results of this study seem consistent with that,
Ridge regressjon and the techniques have an important place, but for most
data we should first look at OLS, and then try other techniques where
appropriate, : The PRESS algorithm, available on a microcomputer, can then
provide an effective way to address this selection problem, .
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The objectives of this symposium are to:

1)

2)
J)

4)

5)

We ask you to pretend that this is the Dallas Independent School
District Board meeting. The program manager and evaluator are presenting
the end of year evaluation results for a state-funded ocompensatory
education program. The evaluator has briefed the program manager and the
report was delivered to the school board approxlma.tely two weeks ago. We
must assume, though,- that no members t.horough;y understand the report,

_makers.

mainly because most have not read it in anticipation of being briefed.

Regression and Model C for Evaluation

Gall Smith, Keith McNell and Napoleon Mitchell
Dallas Independent School District
Dallas, Texas

.

QVERVIEW OF SYMPOSIUM

Provide a rationale for using regression analysis (specifically
Model C) to evaluate educational programs,

Provide one gxamp;e qf an extensive Model C evaluation report.
Discuss assumptions of Model C and ways to deal with those
assumptions,

Share examples of disseminating Model C results to decision

Identify and resolve additional technical issues that evaluators

nead to be concerned about when implementing Model C.




w8

The presentation will be made by two evaluators from DISD. Gail
Smith will be playing the role of program manager in presenting the basic
program, Keith McNeil will be playing the role of evaluator in
presenting théj evallia'tuié‘r;/ résg"lts. A third evaluator from DISD, Napoleon
Mitchell, willﬁ be plua‘n’ying’,. £he ktolé of court-appointed auditor,
questioning the precedures, results; and interpretations. (Those of you

who do not have the pleasure of working under the constraints of a court
order may want to think of Napbleon as a board member who has a Ph.D. in
statistics and doesn't mind you knowing it.) We would appreciate you

asking your questions only after the auditor is satisfied that all his
questions have been asked/answered,- The last ten minutes of the
symposium is reserved for the comments from our distinguished discussant,

Dr. George Powell of the Bducational Testing Service,

e " DESCRIPTION OF TREATMENT PROGRAM

Thé goal of the Reading Improvement Program was to narcow the gap in
reading performance between lower and higher achieving students as well
as minority ‘and ‘White students in the District. | Gbjectives for

accomplishing this goal included: a) providing an additional

‘two-semester, reading course with a restricted teacher pupil ratio of

1:20, b) providing special curriculum materials in logic, vocabulary,
comprehension, and study skills, and ¢) providing staff development on
effective instructional strategies in reading to participating teachers.
The additional language arts course, focusing on reading, was required
for students in grades seven and eight who scored below the 40th
percentile {n Reading Comprehension on the Iowa Tests of Basic Skills
(1TBS).  All students scoring below the 40th percentile at all 24
District Middle Schools were eligible for the program with two
exceptions. Students in special education classes and students in the
two beginning levels of English-as-a-Second-lLanguage classes were not

eligible.




Characteristics ofv students enrolled in the program are presented in

Tables 1 and 2. The figures {n Table 1 indicate that ’ne(arly half the

.Table 1

Number of Students Enrolled
and Not Enrolled in RI Course -

... Fall, 1984 (

Enrolled in R TR Grade
RI Course . . 1 8
Yes . ; . 4285 ; 4790
No 5374 4383
Total 9655 73
8 of Total in RI Course 44 52

T W §

students in the. Dlstt'ryict" middle id;oola were ‘énroued 1njltli‘elptogkram in
the fall of the second year, The éﬁalysis of program effectiveness was
oconducted using ITBS reading oumptehenhion test‘icorés for both Spring
1984 (prot;.est) and Spttf\g 1985 (pOIttbat). The number of students
represented in this analysis'is piovidod by race and grade in Table 2,
Ethnic minority students ocomprised 87% of the total number of
participating students at both grades seven and eight,

Table 2
Ethnicity
Grade Stat Black ~ Hispanic Aslan/Indlan White Total
7 N 2111 591 36 398 3136
) 67.3 18.8 1.1 12.7
N 2580 705 20 4682 3787
1 ) 68.1 18.6 0.5 12.7
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_s‘in‘cevthei qutrictyide’ ypg‘rcent‘ageA oL_' minority students was 768, the RI

program was focusing on minority students.

IMPLEMENTATION FINDINDS

The RI program 1n'g‘vrad‘es ‘ae'vfe‘n andw eight was implemented much better
than last year, though there were miptovements needed, The lack of a
ptogtam manager witﬂ'w“t:iéar lines' of authority resulted in lack of
ccmnunication andAslow or etroneous 1mp1ementatlon. Staff development
sesgions were;/\.less than sugqessful becaugse of redundancy of topics ankd
timing of material, H

Almost au of the clgssroqns observed appeared to be oconducive to
learning, a}tfxough ab&xe “d‘idwhavé an edgolln'ent of more than the max imum
of 20 allowed by the 9uide11nes.( Mcheu were using the RI texts and
~ support materials, Abut: tew were‘ using teachinq tedmiques considered

: beneucial for thleq‘e»ki‘nds of »lkt:.udv:entl ‘
. Few 1nteractione wetok 131!1&«1 by students with the teAdwr
controlling the tntoractions. Al’thgugh most teachecrs provided positive
reinforcement, not all teachers k,,,p‘ryoﬂde‘d at least five instances of
positive rointorm‘nt, The instructional climate was 3Jjudged to be
better in the RI ciuuu than in the regular language A;tl clasgaes, both
in terms of how well the instructional time was used and whether the

instruction was conducive to learning.

ACHIEVEMENT FINDINGS
Results for Grade Seven, A total of 3135 RI students had both pre

and post ecores, although the scores of 151 of these students were

eliminated because their post score was considered too deviant in respect




to gains which werc either too high or too low to meet normal
expectations. Students in RI gained from 30.1 to 32.3 NCE units. But
since’ RI students were selected into the pfogram acoording to their
pretest écof;s, we would expect the regression effect to raise their
soores. RI students also gained more than the comparison group whose
pretest scores were above the 40th percentile (2,3 mean gain vs., -5.9
mean gain for the cbnparison group). - Again, though, the regression
effect would have predicted the general trend of these results, i.e. the
initially higher socoring comparison group showed mean losses while the
initially lower scoring RI students showed mean gains.

A significant second degree fit to the data was discovered in the
seventh grade comparison group, Hence the Model C analysis employed a
second degree curved line of best fit. the curved line of best fit was
the same for both the comparison group and the RI group, hence for these
eighth grade students there was no effect due to pacticipation in tpe R1
program (See Figure 1),

Resullu for Grade Eight, A total of 3787 RI students had both pre
and post scores, although the scores of 184 of these students were
eliminated because theitr post score was conaidered too deviant in terms
of expected gains or losses. RI students gained from 30.2 to 34.8 NCE
units. But since RI students were selacted into the program 'acoordtng to
their pretest scores, we would expect the regression effect to raise
their scores. The RI students gained more than the above 40th percentile
comparison students, but again the regression effect would have predicted
this outcome,

There was no second degree aurvilinear fit found in the eighth grade

data, so only linear trends were investigated. Since a significant




e - e - . . . '

interaction ‘was found, an overall program effect was not 1nyesgigatg§;
The analys.i‘s__was c‘oncluded‘, with tﬁe findiqgs of a signifigaf.t
. apptitude-treatment interaction, The lkines’of b‘est_fi; for the eiépéh
grade are depicted in Figure 2 The Rl program is most effective fc;r
those students who have the lowest pretest scores, Those students at‘;ﬁe

program cutoff gain very little from the extra RI Class,

%
{
;
|
\;‘
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ALTERNATIVE EVALUATION MODELS

There are three major ways we could have evaluated this program.
These three ways were documented and described by Tahorst, Lmadge and
Wood in 1975,

First, we could have compared the performance of DISD children with
what we would expect them to do if they were like the national norm
group. This has been referred to as the Model A approach, wherein we use
the pretest achievement level as the expectation for the posttest
performance. - R ’

Two major gssumptiohs in the use of this model cannot be met, The
selection of students into the program should be independent of the
pretest score, otherwise simple regressloh to the mean can account for
substantial movement to the total grdup‘a mean. This was the situation
in the Rl program, as the pretest measure alao‘ netvéd a.a selection into
the program,

The second assumption of Model A which cnnot be verified is that
the students in the norming sample who are at the same pretest percentile
levels are like those being evaluated -~ like in the sense of
demographics and in terms of quality of regular educational curricula,
We know that most of the DISD students are inner city students, with a
high concentration of low SES students. Therefore, we can't assume that
our students are like the national norming sample, The test that we use
does have large city norms, ~ Although DISD students consistently soore
high, we cannot determine if our students gain more than other large city
students. The high scores may only reflect higher initial achievement
levels of our students, That is, the question of the quality of a

program demands assessment of student growth.
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Second, we could have uged was a local comparison group to evaluate

the RI program. This type of evaluation is referred to as Model B in the
literature. Model B is ’ditﬂcult to implement in most educational
settings, as {n this one, because the model requires that some studeﬁts
(who are otherwise qualified) not receive the Spec}al treatment, All
students scoring below the cutoff of the 40th pgtoen;ile were supposed to
receive the treatment, thus leaving no students for the comparison group,
What actually happened was some students below the 40th percentile did not
receive the RI course. Some of these students were in special educatuion

classes and some received the RI ocourse only one semester, me temaining
students did not receive RI for undocumented reasons, . It was our
educational guess that many of these students were not enrolled in the RI
course for educational reasons which would indicate a higher posttest 1e§e1
than indicated by their pretest (e.g. student is really a high achiever,
she just didn't pretest well),

The third and final model utilizes a local comparison group which is
acknowledgely different at pretest time., The model capitalizes on the fact
that this local comparison qrou;; receives the same f‘oqulavr currtmlum.. The
expected posttest performance of the treatmant group (RI students) is
estimated from the performance of the comparison group. This model assumes
that the achievement gain is consistent across protegt‘\levoll. One of the
major problems of Model C is the determination of this consistent trend in
achievement gain, s the trend linear or Of some other nature? Another

problem is that the presence of erroneous outliers can unduly affect

calaulations of this trend. Outliers do not affect the cmlaulations of

statistics in other models as mich as in Model C.




Lateas

lesuri-uou 3IPITJal1 UL ¥
uoT3ORISUT JuuqeaI]
Aq spn31ade 103 3593 UL ¢
~ $3uUlpPNIS AWOS O3 ;
ss01A195 KAusp 03 Paey 3,U00 . °T
unIoTIam
Jenbal JeTIUTS aata0al ’
s3juepms Jo sdnoib yloq - °1
: unIROIII
JeInbaa 1e[TUIS aATa03a
‘s3uspms jo sdnoib yloq  °1
ased ut
suop ses 3eym 03 Je[Twls °Z
puey Aq aanduco o3 Ases °T
SebejuURADY

uoT3jelaadaajut

T pue UOTIIRIOT
. $13173N0
L3uaesul]

S3UBPNIS
Teuotlippe Jo
putT3ysay saiinbai

. FOTAISS
v&ﬁomﬂﬁo.ﬁm

b _ weaboad

3o K3tTend ‘s218
‘L3 TWPR—oTdues

putuIou UT SIUBPNIS
asa3aid uwo UTPIT3S

i 3 SWIPNIS
*Z voSTIedO

*1 wo13 podIpRad

4 SWIPIS
VoS TIRED

1 Jo Isaqsod

swa1q0d

stepad 3o Liemms

°z
*{ T3a31 3Isaqaxd
ouesIoJiad
3Isod poadxg

°T 31quyxd

3A13081 30U 0P OUA
swapms Te01

W
SAT3031 00 Op OUA
suspms 1001

ucsSTIRdED UMO
Tyl S SUIPIIS

O T°paH

g 19pM

Y TSpOH

5391 s

SWeN 12P0W

83




Model C was dnsen as the best model to evaluate the program because
students were selected into the program on the basis of their pretest
scores, and most students below the cutoff score were setved Those that
were not served dxq not constit:‘ute a valid comparison group as many were
suspected to have been e;(eﬁ;npted‘ because their pretest séore was felt to

be not indicative of their true performance.y

: FR
¥
i

CONCEPTUALIZATION OF MODEL C

Whether or not the RI ‘scores are elevated is the first question to
be answered. We can begin to conoeptuallze the model by looklng at
Figure 3, - All those studenta who have ‘a pretest score below 40 are
placed in the RI program as well as the reqular curriwlum, while all
those who have a score of 40 and above are not allowed in the extra Rl
oourse ~and, hence, only receive the regular curriculum, After olght
months of instruction, the poati:eat Scores are obtained. The straight
line of be'at fit is calculated for the :comparhon group., . This 1line
{indicates the expected poutteos performance for studenta at each pretest
score, (See Plgure 4.) 1If tt;o line fits well, (correlation above .4)
then we can proceed and auurﬁo that the ltuiqht line can be extended
down into the range of scores .of the troatment group which received RI.
(See Figure 5.) We know, chough, that tha students below the cutoff not
only received the rogular cu:riculum ‘but  also received the RI
curriculum, Therefore, the posttest scores of those receiving RI should

be higher than {f they would not have received RI. (See Pigute 6.)
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Figure 4. Line of best fit in comparison group.
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Figure 5. Extension of comparison’'line of best fit into t.reatmex;xt group

f

TREATHENT COMPAR{ SON
GROUP . * GRouP )

3

PRETEST SCORES

Model C illustration of treatment effect.
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A second question of interest is whether the elevated effect was
consistent across pretest scores, It might be that the RI program is
especially effective {n prddut_;ing highér than expected gains for the
lowest achieving students, (See F‘igute 7.) Or, the RI program may be
especially effective for the highest students in the treatment. (See
Figure 8,) Different program\tecanméndations would, of course, result
from these two different findings r(findings’ which, by the way, would not
surface in a Model A or Model B analysis), .Thus, the second qu;astion of
interest 1is, °®Is the RI treatment differentially effective over the
various pretest levels?" Another way to i{erbalize this 1n4teract10n
question is, "Is the RI line of best fit parallel to (exhibit the same
slope as) the line of best fit for the comparison group?"”

Model C, as any statistical quéstion, can be tested with the general
linear model, The full model contains all the information identified in
the question (research hypotpeaie). Restrictions (identified in the
question) are made on the full model, resulting .in the restricted model,
the difference in the number of pieces of information in the full and
restricted models ls~ equal to the number of restrictions, The general

F-test formula is:

2

(R® puLL - r? Rest) / {(piecespyry, ~ piecesppst)

|
2

(1- R® pyLy) /7 (N- plecespyry)
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Figure 7. Model '€ illustration of treatment especially effective

for L
achieving treatment students.
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Figqure 8. Model C illustration of treatment especially effective f
* high achieving treatment students.
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MISCELLANBOUS DATA ANALYSIS TOPICS

Scales

All test information was transferred from percentiles to NCEs.
NCEs are Normal Curve Bquivalences which are a normal distribution
transformation of percentiles. NCEs are an equal interval scale,
therefore amenable to statistical manjpulation. They have a mean of 50
and a standard deviation of 21.06.
Comparison grodps

The ocomparison group should be receiving the regular curriculum

received by the treatment group, In pallas, most of the students above
the B80th percentile enroll in an honors English oourse. 'Iherefore,.
students above the 80th percentile were excluded from the analyses. Some
students who should have been in the RI program because they had a
qualifying pretest  score below 40 were not given the special treatment.
Before these students were combined with the regular comparison group,
they were analyzed to see if they functioned differently.
outliers A

Students whose posttest scores were more than two standard errors
of estimate beyond their predicted posttest score were eliminated from
the analyses, The statistics used for a given student came from that

student's group, RI comparison above 40, ot comparison below 40,
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MULTIPLE LINEAR REGRESSION VIEWPOINTS
VOLUME 15, NUMBER 1, SUMMER 1988

Using Multiple Regression with
Dichotomous Dependent Variables

Jorome D. Thayer
Andrews University

Introduction
Dichotomous varjables are frequently encountered in multiple regression
analysis, both ga\lndepgndent nndldependent‘vgrlublep. A dichotomous
1ndependen$vvarloble li used to éeterllne whether group membership is related
to or ylll predict a certain outcome (i.e., whether gender prsqicto gpa).. A
dichotomous dependent vaylable Is used to determine a combination of varlables
that will predict group ne-berahip (l,e., to predict dropping out of college).

H!cgorlcally. whenever a dlchotopoua variable was studied as an

independent varlableiulgh one dependent varjable, a t-test, analysis of.
varjance or analysis of covarluncg was conducted, Wﬁen a dichotomous variable
wan studjed as a dependent variable, discriminant analysis was used,

As multiple regression became more common, its advocates suggested that
it could or should replace the t-tast, ANOVA, ANCOVA or discriminant analysis
in dealing with dichotomous variables by using coded variables,

Recently, however, Cox (1970), Goodman, (1978), Aldrich and Nelson
(1984), and others have questioned the practice of using multiple regression

when a dichotomous varjable fs used as the dependent variable. The most

frequently ouzge;tod replacement for multiple regression is logistic
regression,

in thé introduction to Aldrich and Nelson (1084), it is suggested that
ordinary regression analysis fs not an appropriate strategy to analyze
qualitative dependent variables, including téo-e that are dichotomous. They

go on to express the limitations of multiple regression very strongly:

on




¢ #.n;Perhaps because of its widespread popularity,

4 regression may be one of the most abused statistical
techniques in the socia) scifences. While estimates
derived from regression analysis may be robust against
errors In some assumptions, other assumptions are crucjal,
and their failure will lead to quite unreasonable
estimates. Such s’ the case when the dependent variable
is a qualitative measure rather than a continuous,
interval measure. . . . For exumple we shall show that
regression estimates with a qualitative dependent variable
may serjously misestimate the magnitude of the effects of
independent varjables, |and) that al) of the standard

~ statistical lnferepces»nnch as hypothesis tests . . . are
unjustified (p. 9, 10).’

The authors suggest that the failure of regression is “particularly
troubling in the behavioral sciences” (p, 10), giving examples of qualitative
dichotomous variables from the fléids of'polltlcal'.cléhce; economics and
socjology. “Simidar criticisms concerning diéhbtonous dependent variables are
‘given strong emphasis In multiple regression textbooks afmed at economics and
anclology,'but popular ‘regression textbooks in the behavioral sciences related
to psychology and educatfon do not express this same concern. For example,
‘néither Cohen & Cohen (1975) nor Fedhazur (1962) deal with weighted least
squares ‘or logistic regression, two methods mentioned by multiple regression
critics as preferable with dichotomous dependent varjables. Both texts state
that multiple regression can be used for and fs mathematically equivalent to
discriminant analysis when the dependent variable s a dichotomy (Cohen &
Cohen, p. 442; Pedhazur, p. 687), but neither gives an indication that there
are criticiems of this use. Tatsuoka (1071) states that in the dichotomous
dependent varjfable case, multipie regression, discriminant analysis and
canonical correlation are al) mathematically equivalent and again, no
indication {s given of any criticiems of this approach.

Neter et al., (1063) list three problems that arjse when the dependent
variable {s dichotomous: 1) non-normal error terms, 2) non-constant error

variance, and 3) constraints on the response function, They state that even

with binary dependent variables, ordinary least squares still provides




unbjased estimators under quite genera) conditions, and "when the sample size
is large, inferences concerning the regression coefficients and mean responses
can be made in the same fashjon as when the error terms are éssuied to be

normally distributed” (p. 357). They add, however, that/theaevéstinatorc wlli
not be efficient, giving .Jarger varjances than could be obtajined with weighted

procedures,

The |oiullons proposed to these problems fnclude using weighted least
squares to give constant error variance and using a transformation (such as
logletic) that limits the response function to a range of 0 to 1.

In comparing the use of logistic regression or discriminant analysis with
dichotomous dependent variables, Press and Wilson (1978) suggest that logistic
regression is preferred except when the pdpulatlona are normal with {dentical
covarjance yatricea. They extend tﬁe crl(léli-a of others to include
sftuations in which dichotomous variables are used as independent variables.
They stute that Joglstic regiencioﬁ is valid for u:nlde ;ﬁrlety of underlying
usnunpt{onu including 1) all éxp)énatiry varliblei ar; iuitléaﬁl;ie nofnally
distributed with equal covarjance -uﬁrlcel. 2) ali‘exéianut;r; ;nriablec are
Independent and dichotomous, and 3) lo‘e are lultlvorlite normal and .on£
dichotomous whereas dlncrlnlhunt analysie ie onl; valid under the fireat set of
assumptions, These comments are not dlroctod‘lt lultlblo regression, but
would apply in those situations where it js mathematically equivalent to
discriminant analysis, Their conclusjon ie that logistic regression with
maximum Jiklihood estimation is preferred to )inear discriminant snalysis.
They state, however, that it is unllkoiy that the two methods will give
markedly different results or yleld substantially different linear functions
unless there is a Jarge proportion of observations whose x-values lie iIn
reglons of the factor space with linear logistic response probabilities near
zero or one, They go on to say that logistic regrelllan is preferred

when the normaljty assumptions are violated, especinlly when many of the

independent variables are qualitative,

LR
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--The crltics state that jn addltion to the predictlons made' by the

regrestlon equation with a dichotomous dependent varlable. aiatlstlcalbt;sts
are aleo lnvglld. This uould lnclude the F test of the overall mode) and the

t values for each predictor in the~-odg1.

Cox (1970), in re(errlng to the use of multiple regressfon with
dichotomous dependcn!,varlableu. states that “the use of a model, the nature
of whose lln}tations can be‘(oreléeh;‘}l*hoi wise, except for very limjited
purposes"” (b. 18). If these critics are correct, it appears as ir researchersg
lnlgducatjon and psychology should discontinue the use of multiple regression
in these situatjons, Pemaletiona sl et i s i e 8 b

) o , Problen co \ I .

Thla puper ln an attenpt to aaaens the ueanlng ot the chnrges made

agnlnst nultlple regreaslon und to cuggelt uhat the regression community in

i

educatton and pnycholozy cnn do to come to terms with critics of nultlple,
regresaion. The purpone of thlu paper is not to evaluato the validity of the
crltlclo-u but to deal with sonme logical oxtonolonu of thou. If theae

crltlcllnu are vulld arc t- te-tn. anulyn{n of{varlnnca, unglyalu of

covarlancc dlucrlnlnunt nnalyull, canonlcal correlation, and any use of dumay
vurlnblel ln nultlple regroau!on ui;o called into question?
The questions raised by thl- paper, then, arox
1. To uhot extent do these crltlclcnn affect the validity of other
conpurablo ltntlutlcal procedures?
2. It othcr ttallutlcul procedurel using dlrrercn( assumptions give
ldentica) re-ultl to sultiple regression using dichotomous dependent

variables, does thig imply suepicion concerning the other procedures

or susplcion concernling the validity of the criticisms or both?

Procedures and Findings
To examine the validity and/or serlousness of these criticisms,
implications of this situation are considered by examining & set of duta taken

93




from the A3 dats set in Gunst & Mason (1060). This data set has 313 yearly
observatlons with 14 varlablea The year vurlnble was dlchotonl:ed by letting
the first 7 years be in one group and the last 6 yearl be the othar group. The
dota is analyzed in § dlrferenl cases with dlfferent arrangeaentu of the
dichotomous varjesble with one or tuo quantlt;tive vnrlnblcn from this data
set. The dlcholonougvxgylabl? l, considered as both a dependent variable and
an lndcpen&en\ va}lublef

In Table 1 different combinations of quantitative and dlchotonous
independent and dependent vnrlnblel where multiple regreallon has been used
are presented uitb a Jisting of cunventlonnl nlternatlve ltntlsllca] methods
and methods recommended by lultlple regre-alon crltlca. The crltlca uuggest
that in cases uhere a dicholonou- dependent varlable is used (caae- 1 and 3)
multiple regreaulon Iu lnupproprlate. The approcch taken 1n this paper is to

compare the results of -ultlple regrelllon in these cases w!th retultl of

cases where multiple regression has not been attacked (caueo 2 and 4).
Table 1

Possible Statlstical Procedures to use with Different
Combinationa of Dichotomous and Quantitative Variables

Case Dependent Varjsble Independont Varjable — Possible procedures .

One Predictor
1. 1 Dichotomous 1 Quantitative Logistic regression
Pearson correlation
Pt. bis. correlation

2. 1 Quantitative 1 Dichotosous t test
Pearson correlation
Pt. bis. correlation

Two+ Predictors .
3. 1 Dichotomous 2+ Quantitative/0+ Dichotomous Logistic regressjon
Discriminant analysis
Multiple regression

4. 1 Quantitative 1+ Quantitative/1+ Dichotomous Analysis of Covariance
Multiple regression
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Table 2 preaentu tho reeultn of the one predlctor cases with the

dlchotonoul varlable as a dependent varlnble (case 1) and as an independent

varlable (cale 2) ln thoae lltuatlons the t Vulue l- the same whether the
dlchotonouu

varlable ls the Iudependent or dependent varjable. A ope

predlctor lodel is the aluplest case of multiple regreaelon and the test of

slgnlflcance of the relatlonship is -alhe-ullcally ldentlcul to an independent

means t- teu( and a one—wuy ANOVA with two groups and the regression test of

nlgnlflcance (t value) ls the same whether the dichotomous varjable js the

1 s

1ndependent or dependen! vurluble.l lf 8 tenl “of llgnlflcance ‘with a

dlchotonous dependent varloble ls lnvalld then all tests of significance for

an !ndependent means t test, a two-group one-uay ANOVA and

correlatlon/regrelllon ulth an independent dlchntoubnc variable are also

Mt

invalid.

. Table 2
dne Predictor !xenplou

CASE 1:  Multiple regression clajmed to be fnvalid

Dependent varlablo = 2 (Dichotomous)
Independent varjable « 3 (Quantitative)

ta = -6.910 ~- sam¢ as case 2

CASE 21 Multiple regression fe valid

Dependent varjable « 3 (Quantitative)
Independent varjable = .2 (Dichotomous)

t2 = -6.910 -~ same as case )




Table 3 presents the results of the two predlclor»caaeo with the
dichotomous varjable as a dependent variable (case 3) and as an 1ndependeht
variable (cases 4a and 4b), quq\a )l a altuat}on where -ultlplfyregresl;on
and discriminant analysis aré both frequently used but ia conaldered {; be
invalid by the critics of ordlnqry least squares due to the pfeuence of a
dichotomous dependent varfable. The t values in case 3 are testing the

significance of the relationship of each quantitative predictor with the

Table 3
Two Predictor Examples

CASE 3: ., Nultiple regression claimed to be invalid

. .Dependent Varjable - = 2 (Dichotomous)
Independent Var{ablea « 4 (Quantitative) °*
. -3 (Quantjtative)

tg = -0.324 -- same as case 4a
t3 = -6.480 -- same as case ¢b

CASE 4: Multiple regression is valid

a. Dependent Variable = 4 (Quantitative)
: Independent Variables » 2 (Dichotomous)
= 3 (Quantitatjve)

t2 = -0,124 -- sane as case 3
ty = -0.397

b, Dependent Variable » 3 (Quantitative)
Independent Variables = 4 (Quantjitative)
= 2 (Dichotomous)

ty « -0.307
tz = -6.460 -- same as case 3
L]

dichotomous dependent variable controlled for the other quantitative

predictor. Cases 48 and 4b give fdentica) t valuee to those found in cuse 3

for the relatfonship between the dichotomous varjable (which is now one of the
96




lndepeh&?n; Qarlabl?-Aihd in a leﬁlfiinke pl;ée -ccbidlng to assumptions of

g ;u;;lﬁié/regrcui}én)ynﬂdkihe aéyeaazﬁi”quiatitutlﬁé varfable. " If ‘the tests
nf;}'uhich zhb t values In Case 3 are 1nvalld;'then the tests for which the t
vuide;‘lh Eu‘es 4a n;d‘db are used n}e alio’lnvalld. The t values in cases 4a
aﬂ& 4b'ureylhe an;e as the?iquure‘root of the F values that would be computed
with ; 6ﬁe—ua§ analysis of covariance in which the independent quantitative
varjable &a; treutéd as&the covariate and the independent dichotomous variable
as the groublng variable. So therefore if Case 3 is invalid, then all one-way
ANCOVA designs and any use of dummy variables in multiple regression would be

invalid also.

Conclusion and Recommendations -

It fe clear tro;”the @bov;ng§ip}el thutwgpe teats of significance are
ldenilcal uﬁeiher)thewdlchotOuouu variable la.nn independent variable or a
dependent varjable. It qppeara,ﬂ}hereforé, that if the critics of using
multiple regresaion with a dichotomous dependent vﬁrtable are to be taken
serfously, they must also deal with all planlf!cenco testing with t tests,

analysis of vurlgnca.wnnalyslu of coynr;anqe. dlncrlllnunt analysis, and any
use of du--y'V§r1qblgp lnﬁlultlple f&g?ectlbn. There may be othor statistics
reported in a multiple regielllop%’nalyllu. such as the standard error of
estimate or predicted values for which the Interpretations may not be
appropriate when dichotomous dependent variables are used, but thiv puper will

not deal with these {ssues.
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’ Relationship of Student Characteristics and
Achievement in a Self-Paced CMI Application

Gerald J. Blumentfeld, isadore Newman, Anne Johnson and Timothy Teylor
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1

Learner control of CBE spplications has been an enticing topic of research.
Reviews by Steinberg (1977) and Taylor (1976) indicate that effects upon achieve-
ment are equivocal when learner control has been compared with program or in-
structor control. The mixed results suggest the possibility of an interaction
between certain aspects of instruction and characteristics of the learner, when
the learner is permitted to control the program.

Current theory and data suggest that an important variable related to
academic success is the student's perceived locus of control. Internal/external
orientations have been shown to have a significant relationship to academic
success (Coleman, et. al., 1966; deCharms, 1976). Behaviors exhibited by those

 heving high internal or high external orientations (Crandall, et. al., 1965;
Seeman, 1963; Seeman & Evans, 1962) appear to be closely related to successful
use of opportunities that permit one to control the conditions of learning. It
was hypothesized in this study that high internals would be more likely to ex-
plore and profit from learner control opportunities than would high externals.
The I-E Scale developed by Rotter (1966) was considered to be an appropriate

measure of this characteristic for collegerntudentsfj B

A more direct measure of achievement-stricing behavior is the SSHA (Survey
of Study Habits and Attitudes, Brown & Holtzman, 1967). This assesses the ten-
dency of students to be prompt, to employ effective work methods, and to possess
positive attitudes towards teachers and schooling, SSHA has been shown to be
related to grade point average of college students (Brown & Holtzman, 1967
Desiderato & Koskinen, 1969) and to exam scores (Wenm & Liu, 1976).° It has also
been shown that the SSHA and the I-E are related (Ramanaian et al., 1973).

; 1t was hypothesized for the studies reported here that affective study

] habits would facilitate one's efforts to learn, and that this variable should
: interact with 1-E when students are given an opportunity to excercise control.
It vas also hypothesized that these variables would be particularly salient in
a self-paced CMI application where the instructor controlled the operating
paramaters during the sacond half of the course. Under such conditions, stu-
dents who differ on these variables should exhibit even greater differences

on achievement as the course prograsses.

METHOD

Subjects

i Subjects were students enrolled in & junior level college course on edu-
| cational measurement. Study A was conducted during the spring quarter of 1978;

*This article 4s based upon a paper presented at the American Psychological
Assoctation
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:itu&y B was conducted during the spring semester of 1979. “The University had
- changed from quarters to semesters and the course went from 3 quarter hours to

2 semester hours. Requirements of the course and sequencing of activities re-
“Huaincq_thc same, .

Measures listed below were secured for 102 of 133 students enrolled during
1978 and for 86 of 125 enrolled during 1979. Most of che students not included
in the samples withdrew from the course very early in the term. - A few students
were absent on - the days the I-E and SSHA were administered. :

Instruments

" Rotter's I-E Scale and the Brown-Holtzman SSHA were administered during
regular class meetings. Students were given individual feedback about these

measures at the end of the term.. A brief description of each is presented
below: N

1. 1I-E Scalg.- This séﬁle cont#insk29 fofce&-choice items, inclﬁding six fille
. 1tems, and was keyed so that a high score indicated a high internal orientation

&

MJ 2, SSHA. This 1nventory con:ains 100 1tems grouped into the following subscal

a. Delay Avoidance (DA). Lack of proctastinntion.
b.  Work Methods (WM).. Effective study procedures,
¢. Study Habits (SH).. DA Plus W
d, Teacher Approval (TA) Attitude towards teachers lnd their behavior.
e, Education Acceptance (EA), . Actitude towards educational practices.
. £, .Study Attitudes (SA), .TA plus EA .
.. .. . B+ Study Orientation (50). SH plus SA (ov.rall mallurc)

3. Compre! nsive Exama._ Achicvcmcnt in each of lour units of work was measure
by thircy icem selection type exams, Two or three alternate forms were avail-
able for each unit, Exams usad were a regular part of the course. Item analys
indicate acceptable quality. Measures of reliability have ranged from .70 to
more than .90, Method of estimating reliabilicy, number of students involved,
and term when analysis was conducted, varied from one set of unit exams to anot
4, GPA, Overall grade point average at end of spring quarter was obtained fr:
the registrar's records, This msasure has been shown to be correlated with ac.
denic achievement in the measurement course (Blumenfald, et al. 1973) and with
research on learner control in CAl (Taylor, 1976).

Procedures

Student behavior and achievement was examined under conditions imposed by
self-paced computer managed instruction applied to an undergraduate educatfona:
maasurement course. A brief description of the course and the computer progra:

is given below. More detailed accounts can be found in Blumonfeld, et al. (19,
and Blumenfeld, et al, (1977).

1. Measurement Course. Emphasis is placed upon evaluating the effectiveness
of instruction and upon developing coordinated sets of instructional objective:
instructional procedures, and measurement procedures. The course is divided




i

{nto four units and one teaching project.  The teaching project is not self-paced
and student behavior related to this aspect of the course was not included in the
analysis. The units are divided into modules - three modules per unit. Students
are given ten to fifteen behaviorally stated objectives for each module. They
are required to take module study quizzes via computer terminals on each unit they
study prior to tsking comprehenaive exams. - Study quizzes are taken outside of
regular class time and are scheduled by the student at his or her ‘convenience.
Comprehensive exams are given during regular class time during six predetermined
sesaions distributed throughout the term.” Criterion for passing a unit exam is
80%. A student may take a second exam on each unit if he faills to pass the first
time. A few target points awarded at the beginning of the term, to encourage
students to get started, permit a few students to pass unit I with only 70% cor-
rect. Course grade is determined by the number of units the student passes. If
the student passes four units, a grade of A is recorded; three units, a grade of
B is recorded, etc. Minus grades are given if students achieve 702 but not 80%.
The student can decide to work on all four units or to stop after one. Upon re-
quest, incompletes are awarded to permit a student to complete ome additional
unit. Only work completed during the spring term was included in the analysis.

. The topics included in modules ome thru six are repeated in modules seven

thru twelve. Objectives in the first six modules include critical concepts and
less difficult tasks., Objectives in the last six modules include more advanced
ideas and more difficult tasks,

2. Computer Program. The program contains twelve quizzes with each quiz con-
taining twelve items. A pool of five selection type items is included for each
objective, When a student signs on, the program randomly orders the objectives
and randomly selects one item for each objective. Emphasis is provided by in-
cluding two five item pools for some cbjectives and repeating these objectives.
After a correct answer, the student is so informed. Appropriate page references
for three books follow both correct snd incorrect answers. If an incorrect
ansver is given, the student is informed as to why the answer is not correct.
Correct answers are not given, but the student is provided with some direction
for raconsidering the problem. At the end of the quiz the student can see a
1ist of objectives related to the items answered incorractly.

Criterion for passing is ten correct answvers. 1f the student meets the
critarion the program advances the student to the next module., I1f the student
fails to meat the criterion a second or third study quiz on that module is re-
quired, A delay of ten minutes per error is imposed before the student is per-
mitted to take another quiz., Students failing a module quit for the third time
are advanced to the next module. A student who fails three quizzes on two con-
secutive modules is not permitted to continue until he obtains a "password"
from the instructor. After the student has completed module six, control of
the computer prograsm is given to the student. The student decides which module
to go to, how many times to take & quiz on that module, and in what order to
tepaat modules if he so chooses., The student can avoid any delay imposed earlier
because of errors.

RESULTS

Intercorrelations of Measures

Tables 1, 2 and 3 are divided into parts A and B and correspond to 1978
and 1979 data, respectively., Table | 1lists the intercorrelations of the SSHA
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TABLE |

*‘lnTercqqﬁéloTiOn ofiThe'SSHAlS¢oles,

.« I-E and GPA.
DA WM SH TA EA S; S0 IE GPA
DA .59 .89 .50 .67 .63 .82 .07 .3z
: W 89 .65 .63 .68 .8¢  -.08 .3
T SH .65 .73 .73 .94 -0l .39
DA | 77 e 8 -.06 .23
Y EA W e -2 .30
. osh ,x; T ,Hai N:ﬁ ' , o 92 -0 .29
>0 (r > .195 significant.at .05 lével) ;’Oé -3
IE (r 2 .25¢ significont at .0l level) .09
DA .68 .92 .38 .60 .53 .8l 30 .2
oM 91 .57 .55 .62 .85 .26 Ny
TS S .52 .63 .63 .41 .30 .18
DoTA | 67 .92 1 w2 s
€A 91 .83 40 .09
5 Sh 45 .02
S0 43 .09
IE . - 13

(r2 .212 significant at .05 level)
(r > .277 significant ot .0l level)
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scales, I-E and GPA., It is interesting to note that in study A all correlations
sre significant except those involving I-E. In study B all correlations are
significant except those involving GPA.

Table 2 indicates the relationship of the variables described above to unit
exam mcores., It can be observed that while GPA is significantly related to unit
exam scores in both studies, I-E and SSHA do not possess that consistency. I-E
1s related to unit exams in study A but not in study B. SSHA is not related to

unit exams in study A but many of the correlations approach significance in
study B.

Regression Analvsis

To test the original hypotheses that I-E orientation and study skills would
be salient variables further analyses were conducted using SH since the rela-
tionship of the other scales to unit exams was not significant. Full and re-
stricted regression models were used to examine the predictiveness of GPA, SH,
1-E, and (SH » I-E) when the criterion was unit exam score. Regression models
were computed for each of the four unit exams. GPA was included in all models.
Therefore, tests conducted determined whether or not SH, I-E and (SH & I-E)
could account for a significant amount of criterion variance above and beyond
that accounted for by GPA. The interaction (SH » I-E) was found pot to be
statistically significant, nor was SH.

In study A I-E was found to be significant at the .0l level for units I,
11, and 111 and at the .05 level for unit IV. However, I-E did not account for
a significant amount of criterion variance beyond that accounted for by GPA in
study B, The multiple R2 for the full and restricted models are given in Table 3.

Ad Hoc Analysis

Trends

1t was hypothesized that the effects of variation in locus of control and
study habits upon student performance would increase as the term progressed.
Therefore, intercorrelations across modules and units were examined to determine
1{ any trends could be detected. In study A the correlation matrix indicated
that DA vas the most likely scale to generate a significant trend, Cumulative
exam scores across the four units were recorded for both the first and fourth
quartile groups on the delay avoidance scale. Traditional analyais of variance
for trend was inappropriate because of extreme heterogeniety of variance.
Therefore, log-log transformations were made for esach student's cumulative exam
score curve.

The slope of the regression line for each of these log-log transformations
vas computed., This was used as a measure of trend. The means of the slopes
for the two groups vere .86 and .65; the variances were ,05 and .08, Students
who scored high on DA had the higher mean slope. A test of these values indi~
cated that the difference batween the means of the slopes was significant at
the .0l level. Obtained t was 2.776 with df « 48, This trend was not found
to be present in the data obtained in study B.

Use of CMI Program

No directional hypotheses with respect to stulent utilization of the Qi
program were formulated. However, it is reasonable to assume that successful
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w «<OC amnm

.26

JTABLE 2

Correidtféns of SSHA Scales,

S

WMo SH

.20 .13
A5

A2 16

6 23

TA

.08

ond GPA wiTh Unit Exam Scores

EA sA S0
-.04 .04 .09
.01 .02 .09
06 .10 .13

(F 2 .195 significont at .05 level)

(r 2 .25% significont

LY
16
‘26

19

(r > .2|2'slqnifico
(r > .277 significant

21 .19
23 .21
.25 .28

200,22

.05
-.02

.02

-.02

ot .0l level)

6 12 19

A7

.18 .08 .16

ot .05 level)
¢t .0l level)

320

IE

.29
.35
.33

19

GPA
Y6

31

.37

.38

.33
48
.50
3¢




TABLE 3

Reqression Analvsis Models
Indicating Slgnlflconce of - E

2 . Rz of
RS of Restricted
sriterion:  Full Model Mode ! ‘
Init Exom (GPA, SH, IE) (GPA, SH) F o p
| .28 .21 8.577 1,98 <.0l
1 J21 .10 13.502 1,98 <.00!
1 .23 .13 Ih,744 1,98  <.00l
v 8 .15 3,158 1,98 <.05

;omparison of full and resTricTed models indicotes that |-E
iccounts for a. s:ontf:conf amount of exam score varicnce
eyond That accounted for by GPA

| 129 126 278 1,83  <.60
X 231 .222 940 1,83 <.
1 242 .236 574 1,83  <.45
v 158 157 038 1,83  <.85

ompcrison of full ond restricted models indicctes thot |-E
loes not account for o significant amount of exom score
iericnce bevond that accounted for by GPA,

105

T S B O PN ST B ATV S0 S i BS  se e




students will utilize learning resources differently than less successful stu-
dents. The twenty five students who had the highest ‘score on a combination of
1-E and DA were identified along with the twenty five students who had the low-
est score on this variable. The variable was obtained by multiplying each stu-
dent's 1-E score by his DA score. The mean number of quizzes per module and
the mean number of minutes per module were computed for each of these groups.
Only the first nine modules were considered because a very small percentage of
students worked on Unit IV.  This fact will be considered later. Nine out of
-nine times the high group's mean number of quizzes per module was greater than
the mean of the low group. Eight out of nine times the mean of the high group's
number of minutes per module was greater than the mean of the low group. On
the average, members of the high group took more study quizzes, but spent less
time per quiz than did members of the low group. High students were not only
practicing more but also distributing the practice across a greater number of
examples. Once again, it was found that this relationship did not occur in

the data collected from study B. :

. Accurate records of when students took module quizzes and unit exams were
obtained for study B. This data was examined several ways, but no consistent
relationships between student characteristics and the utilization of the OMI
program were observed. -

Discussion

.. 1t is important to note at the beginning of this discussion that an unu-
sually small percentage of students worked on unit IV during the termsstudy A
was conducted, For example, thirty six percent .of the, students )isted on our
first day roster for the previous quarter worked throughout the term and re-
ceivad a grade-of A or A- for the course., In study A only sixteen percent of
the students listed on our first day roster worked throughout the term and re-
ceived a grade of A or A-, In study B 33% earned & grade of A or A-, A non-
sclentific explanation is that the 1978 students suffered thru a very difficulc
wincer, When the sun finally appeared during the spring quarter, students
stopped working on all non-required school tasks, We obsarved this sudden
cessation of study and were given this answer when we raised questions about
ic,

It was assumed {n 1978 that the small number of students completing unit
1V would tend to restrict the range of scores involved and not invalidate the
results. The fallure to replicate the results in 1979 leads one to other
spaculations. For example, the 1979 students had 50X more time to do the same
amount of work and were not harrassed by bad weather and school closings. It
is possible that differences in 1-E and SSHA interact with conditions of stress
and high demands. When such conditions are not present, as in study B, all
studants have tima to do the job even if differences in ability and motivation
exist,

This 1s an attractive hypothesis, but it is also suspact because of the
change in the observed relaclonships between I-E and SSHA scales. Weather and
leagth of term should not have had 4n affect hare. It is also the case that
the relationships between I1-E and SSHA in study B are wore consistent with the
data reported by Ramanaiah (1979).
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Study A supported the conclusion that the I-E and SSHA scales tapped important
student characteristics when course structure permitted students to control
pace, practice conditions, utilization of resources and total amount of material
to be studied and mastered. Study B does not support those conclusions. Only
sdditional replications will provide help in deciding which set of data should

cormand one's counfidence.

At least two things should be considered wheo looking at the results of study A
and study B. One is that apparently the most televant psycho-social variables have
oot beea adaquately idencified.  The second, and more importantly is that the differ-
ent results give further support for the necessity to replicate. The two studies
reported were conducted by the same researcher, on very comparable students, in
highly similar settings, yet produced divergent results., These varying results
iadicate the potential pitfall of generalizing results based on only one study.

When trying to identify the relevant learning characteristics in a natural
setting, the potential interactious and the types of relationships between variables
are enormous. What may be needed to map out many of these possible relationships,
develop a matrix, and systematically develop studies to investigate the rvelationship

between these variables and learning.

One may take a particular model such as

suggested by McGuire (1960) and Whiteside (1964) which takes ‘the position that when
one is trying to account for complex behavior, one has to look at atleast three
classifications.of behavior. One 1is the person varjables which includes things
such as personality, intelligence, sex toles, learning characteristics, etc. The

second is the characteristics of what is to be learned.’- Suppes (1966) and Gagne'
(1965) have given excellent examples of how to deliniate the components of what is
to be learned through a task or job analysis, The third is the environmental or
context variables. These would include such things as the structure as well as
the environment of the learning situation, {nteractions with peers, expectations
produced by the enviroament (significant others within the environment). This
three dimensional matrix may facilitate the identification and systematic investi-
gation of the variables which may influence and/or "cause" the differential
elfactiveness of "learning" as reported in the literature.

*HHowever, one must be very careful of over generalizing to other samples before
independent replications are conducted. The authors have collected replication
data which they expect to present at a future time in conjunction with the

findings of this paper.
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