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Bias Correction in Risk Assessment

When Logistic

Regression is used with An Unevenly Proportioned Sample
between Risk and Non-Risk Groups

Timothy H. Lee, SPS Payment Systems
Donald T. Searls, University of Northern Colorado

Linear Logistic Regression is a simple but a very powerful tool to assess the likelihood of being in one
“category" for an observation with specific independent characteristic values, i.e., when the response variable is
dichotomous and the data is replicated, the conditional probability, that an observation belongs to one of the two
categories given independent characteristic values, can easily be estimated through Logistic Regression. For
various reasons, stratified sampling, sometimes, causes a different sample proportion between the two groups
from the population. Many statistical packages allow their users to adjust weights to fix this bias problem as an
option in using the Logistic Procedure. The users, however, would experience more computing cost by using
the option. In many cases, the purpose of the biased sampling is for computational economy and if the
computing cost stays the same, using the biased sample with adjusted weights is not advantageous. .

In this study, simple bias correction without using adjusted weights is explained using simulated bankruptcy
data, Since the method can be used for any software without adjusting weights, computational economy can be

achieved with unbiased results,

1. Introduction

wo group classification techniques arc
instrumental in many cascs of dccision making

in business, finance, and marketing, ctc. For
example, when credit grantors extend credit, they need
to asscss cach applicant's credit worthincss or risk for
the extension of credit. In marketing analysis, they
wanl to target morc potentially responsive
‘populations for dircct mailing. These examples are
typical cascs where the dependent variable is binary,
i.e., risk versus non-risk, or respons¢ versus non-
response. Logistic regression analysis, parametric or
nonparametric discriminant function analysis, and
neural net are usual candidate tools for such cases.
These methods are known to be comparable one to
another in terms of classification accuracy. Each of
these has merits and demerits depending on the user's
point of view such as cost, purpose of analysis, etc.
Logistic regression, for many reasons, often has been
preferred to other methods, especially to discriminant
function analysis. Press and Wilson (1978) made
empirical applications to compare logistic regression
and discriminant function analysis using breast cancer
- data and population change data of the U.S. They
concluded that Logistic regression outperforms linear
discriminant function analysis when the normality

assumption is violated. Fienberg (1980), also,
mentioned the superiority of logistic regression over
discriminant function analysis in case of non-normal
populations. In rcality, the normality assumption is
not casily met, especially in most of the credit or
demographic profilc data. Onc of the advantages of
using the logistic regression model is that it provides
the likelihood of being in onc group for an
obscrvation given characteristic profile values.

Let E be an event that an observation is from one
category and a vector X be the characteristic values of
the obscrvation. Then, the logistic regression model
is

p(x) =Pr(E| x} = 1/[1+ exp{ - (x + BX)}],

where (o, B) are unknown parameters that are to be
estimated from the sample. This model is used to
classify an observation into one of the two mutually
exclusive categories based on x.

In actual analysis, the binary dependent variable,
usually coded 0 or 1 for event or non-event, is
regressed on x.

1.1 Sample Bias

In many cases of two group classification, the
proportion of one group is far smaller than the other.
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For instance, the proportion of cancer patients among
the population, or the proportion of bankrupt
accounts in a portfolio is observed to be very low, In
such a case, analysts would rather choose stratified
random sampling than simple random sampling. For
instance, n observations are taken randomly from the
event population, and m observations are taken from
the non-event population. The sample ratio between
event and non-event in such a sample is quite different
from that in the population. For classification
purposes, such an uneven proportion shouldn't be a
problem, because a classification model developed on
an unevenly proportioned sample would work as well
as a model developed on an evenly proportioned
sample. Such sampling scheme saves sampling cost
and in using the data, later on, will bring a reduction
of computing cost as well. Immeasurability is, of
course, sometimes a cause of the uneven proportion,
In this study, we like to consider sample bias in the
sense of an uneven or distorted ratio between two
mutually exclusive categories.

1.2 Model Bias

If a logistic regression model is derived based on
a biased sample, the estimated probability of event
given X would be either underestimated or
overestimated even though the model has almost the
same classification power as that derived from
unbiased data. Let's consider, as a more detailed
example, a case when bankruptcy is an event. That is,
a model is developed to assess likclihood of
bankruptcy given a vector of characteristic values,
The risk asscssment is biased if the model is
developed by using biased data,

2. Analysis of Data

In this study, we used simulated bankruptcy data
from Moody's Industrial Manuals 1968-1972 to
expand our discussion. The data set has 4 independent
variables, x, = (cash flow)/(total debt), X, = (net
income)/(total assets), X3 = (current assets)/(current
liabilities), and X4 = (current assets)/(net sales). The
dependent variable is coded as 0 for bankruptcy and 1,
otherwise.

For illustration, let's assume that the proportion of
the event (bankruptcy) is 1/50 (=0.02) in a portfolio.
A logistic model was derived using a biased
development sample which has proportion of event
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(bankruptcy) 1/3 (= 0.33). The parameter estimates on
the biased sample were

((X.’, Bl”, BZ,’ B3" B4' )
= ( 2.8603, - 3.6938, - 1.7649, - 1.7286, 0.4760 ).

Figure-1 in the Appendix presents plots between
estimated risk versus observed risk for the biased
sample. A smooth curve produced by the authors'
robust smoother (1990) is superimposed to enhance
the visual information, Figure-2 presents the same
plots on an unbiased sample which has the same
proportion as the population. We can observe that
there is, in Figure-1, a strong linear relationship
(almost a 45 degree line with some endurable noise)
between observed and estimated risks, while, in
Figure-2, there is no linearity between the two values
and it presents a bias assessment of risk. In most
cases, the bias is leaning toward over estimation. That
is, when the proportion of the event is very low such
as bankruptcy, the sample proportion of the event is
usually far higher than the population proportion and
may result in an overestimation of risk unless an
adjustment is made in the process of estimation.

3. Bias Correction

We can consider two kinds of corrections, i.c., a
priori adjustment and a posteri correction.

3.1 A priori Adjustment

One of the casy ways of a priori adjustment is to
assign proper weights based on the sampling fraction,
f=wN, where, nand N are sample and population
sizes, respectively. If, in the case of stratified
sampling, f is 0.5 for a stratum, the corresponding
sample weight 1/f =2 will be assigned in the
estimation procedure. This kind of adjustment is
allowed, in most of the commercial software, for the
price of additional computing cost. To compute
estimates of the parameters, Iteratively Reweighted
Least Squares (IRLS) or similar methods are used. For
example, IRLS for k+1 response categories is used,
in SAS, as in the following:

Let Zj = (le’ .y Z(k+l)j)t be a multinomial
vector such that
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=0 otherwise,forj=1, .., n

(In two group case, k=1and Y is a binary response
variable)

Let pj= E(Zj) s VJ = Cov(ZJ-),
and

yt = (o, &g, .., ayg, B).

And, Iet D; be the matrix of partial derivatives
of p; with respect to y. Then, the estimating equation
for the regression parameters is

EDWi(Z;-p) =0,

where W, = WV, w; is the weight of j-th
observation, and V; is a generalized inverse of \L:
V' is chosen as the inverse of the diagonal matrix
with p, as the diagonal. The parameters are estimated
iteratively as

7’m+l=7m
't r sl A ’
*ED ;WD) ZD;Wz;-p)

Where D'j, W'), and P’ arc evaluated values of D;,
Wj, and pjaty .

If the likelihood evaluated at ', is less than that
evaluated at 7'm, theny', is rccorhputcd using half
the value of the sccond term of the right hand side,

As was discussed, by assigning proper weights,
if it is allowed, or by replicating 1/f (to the nearest
integer) times, if weighting is not allowed, the
sample bias problem in risk asscssment can be easily
overcome with additional expense.

Our interest, however, is not in a priori
adjustment but in a posteri correction. When a model
is developed already and the development data is no
longer available, or redevelopment causes unexpected
inconvenience or cost, posterior correction based on
minimal information about the population would be
an economical and efficient alternative.

3.2 A posteri Correction

This approach is used to alleviate a biased risk
estimation due to an uneven sampling fraction by
computing a simple correction factor. For illustration,
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assume a situation that a probability model is derived
using biased data and it is applied in an application
data set. The application data is not used for the
derivation of the model. We assume, further, that the
proportion of the event in the application data will be
approximately the same as that of the population. The
probability of the event predicted will be biased and it
should be corrected. To simplify the discussion, let's
define the following;

p: population proportion of events

p': sample proportion of events in a biased data
set

¢': estimated likelihood of an event for given x
on an application data using the biased model
developed on the biased data set

m: number of events observed at ¢’ in the biased
data set

n: number of non-events observed at ¢’ in the
biased data set

M: total number of events in the biased
data set

N: total number of non-events in the
biased data set c

Further, lct;

f = m/M (Relative frequency of event at ¢’ in
the biased data set) .

g =N (Relative frequency of non event at
¢’ in the biased data set)

Then, the likelihood of event for an observation
estimated on the application data, even though the
data is not biased, would be,

'¢’Em/(m+n)
=SP*M/(FP*M+g *N) oo, 1

Since the model was derived on the biased data, ¢,
the conditional probability given characteristic values
X, is biased although it is calculated on the
application data. It always results in the same
likelihood for x and implies the same likelihood as if
it were calculated on the biased sample.
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The true likelihood of event at ¢’ can be calculated
by,

b=p*f/[p*f+QA-p)*g) )

,where f and g are population relative frequencies for
event and non-event, respectively.

The problem is how to estimate (or approximate) ¢ in
(2) using ¢’ in (1).
One necessary condition that can be easily proven
empirically is that

f =f and g'=g forany ¢’ and p'.
From (1), using above condition,
B 1= (g )« (N
S(8) % (NM) oo (3)

By multiplying (M/N) * [( 1-p)/p] and adding 1 on
both sides of (3),

(@)~ 1) » MN) * [(1-pYp] + 1
E[fep+gs(1-p)/E*D) ., “

From (2) and (4), we get,
&= (L0 1% MN) * [(1-pyp] + 13",
or by using the fact that (M/N) = [p'/(1-p")], we get

b= L0 1ol /1-pl(1-pyp] + 1)

The last formula is for bias correction. It shows
that the biased likelihood ¢ can be corrected casily
and the only necessary information about the
population is the proportion of the event. The
formula was applied to the estimated likelihood of
event (estimated risk) in Figure - 2 and the corrected
risk and observed risk is plotted in Figure - 3, A
strong linear relationship is found between the
estimated risk and the observed risk, particularly for
an observed risk under 20%. This is the region where
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most of the observed risks occur. This shows that the
biased risk is corrected.

4. Discussions

As mentioned above, Logistic regression is a
very popular tool in classification analysis. Especially
in the two group case such as risk versus non-risk
analysis, it is very instrumental in assessing risk
level for an observation in a portfolio. An uneven
proportion, however, will cause a biased estimation,
In business applications, the size of the risk group is
usually small compared to the portfolio size. For
example, in developing a bankruptcy forecasting
model for a portfolio, the number of bankruptcies is
very low so all the bankruptcies are taken into the
development sample along with a certain number of
non-bankruptcies. Even though the resulting model
has good separation power when measured by the
Kolmogorov-Smirnov test, Apparent Error Rate, or
Kull-back Leibler information value, etc., the risk
measured by the model would be overly assessed. For
worse scenarios, redevelopment of the model is
impossible because the original data was purged, or
the biased model is installed on the system already and
is in production mode, In such cases, a posteri
correction is very handy,

Even when the weight option is available in
using statistical software, if the weight assigned to
onc group is too large compared to the other, such as
the bankruptcy prediction case, the resulting estimates
of risk may not be accurate when round-off error or
wrong direction of convergence is cumulated in the
process of the iterative reweighted algorithm of the
logistic procedure. If such a situation is expected,
both the weight assignment and the above correction
algorithm can be used for a test.
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Appendix

Figure - 1:
Estimated Risk versus Observed Risk on
the biased development data set
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Figure - 2:

Estimated Risk versus Observed Risk on an .
unbiased application data set
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Figure - 3:
Corrected Risk versus Observed Risk on an
unbiased application data set
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To Path Analyze or Not To Path Analyze: Is There an

Alternative Approach

Isadore Newman, The University of Akron

and

/’j:J osepll\RL Marth, Bluefield College

/
’
D uring the past twenty years there has been a

tremendous increase in the frequency of social ~

scientists attempting to investigate phenomena
that can not be studied in a laboratory. Since the ideal
is to be able to explain complicated relationships in
the causal sense; these social scientists have been
highly attracted to sophisticated multivariate causal

modeling,

Much has been written on the problems of
modeling techniques such as path analysis, The
concept that any research based upon ex post facto
design can not assume causation (post_hoc fallacy),
that is correlation does not imply causation, has been
widely accepted. However, some social scientists are
more frequently wondering why not accept causal
modcling assumptions? Do the aﬁ_gg_q@ggg out-weigh
the disadvantages?Are the concems voiced by many
sTatisticians teally nitpicking (CIiff, 1983; Daggett &
Freedman, 1985; Freedman, 1989; Huber, 1985;
Kenny, 1979)?

Purpose

The purpose of this paper is to examine the
underlying assumptions of path analysis and to discuss
some theoretical concerns. This paper will also
suggest an alternative approach that the authors
believe to be more robust to the violation of some of
the underlying assumptions and still is very effective
in testing the overall "goodness of fit" of a theory.

Before beginning, however, a caveat is necessary.
There are a number of uses for which researchers
employ path analytic procedures that this paper does
not deal with. For example, we are not dealing with
situatiofis Where researchers usc path analysis
analogous to almost a stepwise_model building in
which the computer identifies the best fitting models.
From a theoretical point of view, this has virtually all
of the problems (and maybe even more) of a stepwise
regression procedure, and has received much criticism
because of its antitheoretical and unstable nature. This
paper also does not discuss the use of path analysis for
the purpose of determining which alternative models
are better. Rather, discussion here is focused on the
traditional intent and most conservative approach of
path analysis, that of theory testing and model
confirmation. =~ 777

The Assumptions

The rlying premi ath analysis is that if

“one can meet all of the agsumptions, it is justifiable

to presume "causation." Therefore, this paper begins
with a discussion of these assumptions. The
following is a summary of the basic assumptions of
path analysis identified by Bollen (1989), Freedman
(1987), Dillon and Goldstein (1984), Kenny (1979),

and Williams (1978):

Requires a theory and nomological net;
There is significant relationship between the
variable that is assumed to be the cause and
the variable that  is assumed to be the
effect;
Causal variable precedes the effect variable
in time;

4. Spuriousness has been controlled...all
mcaningful relationships are included in the
model;

5. Variables arc additive and no_interaction
exists; —

6. The weights arc stable (paths), thercfore no
multicollincarity; ™

7. The distribution of residuals are the same no
matter what the value of the independent

variable; :

The mean of the residual values is zero;

The variance of the residual values is finite;

0. The fesiduals of each of the variables are

independent of all the other variables in the
systeh;and

11. Endogenous variables have at least interval .

scale properties. .

DO i

w

= oo

An added concern is that totally different path analytic
models can produce a sufficient amount of statistical
verification to justify a variety of theoretical
explanations for the same variables. Also, there are
concerns about the use of latent variables (Cliff,
1983), similar to the concerns of virtually all factor
analytic procedures. That is, concern that latent traits,
when used, are stable, meaningful, interpretable, and
valid. Finally, we should further note that little is
known about the effects of heteroscedasticity or
autocorrelated disturbances for latent variables (Bollen,
1989).
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A discussion of some of the these crucial
assumptions and related concerns is presented below,
followed by an alternate approach to path analysis
should the researcher be unable to meet the
assumptions,

The Need for Theory

In path analysis and structural equation modeling
(SEM), one builds analytic diagrams that are reflective
of the nomological net exposited by the theory it is
intended "6 reflect. Therefore, one of the key
underlying assumptions before doing any path analysis
or SEM, traditionally, has been the necessity of theory
(Bollen, 1989; Borgatta, 1969; Duncan, 1975, 1969;
Heise, 1974, 1975, 1977, Williams, 1978). The
purpose of theory is to explain and help understand the
occurrence of natural phenomena (Kerlinger, 1973).
Theory explains the causal effects among and between
variables (constructs). Further, since one of the
original purposes of path analysis and SEM is to
assume "causal” relationships between variables which
are frequently, if not always, nonmanipulable
(Newman & Newman, 1992; Kerlinger, 1973), one is
required to assume causation from correlational-type
data. However, this does not mean you can not use
path analytic procedures on experimental data.
Thusly, theory is an essential component to this
process. If one assumes causation which is consistent
with a nomological net, one is standing on firmer
ground than if one were assuming causation merely
because phenomena were correlated,

Happily, when reading research which uses path
analysis, there tends to be a much greater explanation
of theory and the derivation of its hypotheses, and we
strongly support such approaches. This is morc likely
to require {hc rescarcher to know the literature, to
know the theory, and to think about the possible
logical interrelationships of the variables.

It should also be noted that in the use of path

analysis for testing thcory, there are goodness of fit_ .

indices to help estimatc how well the modecl fits the
theoretically predicted rclationships. Chi square and the
absolute size of the residuals were initially the most
frequently used goodncss of fit indices. Bentler and
Bonnett (1980) and Tanaka and Huba (1985), have
developed goodness of fit indices, indicating that they
are robust to N size. However, an article by Marsh,
Balla, and McDonald (1988) mathematically
demonstrates that all of the indices are really dependent
to differing degrees on N size,
Time-precedence and Non-spuriousness

Kenny (1979) identified two requirements for path
analysis: time precedence "and” non-spuriousness.
These requirements tend to be design concerns in
which time precedence indicates that the independent
variable, which is the presumed cause of the dependent
variable (endogenous variable), logically has to precede
the dependent variable. For example, in a causal

- L]
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sense, one would expect 10 to logically e GPA
but GPA would be lggsiﬂ%_x to logically precede 1Q.
Non-spuriousness can be thought of as an underlying
assumption of the path analysis design, in that it
assumes that the path analytic model contains all of
the relevant causal variables, .
Interaction ™

An intriguing aspect for and against the use of
path analysis is that, with very few exceptions, little
has been said about the issue of interaction. The
underlying regression structures of path analysis are
analysis of covariance regression models. One of the
most important assumptions of analysis of covariance,
which can not be violated with impunity, is that there
is no significant interaction between the independent

variable and the covariates. This means that anyone

 testing a simple or complex path_analytic model

which represents a nomological net, is making the
assumption, consciously or unconsciously, that there
is no interaction. One merely has to think of the
social science theories and ask how many of them
make that assymption.

‘In’ situations where interaction is _found, for
cexample between s¢x and motivation in predicting
achievement, one_suggested procedure for handling
such interactions would have the researcher run
Scparatc analyses for males and females. It is likely
that a complex path analytic design will have more
than one siriple first-order intéraction. Actually, one
would probably expect more than one second-order
intcraction (which is an interaction between at least
two first-order interactions) or third-order interaction
(which is an intcraction between at least two second-
order interactions) to exist in a complex path analytic
design. The implications of these interactions for
interpretation of path analysis is that rescarchers will
have to consider many subsct designs which can
become so conditional that they become complex -
beyond understanding.

For non-lincar second-order types of relationships a
similar solution has been suggested: that a two-stage
least squarc procedure be incorporated. However, it is
interesting to ask individuals who are using path
analysis to test a theory if they are in fact assuming
that there is neither interaction nor a curvilinear
relationship. T :

To the extent that the path analytic models do not
reflect interactions that exist in the theorétical
coﬁceptualization, the researcher is actqally
committing a Type VI Error. That is, there is an
inconsistency between the research question of interest
and the statistical model which was written to reflect
the research question (Newman, Deitchman,
Burkholder, Sanders, & Ervin, 1976).

Beta Weight Interpretation o

~" 1t has been well established in the statistical
literature that beta weights are either non-interpretable
(Kerlinger & Pedhazer, 1973; McNeil, 1993, 1992,

2 ————
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1991; Ward & Jennings, 1973) or are misleading and
should be interpreted with extreme Caution. Beta
weights are more likely to be interpreted correctly if
there is zero multicolinearity between the independent
variables. The higher the correlation between these
variables, holding everything ¢Isé constant, the higher
the standard deviation and the greater the instability of
the weights. 7

The causal interpretation of a path analytic model
needs predictor variables that are low or zero correlated
and/or sample sizes that are very large_in relation to
the number of variables. If the sample._sizes are so
large, such as the Hj data set
with 58,000 subjects, they can be considered virtual
populations. That is, the more subjects per variable,
the more stable these weights tend to be.
Unfortunately however, when the sample size is very
large, traditional tests of significance become virtually
meaningless; because any slight difference will be
statistically significant. (The proportion of variance
accounted for can be considered or the model can be
used in a more descriptive manner.)

Some approaches have dealt with the
multicolinearity problem by employing measurement
models along~ with statistical models. - The
ﬁéigg@men}_.mpgql uses a set of indicator variables
that are conceptually factor analyzed. These factors,
sometimes called latent traits, are assumed to be better
mcasures of the underlying construct than any
individual item. “These underlying traits are often
assumed to be stable or at least more stable than the
individual items they arc composed of, and therefore
arc thought to be more reliable and valid. However,
onc must also keep in mind that these factors arc
sample specific and may be in turn highly unstable.

Some path analytic_users think that using latent .

traits_(factors) decreases or climinates the
miilticolinearity problem and reduces measurement
error. This is not necessarily_the case, Forexample,
if five indicator variables for achievement are factor
analyzed and five for ability level, and the fen indicator
variables are not factor analyzed together, each set of
five items can produce factor solutions that are highly
correlated (multicolinear). In addition, five indicator
variables may produce three factors when factor
analyzed but only the first factor is usually_used
because this approach assumes the other factors are not
meaningful or useful. There may be no justification
for such an assumption. Another approach sometimes
employed is to only use the first non-rotated factor
which maximizes the variance accounted for by that
one factor, but also tends to disregard the empirically
identified multidimensionality on the construct.

If the sample is virtually a population size or is a
population, then the model, even if not causal, can
definitely be used descriptively to help explain
potential relationships without ever assuming causal
effect. There appears to be much less criticism of
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such an application of path analysis, but there is less
interest in using it in this way. For example, while
major economic forecasting models that have used
path analysis have not held up well (McNees, 1986:
Zarnowitz, 1979), they have been found to be useful
in a more descriptive sense.

Testing for Statistical
Assumptions

Applied statisticians and sophisticated users of
path Vafnq;ysls such as Bollen (1989), Bentler (1987),
and Freedman (1985) have pretty.much agreed that one
should test for certain underlying assumptions and do a
pre-analysis of the data related to these assumptions
before path-analysis or any statistical treatments are
used. Berkane and Bentler (1987) state that BMDP
provides a test for multivariate normality, detecting or
eliminating outliers for EQS, and Berkane and Bentler
(1987) developed a test for homogeneity of kurtosis.
In addition, before doing any analysis, one should look
at plots of residuals and should always cross validate
to stablish the stability of the prediction from sample
to sample,

Sotrie underlying assumptions are more robust
than others, For example, certain assumptions of
normality and homogeneity can be violated with
virtual impunity if the N is large cnough. However,
certain assumptions “of lincarify, o interaction
between the independent™ variables, and no
multicolincarity arc assumptions to which covariant
structural models arc highly sensitive (not robust).
The question is, how frequently does the litcrature
report the use of these procediires to check underlying
assumptions, and why not make this a requircment of
the data analysis for publication?

Underlying

Corrections for Violations of Assumptions
Bollen (1989) and others (Bentler, 1987; Bentler &
Dijkstra, 1985; Bentler & Lee, 1983; Freedman, 198S;
Johnson, 1984; Joreskog & Sorbon, 1981; Tukey,
1954) have dealt with violations to the assumptions
and have suggested solutions. For example, the use of
alternate estimators such as General Least Squares
(GLS), Unweighted Least Squares (ULS), Elliptical
Generalized Least Squares (EGLS), Two-Stage Least
Squares (2SLS), Three-Stage Least Squares (3SLS),
Instrumental-Variable Estimators (IVE), and Full-
Information Maximum Likelihood (FIML) are
discussed by Bollen (1989). However, these
techniques themselves tend to have assumptions about
what the data truly look like in the population. If the
researcher is correct about the nature of the distribution
of data in the population and s/he picks a statistical
procedure that is most appropriate for that distribution,
it is obvious that his/her analysis is most likely to
produce the most accurate parameter estimates.
Unfortunately, however, the researcher frequently does
fiot know what the data look like iii the population




10 MLRYV, Winter, 1995

and/or is unaware of what is "causing” abnormalities
in the distribution. Further, while a statistical
technique may allow one to correct for anomalies, the
researcher must make the assumption that the
anomalies are in fact errors. Otherwise, the very
corrections themselves creatgwgggg_t"g_‘rmgrzor‘sfthan;no
Corfection at all. What we are arguing is that
statistical corrections for anomalies in the distribution,
without considering the causes of the anomalies, is a
fatal flaw in the research study. Therefore, one has to
be aware of the assumptions one is making about the
anomalies when one is making a correction. There is
no correction which is a panacea that will replace
understanding one's data.

A Simple Alternative Approach to Path
Analysis for Testing
Relationships

The following is a suggested approach that is
methodologically much simpler and'is more robust to
some of the dévastating assumptions such as linearity
and no interaction that are underlying assumptions of
path analysis, and yet has many of the same
advantages for testinﬁﬁa nomological net. This
approach is_t,ajts Wwith theory * that “produces a
nomological net, then identifies the logically derived
hypothesis to be tested. For example, let's assume
that 15 hypotheses are produced from the nomological
net. Some can be interactional, repeated measures,
time lagged, multiple wave, curvilincar, main effects
or dircct effects. Let's further assume that 13 of the
hypotheses are significant in the predicted direction,
One can then get an estimate, by using a Sign test, of
how well these hypotheses support the overall theory
(nomological net). Depending upon one's productivity
and situation specifics, onc may choose to do a Sign
test on the directions of cach individual hypothesis
with no concerns for the tests of significance. Or, one
can do the Sign test only on the number of significant
hypotheses and compare it to the total number of
hypotheses. In cither case, this nonparametric test can
be used to estimate the overall support of the theory.
In addition, this test of significance is not dependent
upon the N size, but rather on the number of
hypotheses generated. It is apparent how this
approach can fit well into a meta-analysis. As
Pedhazer (1990) and Ward and Jennings .(1973)

suggest, researchers should keep their analysis simple _

but well thought out and have hypotheses that are
derived from previous research and theory.
The authors believe much path analysis research

ey e et

gets_lost in the complexity of the models and the

sophistication of the analyses. In cases where more
sophisticated analysis may be required, based upon the
theory and the derived hypotheses which may infer, for
example, underlying latent structures, the suggested
approach would be to do: T

1. A factor analysis of the variables of interest;

- ‘

Theoretical -

Marth and Newman

2. A cross validation of the factor structures to
estimate stability;
3. A factor regression using the factors as

predictor -and- critérion variables
where appropriate; and
4, Cross validation on the regression equations
~~""to estimate their stability. =
Needless to say, be\f/{e(do‘ing any type of analysis,
it is always desirable to"first look at your means,
standard deviations, frequencies, correlations, and
residual plots before proceeding. It is this pre-analysis
that helps to identify potential errors in the data, to
what degree underlying assumptions have been
violated, and if and what data transformations are
needed or desirdble. We think it is appropriate to end
with a quoté from Rogosa (1987): "[t]he transition of
substantive theory into methods for data collections
and analysis is where I think the fertile interaction
between statistician and social scientist lies[,] rather
than in arguing ‘thumbs up' or 'thumbs down' on path
analysis" (p. 185).

I\
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The p-Problem with Forward Selection Stepwise Regression:
Algorithm for Controlling Type I Errors

T. Mark Beasley, St. John's University, New York
Dennis W. Leitner, Southern llinois University at Carbondale

The use of forward selection stepwise regression has been criticized for both interpretive misunderstandings and

statistical aberrations. A major statistical—ﬁc?BTem with SiCpWise Tegression and other procedures that involve
multiple significance tests is the inflation of the Type I error rate. Common approaches to control the family-wise
error rate (e.g., the Bonferroni and Sidak corrections) are based on the assumptions of independent tests which
typically reduce power. Because the presence of correlated predictors is a more realistic situation, other algorithms
based on the average correlation in the predictor matrix have been proposed. The present study proposes an

algorithm based on the maximum eigenvalue and the determinant

of the predictor matrix for controlling the family-

wise Type I error rate for multiple, correlated tests in forward selection regression under the complete null
hypothesis. A Monte Carlo simulation with 5,000 replications w
the proposed algorithm.

as performed to demonstrate the effectiveness of

ost users of multiple regression techniques in
Mcducadonal research are attempting to reduce a

set of k predictor variables in order to report a
simplified model. Typically, if a set of & predictors are
regressed on a dependent variable, Y, only those
predictors that are found statistically significant will be
considered substantively valuable, Furthermore,
because of the nature of many educational and
psychological measurement scales, researchers are less
likely to estimate regression cocfficients as a way of
interpreting substantive findings. Rather, F-ratios or p-
values arc used in a dichotomous decision process such
that the relationship between a predictor and a criterion
variable is “significant or not” (c.g., Thompson,
1989b).  Furthermore, it is possible to have a
statistically significant model (i.e., significant full
model R2) when the component variablgs are
individually nonsignificant in either a zero-order or
partial manner. However, educational rescarchers are
not likely to consider such a model in the development
of theory. Therefore, the forward selection procedure of
stepwise regression became popular among educational
researchers because it begins with significance tests of
zero-order correlations and proceeds to more complex
models.

For several years now, applied statisticians
(e.g., Thompson, 1989a; Wilkinson, 1979) have been
calling attention to the abuses of stepwise regression in
its common use by less statistically sophisticated
researchers. But theses and dissertations continue to
step (unwisely) across the desks of graduate educators,
and articles with many of these same problems continue
to appear in print. It is hoped that elaborating these
limitations and proposing new methods for using

stepwise regression will bring about its more
appropriate use. Three statistical procedures are
considered under the rubric of stepwise regression:
Forward selection; backward elimination, and true
stepwise (Draper & Smith, 1981). Specifically, the
forward selection procedure forms a model from the set
of k dependent variables by first selecting the single
best predictor. The second best predictor is then chosen
by the criteria of strongest contribution to the prediction
of ¥, while controlling for the effects of the first
predictor entered. Thus, the first step involves 4
simultancous tests of zero-order correlations, while the
sccond step involves (k - 1) simultaneous tests of first-
order semi-partial corrclations (Aitkin, 1974). The
process continues so that at each step the variable
selected for inclusion significantly increases the
prediction of Y (i.e., full model R2).

The use of the various stepwise regression
procedures has been criticized for many interpretative
misuses and statistical aberrations. First, researchers
often interpret the final solution of a reduced set of g
predictors as being the best subset of predictors overall
and of that size. Also, there is a tendency to confuse
the order of entry and variable importance (Huberty,
1989). Stepwise procedures suffer from the use of the
largest partial F as a test of a potential entry variable
which is not in the regression model at that stage. The
correct null sampling distribution for this test in not the
ordinary F distribution, but is a partial F distribution
which is very difficult to obtain. (Draper & Smith,
1981). Moreover, researchers often proceed to test each
stage in a stepwise regression as if the partial F
distribution does not exist and as if the test at that step
is the only test that has or will occur. Furthermore, the
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degrees of freedom (df) used for these tests are often
incorrect. For example, in the forward selection
procedure the df’s used for the first step, a test of zero-
order correlations, is (N - 2), while (N -k - 1) would be
more appropriate. These considerations, in general, tend
to inflate the probability of at least one Type I error
(i.e., the probability of forming an erroneous model).

Another interpretative problem arises when
two or more predictor variables are highly correlated. In
such situations, there is a strong probability that one of
the variables will absorb the majority of the other
variables’ prediction power and therefore cause their
exclusion from subsequent models. Not only does a set
of correlated predictors lead to potential substantive
misinterpretations, it also makes estimating the
probability of a Type I error more complex. Thus, due
to multiple tests, incorrect df's, misunderstood partial F
tests, and correlated predictor variables, it is difficult to
determine the correct Type I error rate in stepwise
regression. To compound these problems, the p-value
associated with each variable entered stepwise into a
regression equation (except for the final step) is
incorrect in many canned statistical packages.

MULTIPLE TESTING AND THE TYPE I
ERROR RATE

As with any statistical procedure, two kinds of
inferential errors can be made, A Type I error occurs if
a variable is selected when the population regression
weight is zero. A Type Il error occurs when a variable
is not selected when it has a non-zero population
regression weight. Many educational rescarchers adopt
one of the traditional fixed significance levels (ie, o=
.05 or .01) when cvaluating an F-ratio. This
significance level determines the Type I error rate for
cach test independently. However, it is rare that
cducational rescarchers test a single hypothesis. Several
variables and multiple significance tests are common,
Thus, a rescarcher must consider the probability of
committing a Type 1 error when multiple hypotheses
arc tested (iie., the family-wise error rate).

In the context of post-hoc tests in the analysis
of variance (ANOVA), the true family-wisc Type I error
rate (o) for k independent (i.c., orthogonal) tests with
the same alpha level () is defined by the following
equation:

aT=1-(1-a)k
M
assuming the complete null hypothesis (i.e., all groups
have identical means). Thus, the Jamily size of the
tests performed is equal to k. In order to return the
Type [ error to the nominal alpha (o), one could adjust

o, by the Sidak method:

Qlagi =1 - (1 - ai)l/k . 2

Beasley and Leitner

This correction would yield an alpha level smaller than
the nominal alpha, but over the course of multiple
tests, this adjusted alpha (2) is expected to yield a Type
[ error rate equivalent to the nominal alpha, o;.

Similarly, the forward selection method in
stepwise regression conducts no less than k
simultaneous tests of significance as if multiple tests
are not performed. That is, the first predictor is selected
by the largest zero-order correlation of all & variables
without consideration for the number of tests being
conducted. Thus, if an educational researcher using
forward selection regression were to commit a Type 1
error under the complete null hypothesis (e, all k&
zero-order correlations between Y and the predictors were
null), it would occur on the first step. That is, when all
predictors are not correlated with the dependent variable,
testing the maximum of the & zero-order dependent
variable-predictor correlations determines the Type 1
error rate of the forward selection procedure. Thus,
assuming independent predictors, the probability of a
Type I error on the first step is equal to (1). To adjust
o so that the Type I error rate returned to the nominal
alpha (o), one could assume the family size is equal to
k and adjust «; with (2). However, if the k predictors
were all perfectly correlated, then the family size would
be equal to one (k= 1) and the Type I error rate would
equal the nominal alpha (i.c., o = o). In the more
realistic situation of correlated predictors, the solution
for the correct Type I error rate is considerably more
complex and requires the integration of the corrclated F
distribution (Pope & Webster, 1972). Furthermore,
only limited tables of critical values are available (c.g.,
Games, 1977), while a few Monte Carlo
approximations based on averaged correlations have
been proposed (i.c., Krishnaiah & Armitage, 1965;
Pohlmann, 1979). '

For example, Pohlmann (1979) proposed a
method bascd on the average squared correlation in the
predictor matrix to control the Type I error in forward
selection regression. To elaborate, a value, ¢, can
estimate family size and substitute for & in (2) in order
to control the family-wise Type 1 error rate. Pohlmann
suggested the following function:

¢=k-(k-1)W (€)

where k equals the number of predictors and 72 equals
the averaged squared inter-predictor correlation.
Pohlmann also suggested correcting 72 by using a less
biased estimate of the squared correlation based on the
McNemar (1969) shrinkage formula. Initially, each
squared correlation in the predictor matrix is corrected
by:

22 - (V-1)
r,j—l-(l-rg.)-m, @)

I
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where N equals the number of cases and rg equals the

square of the ijth element of the predictor matrix. Then

7 is calculated by:
k-1 k

—2_i=1j=i+1
=tz Jzirl 6))

and entered into (3). However, Pohlmann’s study
simulated cases in which all correlations within the
predictor matrix were equal which is an unrealistic
expectation. That is, a variety of correlation patterns
may yield the same average squared correlation, but it is
not likely that the family-wise Type I error rates would
be equal for these matrices.

PROPOSED ALGORITHM FOR
ESTIMATING FAMILY SIZE

To consider another perspective, however, the
appropriate Type I error rate may approach (1) with b
orthogonal factors rather than these algorithms based on
the average correlation of k predictors. To elaborate,
one possible approach to the p-value problem would be
to perform a principal component analysis (PCA) on
the predictor correlation matrix and extract 5 orthogonal
components. In fact, it can easily be shown that such a

linear transformation will not affect the full model R2,
That is, if all k£ variables and the & components
extracted from the predictor matrix are used as separate
models to predict a criterion variable, Y, then both
modcls would have the same full model R2. The
expected Type I error rate when using the & orthogonal
principal components, however, will equal (1) for the
first step of a forward sclection stepwisc regression.
Thus, decomposing the sct of & predictors into
orthogonal components and modifying algorithms for
correlated predictors may provide a better approximation
of the family-wise Type I error rate. Importantly, this
indicates a relationship between the transformation
matrix and the family-wise Type l error rate. Thus, it is
proposed that the maximum eigenvalue (Ama) from an
unrotated principal components analysis and the
determinant, |P), of the predictor correlation matrix, P,
is related to the proportion of Type I errors on the first-
step, which defines the probability of forming an
erroneous model under the complete null hypothesis.
The eigenvalues of a correlation matrix, P, are
commonly used as indices of the number of factors that
underlie a correlation matrix (e.g., Kaiser, 1970).
Furthermore, the maximum eigenvalue provides an
index for the proportion of variance accounted for by the
largest principal component, the average correlation of
P, and the number of underlying factors (Tatsuoka,
1988). The determinant of a correlation matrix, [P} has
been used in establishing the independence of variables
in PCA (Nagarsenker, 1976). The determinant of the
covariance matrix, |C), gives the generalized variance
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(Tatsuoka, 1988), and the determinant of the correlation
matrix, [P}, is equal to |C| divided by the determinant of
the diagonal variance matrix [V},

Pl =<l
vl - ©

Thus, it follows that the generalized proportion of
variance in P, that is the generalized R2, is equal to:

R2=1-I—C-,-=I-IP|

V|

Therefore, in combination A, and |P| provide rather
unique information about the inter-correlation of the
predictor matrix. Specifically in PCA, Amax divided by
k gives the proportion of variance in P accounted for by
the first and largest principal component. However,
Amax is known to always be greater than one even in
random data matrices (Horn, 1965). In fact, when the
variables are independent and all off-diagonal elements
in P are zero then P is an Identity matrix, I, and the
expected value of Apq equals one,

lim =1

por ! ®)
Therefore, subtracting one from Amac and dividing by &
would provide a corrected proportion of variance for the
largest principal component

O]

Apmax = 1

k
)
Also, if the variables arc independent, then the
determinant, |P|, equals one,

lim|p|=1

P-I .
(10)
Although it is left undefined because such a matrix is
not invertable, one can imagine that if all predictor
variables were perfectly correlated, then Amae would
equal k. That is, the limit of A, as all the elements
of P approach unity is &:

lim A, =k
Pol . 03))

Furthermore, since the product of the eigenvalues must
equal the determinant, then under the same conditions
specified for (11), the limit of |P| equals zero as Ajyn
approaches £ :

lim |[p|=0

lim [p|=0
P-1 ) (12)

and
Amax—k
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Given conditions (11) and (12), all predictors are
perfectly correlated and there is only one “true” variable
and the family size (denoted as c) should be equal to
one, which can be described as:

c=k -(k-1) 13)
Thus, (k - 1) multiplied by (9) results in the proportion
of (k - 1) that should be subtracted from k; however, ¢
also depends on the correlations in P whose generalized
estimate comes from |P|. Thus, (k - 1) should be
multiplied by (9) and (7). Therefore, ¢ can be estimated

by:

¢ = .k = Dmae - DA -P)
k )]

Thus under the conditions set in (8), (10), (11), and
(12), as the relationship among the predictor variables
approaches perfect multicollinearity, the estimat of
family size in (14) approaches one. Also if the &
predictors are independent then (14) equals £, Therefore,
if a researcher can use k, Ajua and [P| to estimate the
independence of the predictors in P with ¢, then 14)
could be substituted for & in equation (2) and used as an
estimate of family size to adjust «T so that it
approximates the nominal alpha, Thus in the present
study, a Monte Carlo simulation of a forward-selection
stepwise procedure with no expected correlation between
the dependent variable, ¥, and the & predictors was used
to estimate the correct Type I error rate (p-values) for &
=2,3,4,5,7, and 10 corrclated variables under various
inter-predictor corrclation conditions. From these
results, the proposed formulation of ¢ ( 14) was
substituted for & in (2) to determine whether it was
uscful in controlling the Type I error rate.

For comparison purposes, Pohlmann’s (1979)
algorithm (3) was also used. The Appendix provides
numerical examples that demonstrate the differences
between the two methods.

METHODS

Simulation Procedure

A Monte Carlo program was written in
SAS/IML (SAS Institute, 1990) to simulate the forward
selection process of stepwise regression. Initially, the
RANNOR fucnction, which provides a pseudo-random
clock gencrated values, was use to generate a normally
distributed predictor matrix, X, with dimensions of n
rows (cases) and & columns (variables). All predictor
means were equal to zero and all variances were equal to
one. Then by using the fundamental postulate of PCA
(Tatsuoka, 1988) and a method described by Kaiser and
Dickman (1962), a k x k matrix of principal component
coefTicients, F, was derived from a prespecified predictor
correlation matrix, P and pre-multiplied by the

Beasley and Leitner

transpose of X to create a transformed data matrix Zp
that simulates P (see Beasley, 1994):

Zp=F X! 15)

Then a normally distributed dependent variable vector,
Y, was randomly generated and concatenated with the
transpose of Zp to form the entire data matrix, M.
Thus, although there was correlation among the &
variables in P, there was no expected correlation
between the predictor variables and ¥, This process was
replicated 5,000 times. Since an infinite number of
correlation matrices can be simulated, various
combinations of Ay and [P| were used for each level
of k. Tables 1, 2, and 3 in the Results section reference
the values of Apq and |P| that were imposed on X.
The number of predictors was manipulated from k = 2,
3,4,5,7, and 10. The number of cases was held
constant at a fairly large number of N = 200 in order to
avoid extreme shrinkage of R2 (Harris, 1975) and to
reduce the residual error in the transpose of Zp as it
simulates the predictor correlation matrix, P.
Test Procedures

Under conditions of the complete null
hypothesis, if an erroneous mode! is to be formed (e,
Type I error committed) using a forward selection
procedure then it will occur on the first step.
Furthermore most packaged stepwise programs (i.e.,
SAS STEPWISE, SPSS REGRESSION) perform the
first entry with (N - 2) df's. Therefore, the maximum
zero-order correlation in the predictor column of M was
tested. If the calculated F(1, 180) exceeded the critical
values for F"at the o = .05 level of significance, then it
was counted as a Type I crror. The number of rejections
divided by the 5,000 replications scrved as empirical D
values and estimates of the truc family-wisc Type I error
rate, aT. The results of this procedure were used to
help estimate family size,c. That is, if aT and o; are
known then family size, ¢, can be solved as follows:

c=1nl-ay) (16)

In(1 -¢q)’

where /n refers to the Naperian logarithm.

The expected values of &, Ay, and |P| using
the formula described in (14) were regressed on ¢ derived
from the simulations and (16) to investigate the
goodness of fit. These results were also compared to
the results of Pohlmann’s (1979) algorithm (3).
Furthermore, the effectiveness of (14) in controlling the
family-wise Type 1 error rate was assessed by
substituting these estimates of ¢ for k in (2) to set a
more stringent o; in each simulation. These corrected

Type I error rates were compared to the nominal alpha
of .05..
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RESULTS

Using the expected values of k, Ay, and P,
the family size estimates of ¢ from (14) were regressed
on the empirical values of ¢ derived from the proportion
of rejections at the o, = .05 level of significance during
the 5,000 replications. Thus, the following model was
tested

(k= Dmar - DA - |P))
(17)

with the intercept restricted to zero and the coefficients
b1 and b) restricted to one. The model R2 with these
restriction was 0.9858. Figure 1 (upper panel) shows a
scatter plot of this analysis with different elements for
each value of . The model R2 when using Pohlmann's
(1979) algorithm (3) based on averaged squared
correlations was 0.9147. A scatter plot of that
regression is shown in the lower panel of Figure 1.
The diagonals on each panel represent a perfect fit of the
expected and empirical values of family size. As can be
seen, many more estimates of family size, ¢, deviate
from the perfect fit diagonal for the Pohlmann's average
squared correlation estimate of ¢ as compared to the
current proposed algorithm. Using a dependent -test for
correlations, the proposed correction (14) was found to
be significantly better than Pohlmann’s estimate of c,
1(67) = 9.70, p < .001.

Tables 1, 2, and 3 show the cxpected values for
the average squared corrclation within the predictor
matrix, P, the maximum cigenvaluc (Amax), and the
determinant of P, |P|. Thesc tables also show the

Camp = b1k + b

empirical valucs of the family-wisc Type I error rate-

(Empirical p-valucs), the estimated value of family size,
¢ from (14), and the corrected p-values after controlling
Type I crrots with (14). 4

As can be seen by looking across Tables 1, 2,
and 3, when the number of predictors increased from & =
2 to 10 the expected increase in the family-wise Type |
error rate also occurred. Also, by examining the first
entry for any number of predictors (k), when the average
squared correlation of the predictor matrix is zero, the
empirical p-values approximate their estimated value
from (1). For example, for &k = 4 independent
predictors(i.e., E(pz) = 0), the expected family size is
four. Using (1) the expected family-wise Type I error
rate under the complete null hypothesis is 0.1855. In
comparison, the simulation in this study estimated the
family-wise Type I error rate with an empirical p-value
of 0.1870. From (16), the estimated family size is ¢ =
4.0361 (see Table 2, upper panel). One can also see by
looking within any Table that as the expected average
squared correlation increases the Type I error rate and
family size. Yet, some matrices with the same average
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Figure 1. Empirical family size, c, derived from (16)
as a function of the estimated family size from (14;
upper panel) and from the average squared correlation @3;
lower panel).

p2 have different values for Apyq, and |P| and more
importantly different empirical proportions of Type I
errors. This is most notable in Table 3 with & = 10. It
is important to note that when corrected with ( 14) the
Type I error rates (corrected p-values) are reasonably
close to the nominal alpha of .05 regardless of these
discrepancies. Corrections based on average squared
correlations (i.e., Pohlmann, 1979), however, would
correct these discrepant configurations in the same
manner. Thus, logically as well as statistically, the
correction formula (14) provides a better adjustment for
controlling Type I errors for multiple, correlated tests.
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In any Monte Carlo study, one must consider
the sampling error of the simulation process. Based on
the nominal alpha of o = .05 and 5,000 replications,
the standard error of each estimate is Se =.003, which is
used as a general heuristic to evaluate the proposed
procedure. Although several corrected p-values exceed
the + 2 standard error range, most are within the range
of acceptability set by Bradley (1978). Explanation for
these aberrations for the currently proposed correction
may be twofold. One problem may be that some
correction for sample size is necessary. Since sample

Table 1.

Beasley and Leitner

size was held constant in this study, it should not have
presented a serious problem. However, this possibility
warrants further attention. A second problem is
consistent with technical issues involving
multicollinearity, in that the use of highly correlated
predictor matrices yields extremely small determinants.
In this case the accuracy of estimating such small
values present a serious computational problem. That
is, slight estimation errors can lead to rather large
computational errors,

Expected values for the population average r2 maximum eigenvalue (1,,45) and determinant (IP)) with empirical
Type I error rate, estimated ¢ from (16) and corrected Type I error rate ( 14) for k=2 and 3 predictors.

k=2
Empirical Corrected
E(P?) E(max) E(|P|) p-value ¢ (16) p-value (14)
0.00 1.0000* 1.0000 0.0962 1.9719 0.0506
0.01 1.1000% 0.9900 0.0998 2.0497 0.0518
0.09 1.3000* 0.9100 0.0934 1.9116 0.0496
0.25 1.5000* 0.7500 0.0892 1.8215 0.0510
0.49 1.7000* 0.5100 0.0896 1.8301 0.0532
0.64 1.8000* 0.3600 0.0760 1.5410 0.0454
0.81 1.9000* 0.1900 0.0714 1.4442 0.0438
k=3
0.00 1.0000* 1.0000 0.1474 3.1089 0.0502
0.09° 15695 0.7609 0.1296 2.7061 0.0496
1.5984 0.7826 0.1394 2.9268 0.0494
1.6000* 0.7840 0.1300 2.7150 0.0462
0.25 1.8922 0.2910 0.1120 2.3158 0.0452
1.9860 0.4692 0.1286 2.6837 0.0516
2.0000* 0.5000 0.1250 2.6033 0.0540
0.49 2.3658 0.0700 0.1052 2.1670 0.0532
2.3986 0.2531 0.1090 2.2500 0.0504
2.4000%* 0.2160 0.1122 2.3202 0.0492
0.64 2.5885 " 0.0384 0.0910 1.8601 0.0462
2.6000* 0.1040 0.1004 2.0627 0.0510

Note. * indicates that all correlations in P are equal.
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Table 2.

Expected values for the population average r2, maximum eigenvalue (15,45) and determinant (P)) with empirical
Type I error rate, estimated ¢ from (16) and comrected Type I error rate (14) fork=4 and 5 predictors.

k=4
Empirical Corrected
E(P?) E(\max) E([P|) p-value ¢ (16) p-value (14)
0.00 1.0000* 1.0000 0.1870 4.0361 0.0494
0.09 1.7926 0.5832 0.1744 3.7363 0.0470
1.8016 0.5439 0.1706 3.6467 0.0474
1.8964 0.6481 0.1746 3.7410 0.0478
1.9000* 0.6517 0.1790 3.8452 0.0552
025 22670 0.1188 0.1548 3.2788 0.0512
2.4150 0.1042 0.1508 3.1868 0.0528
2.4995 0.3019 0.1542 3.2650 0.0582
2.5000* 0.3125 0.1650 3.5155 0.0572
0.64 33696 0.0011 0.1042 2.1453 0.0538
3.3984 0.0238 0.1106 2.2851 0.0520
3.4000* 0.0272 0.1104 2.2807 0.0546
0.00 1.0000* 1.0000 0.2252 4.9743 0.0460
0.09  2.0462 0.3866 0.2068 4.5168 0.0516
2.0558 0.4449 0.2078 4.5414 0.0524
2.0954 0.3589 0.1970 4.2774 0.0514
2.1946 0.5221 0.2112 4.6252 0.0486
2.2000* 0.5282 0.2124 4.6549 0.0508
025  2.7652 0.0081 0.1648 3.5109 .0486
2.8100 0.0768 0.1800 3.8689 0.0556
2.9094 0.0112 0.1728 3.6985 0.0600
29914 0.1745 0.1758 3.7693 0.0516
3.0000* 0.1875 0.1818 39118 0.0628
0.64 41957 0.0039 0.1250 2.6033 0.0560
4.2000* 0.0067 0.1184 2.4568 0.0598
0.98  4.9600 0.0001 0.0610 1.2271 0.0328

Note. * indicates that all correlations in P are equal.
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Table 3. :
Expected values for the population average r2, maximum eigenvalue (Imax) and determinant (IP]) with empirical
Type I error rate, estimated ¢ from (16) and corrected Type I error rate (14) for £ =7 and 10 predictors.

k=7
" Empirical Corrected
E(P® E(max) E( [P|) p-value ¢ (16) p-value (14)
0.000  1.0000% 1.0000000 0.3024 7.0206 0.0476
0.090 23742 0.1097200 0.2664 6.0396 0.0548
2.5193 0.1764100 0.2708 6.1569 0.0570
2.5539 0.2311600 0.2738 6.2373 0.0546
2.7745 0.3024000 0.2720 6.1890 0.0596
2.8000* 0.3294200 0.2602 5.8755 0.0576
0.250 3.3159 0.0016268 0.2138 4.6896 0.0544
3.5875 0.0004800 0.2040 4.4481 0.0486
3.6922 . 00125600 0.2234 4.9291 0.0564
3.7627 0.0001200 0.2072 4.5266 0.0540
3.9779 0.0554100 0.2344 52072 0.0660
4.0000* 0.0625000 0.2232 4.9241 0.0558
0.640 5.7938 0.0002600 0.1492 3.1501 0.0586
5.8000* 0.0003700 0.1466 3.0906 0.0574
k=10
0.000  1,0000* 1.0000000 0.3920 9:7007 0.0456
0.153  2.3770% 0.5333101 0.3960 9.8289 0.0512
4.0039 0.0003575 0.2986 6.9147 0.0516
0.187 2.6830% 0.4163279 0.3634 88045 0.0512
- 4.4190 0.0000643 0.2794 6.3882 0.0514
0.205 2.8450* 0.3608996 0.3636 8.8107 0.0484
47727 0.0000260 0.2900 6.6771 0.0532
0.327  3.9430* 0.1116766 0.3474 8.3206 0.0624
5.8601 0.0000005 0.2462 5.51004 0.0548
0.400  4.6000* 0.0463574 0.3062 7.12708 0.0558
6.5298 4.49¢-8 0.2268 5.01464 0.0536
0.532  5.7880* 0.0062336 0.2784 6.36115 0.0614
7.4954 2.84¢-9 0.1840 3.96428 0.0550

Note. * indicates that all correlations in P are equal.
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DISCUSSION

The behavioral science literature is replete with
“significant" findings that fail the ultimate test of
replication (Pedhazur, 1982; Rosnow & Rosenthal,
1989). One explanation for this conundrum lies in the
family-wise Type I error rate that increases when
stepwise regression or other multiple testing procedures
are used. Faced with the problem of multiple tests that
may be correlated, the researcher should take some
action to correct the Type I error rate. Possible
approaches to this problem include:

a). Prior to performing a stepwise regression, conduct
an omnibus test with all potential predictors in the
model.

b). When searching for a significant subset of
predictors, use stepwise methods with backward
elimination

c). When searching for a reduced subset of predictors
through stepwise methods, perform a PCA and extract
orthogonal components and use (1) to correct the
family-wise Type I error rate,

d). In any multiple test situation, use one of several
simultancous inference tests (e.g., Games, 1977,
Schafer, 1992; Schafer & Macready, 1975) to control
Type 1 errors.

¢). Usc the Bonferroni incquality, however, one may
over-correct the probability of a Type I error and losc
power.

f). Usc the algorithm (14) suggested here if multiple,
corrclated test are being performed.

It should be noted that there are practically an
infinite number of configurations a correlation matrix
can assumc; therefore, there is no way to exhaust those
possibilities. Therefore, these findings are limited to the
specific corrclation matrices simulated. Thus, although
extensive replications of this study are needed to assume
the generality of these findings, it is not unrcasonable
to assume that the proposed algorithm (14) will work in
other situations.

Although the family-wise Type I error
correction suggested here has been framed in terms of
the forward selection procedure of stepwise regression,
there is no reason for its exclusion from other situations
that involve a single dependent variable and multiple
tests that are correlated. For example, a set of
nonorthogonal contrasts for an ANOVA, although based
on coded vectors for means have correlations coefficients
associated with them. Therefore, a matrix of
correlations among contrasts could be analyzed with
(14). In conclusion, the suggested algorithm shows
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adequate control of the family-wise Type I error rate and
is based on more complete information than estimates
based simply on the average squared correlation. Yet, in
the results the suggested correction sometimes deviated
from the nominal alpha. Thus, further investigation
will focus on manipulating sample sizes and using a
shrinkage correction for the determinant of the predictor
correlation matrix.

REFERENCES

Aitkin, M. A. (1974). Simultaneous inference and the
choice of variable subsets in multiple regression.
Technometrics, 16, 221-27.

Beasley, T. M. (1994). CORRMTX: Generating
correlated data matrices in SAS/IML, Adpplied
Psychological Measurement, 18, 95.

Bradley, J. V. (1978). Robustness? British Journal of
Mathematical and Statistical Psychology, 31, 144-
152.

Draper, N., & Smith, H. (1981). Applied regression
analysis (2nd ed.). New York: Wiley.

Games, P. A. (1977). An improved table for
simultancous control on g contrasts. Journal of the
American Statistical Assoclation, 72, 531-534,

Harris, R. (1975). 4 primer of multivariate statistics,
New York: Academic Press.

Horn, J. L. (1965). A rationalc and test for the number
of factors in factor analysis. Psychometrika, 30, 179-
185.

Huberty, C. J. (1989). Problems with stepwise
methods - better alternatives. In B. Thompson (Ed.),
Advances in social science methodology (vol. 1).
Greenwich, CT: JAI Press.

Kaiser, H. F. (1970). A second generation Little Jiffy.
Psychometrika, 35, 401-415,

Kaiser, H. F., & Dickman, K. (1962). Sample and
population score matrices and sample correlation
matrices from an arbitrary population correlation
matrix. Psychometrika, 27, 179-182.

Krishnaiah R. K., & Armitage, R. B. (1965).
Probability integrals of the multivariate F
distribution, with Tables and applications. (Report
No. ARL 65-236). Wright-Patterson AFB, OH: U.
S. Air Force.




22 MLRV, Winter, 1995

McNemar, Q, (1969). Psychological statistics. New
York: Wiley.

Nagarsenker, B. N. (1976). The distribution of the
determinant of correlation matrix useful in principal
components analysis. Communications in Statistics:
Simulation and Computation, BS, 1-13.

Pedhazur, E. J. (1982). Multiple regression in
behavioral research. (2nd ed.). New York: Holt,
Rinehart, and Winston.

Pohlmann, J. T. (1979). Controlling the Type 1 error
rate in stepwise regression analysis. Multiple Linear
Regression Viewpoints, 10, 46-60.

Pope, P. T., & Webster, J. T. (1972). The use of an F-
statistic in stepwise regression procedures.
Technometrics, 14, 327-340.

Rosnow, R, L., & Rosenthal, R, (1989). Statistical
procedures and the justification of knowledge in
psychological science. American Psychologist, 44,
1276-1284,

SAS Institute. (1990). SAS/IML user's guide (Relcase
6.04), Cary, NC: Author.

Schafer, W. D. (1992). Simultaneous inference options
for statistical decision making. Measurement and
Evaluation in Counseling and Development, 25, 98-
101,

Schafer, W. D., & Macready, G. B. (1975). A
modification of the Bonferroni procedure on contrasts
which are grouped into internally independent sets.
Blometrics, 31, 227-228,

Thompson, B. (1989a). Why won't stepwisc methods
dic? Measurement and Evaluation in Counseling and
Development,, 21, 146-148,

Thompson, B. (1989b). Statistical significance, result
importance, and result generalizability: Three
noteworthy but somewhat different issues.
Measurement and Evaluation in Counseling and
Development,, 22, 2-5,

Tatsuoka, M. M. (1988). Multivariate analysis:
Techniques for educational and psychological
research (2nd ed.). New York: Macmillan.

Wilkinson, L. (1979). Tests of significance in stepwise
regression. Psychological Bulletin, 86, 168-174,

Beasly and Leitner




Some Historical Notes on Statistical Data Analysis

Joe Ward

he historical notes below form a basis for
concluding that combining a cell-means

prediction-model approach with modern
computers can empower data analysts to:

-- Analyze many different-appearing data analysis
procedures with one general approach, which reduces
the amount of material to be leamned.

-- Create models that are more appropriate to the
problems of interest, rather than forcing problems into
packaged algorithms that may not answer the
questions,

-- Reduce the risk of unknowingly obtaining answers
from statistical software that are unrelated to the
research questions of interest.

-~ More easily and correctly specify the computational
requirements to the computer,

~- Simplify communicating results of the analyscs,
since the models arc developed from natural language
concems of the rescarcher.

1951 -

" Joe Ward began working at the Air Force
Personnel and Training Research Center (AFPTRC) at
Lackland Air Force Base to move data analysis from
desk calculators to IBM punched card machifes. The
first task was to implement an iterative algorithm for
solving least squares equations that was not sensitive
to lincarly dependent predictors.

1953 - 1963
enhancmg ‘research capabﬂm“ht AFPTRC by
exploiting the power of Regression Models (Lincar
Models) made possible through the use of high speed
computers. Many experiences combined to bring
about a new perspective in research analysis at
AFPTRC. While studying at Stanford University,
Bottenberg was influenced by Z.W. Birnbaum, Albert
H. Bowker, Meyer A. Gershick, George Polya and
others. And while attending several Southern Regional

Education Board Summer Institutes at the U. of
Florida, North Carolina State, and Virginia
Polytechnic Institute, Ward had valuable perspectives
from association with Richard Anderson, Gertrude
Cox, David Duncan, George Nicholson Jr., Lowell
Wine and others. Also, of prime importance was the
influence of Harry M. Hughes of the Air Force School
of Aerospace Medicine.

During the 1950's most of the personnel at
AFPTRC were PhD Research Psychologists who had
received their statistics education prior to the
availability of high speed computers. This meant that
techniques of analysis did not involve the use of
approaches to analysis that required a large amount of
computing. During the late 1950's Bottenberg and
Ward developed a Statistics course for personnel at
AFPTRC. The plan was to provide a sequence of
background concepts that would "eventually” lead to
the exploitation of regression models and the computer
for analysis. However, the participants were anxious
to get on to the highly publicized promises that they
would be able to creatc modcls appropriate to the
rescarch questions of interest and the course contents
were adjusted accordingly. Unfortunately, little has
changed in many onc-semester, required college
statistics courscs. So much time is spent on the
"assumed background prerequisites” that the students
arc rarely given the opportunity to realize the data
analysis capabilitics that are readily at their command.

During the AFPTRC course it became apparent
that a "Top Down" approach was the way to go for
persons who were interested in seeking answers to
practical research questions. This implies starting
with the problem stated in "natural language" and
creating models that fit the problem rather than trying
to fit the problem into an easily computable (possibly
inappropriate) algorithm. This approach also suggests
that concepts be introduced AS NEEDED, rather than
spending time. on topics which might have been
assumed to be prerequisites for creating models to
answer questions of interest. In situations where the
participants are already indoctrinated with the pre-
computer algorithms, it may be useful to relate the
regression model approach to the older methods.
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This need to empower researchers to create their
own models was recognized by Raymond Christal and
others at AFPTRC and as a result Bottenberg and
Ward were encouraged to develop and document their
ideas. This resulted in publication in March, 1963 of
"Applied Multiple Linear Regression" by Robert A.
Bottenberg and Joe H. Ward, Jr., PRL-TDR-63-6,
which is available as AD413-128 from the
Clearinghouse for Federal Scientific and Technical
Information. For several years after this document
was published it was among the highest volume sales
from the Clearinghouse.

1964 -

In the summer of 1964 Bottenberg and Ward led a
two-week National Science Foundation training
session for a group of social sciences university
faculty members. This session was directed by Earl
Jennings and used the. computing and dormitory
accommodations at the University of Texas at Austin.
The instructional activities focused on the use of
regression models and computers in research data
analysis, The participants were shown that it was
now possible to solve the systems of simultaneous
equations that are sometimes required for statistical
models. And it wasn't (and still isn't) really necessary
to have "equal or proportional n's" that were required
BC (Before Computers). Furthermore, even if a
rescarcher has NO OBSERVATIONS in some
catcgorics of an "Analysis of Variance" model, the
problem can be readily analyzed by stating meaningful
hypotheses about the population "cell means" for
which there ARE OBSERVATIONS. With model
creation skills it may be possible to create a defensible
model that produces estimates of population means in
cells in which there are no observations and to test
hypothescs about the means of those cells.

1967 - 1975

During this period a series of Presessions were led
by Bottenberg, Jennings, and Ward at the annual
meetings of the American Educational Research
Association. These sessions provided an opportunity
for practitioners of educational research to become
aware of the power of the regression models approach
in the computer age. The large number of "graduates"
of these Presessions stimulated the creation of the
special interest group within AERA, SIG/Multiple
Linear Regression. This MLR SIG has an informal
publication, "Viewpoints", that provides
communication among its members,

Ward

1973 -

After many years of teaching about and using
regression models and computers, Ward and Jennings
collaborated on a book that was to be included in the
Prentice-Hall Series in Educational Measurement,
Research, and Statistics. Specifically, the book was
designed as a supplement to the Gene Glass and Julian
Stanley book, "Statistical Methods in Education and
Psychology". Englewood Cliffs, NJ: Prentice-Hall,
1970. The book (ILM) by Ward and Jennings was
titled "Introduction to Linear Models", Englewood
Cliffs, NJ; Prentice-Hall, 1973,

The book was an attempt to provide the reader
with fundamental notions that would enable them to
create models to answer research questions of interest,
The ILM book developed the linear models approach
in the traditional sequence presented in the Glass and
Stanley book. That sequence was Inferences About
the Mean, Difference Between Two Means, One-Factor
Analysis of Variance, Two- Factor Analysis of
Variance,...,

1989 - 1994 >

From 1989-1992 Joe Ward served as a member of
the American Statistical Association-National Council
of Teachers of Mathematics (ASA-NCTM) Joint
Committee on the Curriculum in Statistics and
Probability. Ward continues to keep in close contact
with the activitics of the Committce and continues
work with secondary schools through the "Adopt a
School" program of the ASA. Ward started working
with high school students and teachers in the use of
computers in 1958. While the emphasis during thosc
carly years was on introducing computcrs into the
secondary schools, Ward took the opportunity to
introducc a few high school students to the combined
power of regression models and computers. He now
works with high school students and teachers in the
San Antonio area who wish to enhance their data
analysis skills. Ward teams with Laura Niland, a
statistics teacher at MacArthur High School and the
1988 Texas Presidential Awardee in Secondary
Mathematics, in workshops for high school teachers
and students. Ward has taught Problem Solving
Using Data Analysis to high school students in the
Prefreshman Engineering Program (PREP) of the
University of Texas at San Antonio.

Teaching both high school and college students
who have had no previous introduction to Data
Analysis has lead to the conclusion that a "TOP-
DOWN" approach to Data Analysis will allow
students to make practical use of their Data Analysis
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experiences before they become "turned-off". Notice
the use of the term "Data Analysis" in place of
"Statistics". The use of a "different name" for the
course allows more freedom to start with real-world
problems, introduce the use of regression models and
computers and apply these techniques to the data
analysis requirements. Topics that are frequently
taught as prerequisites are introduced when needed in
the data analysis process.

1951 - 1994

Ward has interacted with a wide variety of
researchers who call themselves by different labels.
These include Research Psychologists, Educational
Researchers, Operations Researchers, Economists,
Statisticians, Computer Scientists, Mathematicians,
Sociologists, Management Scientists, Engineers, etc.
Fortunately many of these researchers learn — while on
the job -- to create models to fit their problems and to
use the computer to "crunch the numbers", However,
observations of newly trained researchers and the
books used for their training indicate that much time
is spent learning the "pre-computer” approaches to data
analysis. Those authors that do show the student
some examples of the general lincar model approach to
analysis do little to empower the student to create their
own models. It is not clear why many classical texts
include so many special computational formulas that
were necessary in carlicr years. There may be a belief
that a lcarner acquires a stronger degree of
understanding if they know how to do the pre-
computer arithmetic. Many of the statistical software
packages cmphasize the usc of the computerized
versions of the "pre-computer” algorithms. And these
packaged programs can occasionally provide answers
to uninteresting questions that are different from the
hypotheses that the data analyst thought were being
tested. .

There still remains a great need to develop
instructional approaches that will allow researchers to
create their own models as required and to use the
computer to handle the computational burden. It
seems that a good approach to introducing students to
model development is to begin with a problem that is
of interest to them and to use concepts that are
familiar. The use of "averages" of collections of data
are a great way to start since learners of all ages have
heard the term and have been subjected in school to the
use of "averages” as performance indicators. Most
learners can talk easily in "natural language" about
comparing "averages" among categories (¢.g., batting
averages, shooting average, etc.). Then these ideas can
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be expressed in more formal prediction models of
forms such as :

DEPENDENT VARIABLE = PREDICTION +
ERROR,
DATA =FIT + RESIDUAL,

DATA =MODEL + ERROR, or
Y =XB +E.

The important idea is to provide learning
experiences that will eventually allow students to
create models relevant to the questions of interest.
The solutions to these models are now feasible by
high-speed computers.




Using Multiple Regression to Develop ANOVA Power

Formulae

Dale G. Shaw and David R. McCormack
Untversity of Northern Colorado

ultiple regression may be used to examine
Mthe relationship between a single dependent

variable and a set of several independent
variables. The ANOVA power tables presented by
Cohen (1988) can be considered such a data set. In
these tables, the power of a balanced one-factor
ANOVA design may be considered the dependent
variable which is predicted by four independent
variables: sample size, alpha level, number of
groups, and effect size. Cohen's 66 pages of tables
provide 15,526 power values for various combination
of values of the four independent variables,

This article presents regression equations fitted to
Cohen's ANOVA power tables in an effort to obtain
simple yet accurate formulae for estimating the power
of an ANOVA design. Simple equations were sought
because power analysis is presently receiving limited
attention in research planning (Cohen, 1988).
Having a simple, casy-to-use formula which
cstimates a design's power might lead to improved
designs. Obviously accurate power estimates arc
desirable, but the criterion. of accuracy is less
stringent than might be supposed. The researcher
who is planning an ANOVA design docs not usually
require a power estimate to the ncarest percentage
point as Cohen's tables provide. For example, if a
design's power were estimated to be .88 with a +.06
margin of error, the experiment could proceed with
with reasonable confidence of having high power even
though the exact power is unknown,

In contrast to the simplicity criterion which
required subjective judgment, the accuracy criterion
was quantifiable. We used 2 indicators of accuracy for
evaluating and comparing regression models: R* (the
proportion of variance “explained” by the formulae)
and RMSE (the root mean square error). We sought
equations with R% > 95 and RMSE <.03.
Regrettably, these two criteria for desirable formulae,
simplicity and accuracy, conflicted with each other.
The simplest formulae were not the most accurate and
the most accurate formulae were not simple.

Linear Formulae
The first attempt to model ANOVA power was a
simple linear model in which the dependent variable

was Cohen’s (1988) ANOVA power values. The
independent variables were a, u, n, and f, described in
Table 1. Cohen’s tables provided 15,526 power
values between .01 and .99, which served as data
points on a hyper-surface. As expected, this first
model failed to meet the accuracy criterion (R2 =
-4320). General knowledge of power curves as well
as inspection of Cohen’s tables suggested the surface
was curvilinear rather than linear. To accommodate
the curvature, and still keep the models composed of
fairly simple terms, the predictor set was increased
from 4 to 24 variables by including the square, the
cube, the square root, the natural logarithm (In), and
the natural logarithm of the natural logarithm (In(In))
of each basic predictor, The last of these new
predictors was undefined for some data points because
In(In(1)) is undefined. Therefore, the basic variables
were modified: o was multiplied by 1000, f by 100,
and u by 10. R? values for various models created
from the 24 variables did not exceed .95.

The search for a better model progressed by
imposing a restriction on the data set. This was
justified because a user of the resulting formulac
probably would not need accuracy for very high or
very low power values. A very low power, whether
.10 or .25, indicates the proposed design is probably
not worthy of further consideration. On the other
hand, a very high power, whether .95 or .99, suggests
a design worthy of further consideration. Because a
research planner probably needs only limited accuracy
at either end of the power range, the data points of
these asymptotic tails of the power data (which offer
the greatest difficulty in fitting a linear model) were
eliminated. The greatest R? value of the new models

(.9524 using the predictor set In(f), In(n), Ju s Jo ,

In(In(n)), and u2) was observed when power was
restricted to the interval [.25, .95]. Thus, a decision
was made to continue the search for linear formulae
using only the reduced data set.

The next step was to increase the set of predictors
by including the products of pairs of the 24 predictors
so that interactive effects of the predictor variables
could be accommodated. For each basic predictor, a
set of 6 predictors had already been included, such as

£, 2, £, In(f), In(In(5)), and VT. When each of the 6
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f predictors was paired with each of the 6 n predictors,
36 predictors were possible. When all 4 basic
predictor variables were considered, a total of 216
product pairs were added to the former 24 predictors,
creating a set of 240 predictors. Regression by the
forward, stepwise, and all-possible techniques was
employed in search of terms that explained large
portions of the variance in p. When the residuals of
models based on these predictors were plotted, three
somewhat parallel curves were observed. This
prompted separation of the data set into three sets,
one for each a level. R? values greater than .98 were
obtained for each « level considered separately. Such
formulae marginally satisfied the accuracy criterion
but did not meet the simplicity criterion in which one
formula incorporating all ¢ levels was desired.

In the interest of simplicity, all terms containing
logarithms were eliminated from the model. This
reduced the possible predictor set from 240 to 112
predictors. Similar R“’s were attained without the
complexity of the logarithmic terms. While
marginally acceptable R” levels were obtained for
specific a levels, the R? values obtained for general
formulae were not deemed acceptable.

Several recurring predictors were observed in the
formulae for the scparate « levels, and it was hoped
some form of o could be entered as a factor with
these predictors to develop formulae that were
acceptable for all « levels. Especially encouraging

was the pair fvn and f2n, the second being the

square of the first, Because fv/n continued to be
prominent throughout the experimentation, n (cta)

was defined U’ to simplify future predictor notations.
Experimentation with powers of 7 and ¢, along with
various other terms from the current models, failed at
this point to obtain acceptable formulae, however.

As stated carlicr, the above models included only
power values in the interval [.25, .95]. Continuing
the search for formulae which would be simpler and
more accurate, another reduction of the data set was
tested. Because the user of a k-group ANOVA désign
is only rarely concerned with a comparison of more
than five groups, the data for six or more groups was
removed. Because u = k-1, this reduction meant only
data points with values of u in the interval [1, 4] were
used in the continuing search. This restriction of the
data set permitted a model which included all &

levels and which attained an R? =.9656 for the
predictor set , fn2, Vua, ue, u’a’, and n*f>.
Individual models for specific a levels attained R?
>.99. The best model (for @ =.01 using the
predictors 7, nz, Ju , £, fz, and fzn) attained R*

'991?/Iza'ny other possibilities were explored in the

search for good models. Just as the separation of o
levels had been explored, a separation of f levels was
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tested. Models in which p was replaced with In(p),
exp(p), or a trigonometric function of p were tried.
None of these experiments yielded any improvement
when compared to those models already reported.

To balance the two criteria, simplicity and
accuracy, a compromise was required. Having chosen
an accuracy requirement of RMSE < .03, it appeared
the best general formula (given here in a factored
form) contained six predictors and seven constants:

p=-.0347° +(.240-.720Vx )n?
0]
+(2.178Va +. 043u)7 - (.192f+.268)

The accuracy of Formula 1 was attained by
considering only data points with power in [.25, .90]
and u in [1, 4]. While Formula 1 is not as simple as
originally hoped, its simplicity was deemed
Teasonable, considering the magnitude of the problem.
The simplest possible linear combination of the four
basic predictors would require five constants for the
four terms plus an intercept term. That simple
model, however, demonstrated very poor accuracy.
Formula 1 requires only seven constants and it
provides good accuracy, so it may be considered
reasonable by potential users.

To reduce the number of terms (and constants)
required in the model, consideration was given to re-
entering logarithmic predictors into the model. Many
combinations were tried using all possible regressions
on various predictor sets. The model

p =.058+.149In(cx) +

. 2

(-:355+.045u)n+.197In(n)}VT @
emerged after much experimentation. Formula 2 has
only five constants, compared to scven in Formula 1.
The four predictors are, however, more complex than
the six predictors of Formula 1.

The two formulae presented above appeared
comparable in simplicity. To test the accuracy of
Formulae 1 and 2, their residuals were analyzed (see
Table 2) and the two formulae were again found to be
comparable. The residual plots indicated a high
degree of accuracy had been attained, but each plot
exhibited a curvature which invited further exploration
using a cubic function of p. Thus a two stage
estimation procedure was considered. Stage One was
either of the above two formulae. Stage Two then
entered the resulting p into the model

P=by+b,p+b,p’ +b;p’. The new P gave a better

power prediction but the improvement was judged too
minimal to warrant the application of Stage Two.
The first formulae were already less simple than
desired and it was felt the application of a second
stage formula would probably not be attractive to any
user.
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Non-Linear Formulae

Because power data is not linear, non-linear models

such as p=b0(1—exp(b,u"a°2n°’f°‘)) and

P=by +bu®a® +b,n"f“ were tested using
computer iterations to determine the b and e parameter
values which most closely fit the surface. Although
many models failed to converge to a set of
parameters, the above models did each converge with
RMSE < .04. These results were less satisfactory,
however, than the results from the linear Formulae 1
and 2 already reported. Finally, the logistic model
was considered because its graph approximates a
power curve in shape, being asymptotic to zero and
one. The logistic model, unlike linear models, might
allow use of the full data set and might model
ANOVA power well,

The logistic model is based on a sigmoidal

1

l4e X'

curve with an equation similar to Y=

With P = Y and a transformed p'=x P=

Solving, p = ln(—l-;—,—}:). Although P is sigmoidal,

the transformed p' is linear. This p' was regressed on
various sets of predictors using the linear model

1+e?

k
P=p +12xﬁ 7%, . The resulting coefficients were

then substituted yiclding a model similar to

Po— .,
Bo+ LAX,
+e M

For initial trials, the five predictors (o, u, n, f, and
n) were tested. The standard deviation of the residuals
was .0858 with the data set limited to power in the
interval [.25, .95) but when the entire data set was
allowed, the standard deviation of the residuals was
0768. The logistic model performed as well, if not
better, with an unrestricted data set, As
experimentation continued, the predictors which had
been discovered in the scarch for linear models were
found to be helpful in the search for logistic models.

Although logistic regression produced pleasing
power estimates in the asymptotic tales, a disturbing
feature of these models was the wide range of the
prediction errors indicated by the minimums and
maximums of the residuals. Even in the best model,
one residual was as large as .39. Through analysis of
the data, the source of these extreme residuals was
found to be cases of very low n and large u. When
the restrictions n > 10 and u in [1, 4] were placed on
the data, similar to the restrictions used in developing
the linear models, a better fit was obtained:
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p =
‘ o)
142,810~ Py (31-27n)n [ 917-(2.31+.17u]n)

In Formula 3, all errors were within + .05
and the standard deviation of the errors was .0150, a
very pleasing result when considering the accuracy
criterion of acceptable formulae. However, the
simplicity criterion was challenged by this model.
Any logistic model is by nature complex when
compared to a linear model.

The Formulae Compared :

The three formulae produced by this study each
have features which may be attractive to users.
Formula 1 is simple but lengthy. Formula 2 is more
compact, but it includes logarithmic terms. Formula
3 is the most accurate, but it is also the most
complex. In addition to these basic comparisons, the
user might consider the tables of residuals associated
with the formulae. Tables 3, 4, and 5 show the
standard deviations of the residuals as well as the
minimum and maximum residuals under various
restrictions of the predictor variables. As an example,
a design of five groups (u = 4) and five subjects per
group (n = 5) is described in the next to last line of
each table. If Formula 3 is chosen, the standard
deviation of the residuals is .0125. Assuming
normality of the residuals, 95% of the predicted power
values would be within + 1.96(.0125) = + 0248,
For the worst case, the predicted power value could be
as much as .0984 too great or .0320 too small,
(Power = predicted power + crror.)

The superiority of the logistic Formula 3 of Table
5 is obvious, sliown by the smaller numbers
throughout. In addition, the logistic formula is based
on the entire data sct with power in [.01, .99]. The
lincar formulac were developed using only the data
with power values in [.25, .90).  Of course, the
accuracy of Formula 3 was gained at the expense of
simplicity.

The user’s choice of one of these three formulac
will depend upon the user’s desires and purposes. If
the user desires the simplest formula, one of the
linear formulae (Formula 1 or Formula 2) should be
chosen. If greater accuracy is desired, the logistic
formula (Formula 3) should be chosen. The user
desiring accurate predictions in the tail regions of the
model should always choose the logistic formula. A
user may use a linear formula several times to test
possible models and then, having narrowed the
choices, use the logistic formula to make a final
model selection. With computer spreadsheets, it is
also possible for the user to consider the results of all
three formulae simultaneously when proposing
various ANOVA designs.

Although the formulae provide good power
estimates in most cases, a user never knows whether
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the estimate obtained in a particular case is highly
accurate or only marginally accurate. Reference to
plots of residuals can provide further insight for
interpreting the power predictions calculated from the
formulae. Figures 2, 3, and 4 show residuals plotted
against the predicted power for each of the three
formulae. To illustrate, consider Figure 2. Under
Formula 1, if the predicted power is .75, the plot
shows the residuals vary from -.04 to .06. Thus the
actual power of the design is .71 to .81.

Although the user of the formulae may not always
have the residual plots available, the formulae can
still be used effectively if the user understands the
general shape of the residual plots. The user of the
linear Formulae 1 and 2 must be aware that the power
will be over predicted when power is high, and under
predicted when power is low. This is especially clear
in Figure 1 where the full data set of power in [.01,
.99] is plotted. When such predictions are obtained
from the formulae, the user must interpret the results
as “high” or “low” power respectively, without
stating a specific power value. Arn example of
extreme power predictions is the case of a=,05,
n=500, u=1, and f=4 (prediction = 15,602, error =
-14.612). This error results from the dramatic

negative effect of the factor n* for large values of n.
Power for n=500 is expected to be very high, clearly
outside of the [.25, .90] power range. Computed
power estimates which fall into the range for which
the formulae were developed will be reasonable power
estimates, but the user is warned that any extreme
power predictions of Formulac 1 or 2 should be
ignored, _
The shape of the residual plot of Formula 3
-(Figure 4) is very different from the shapc of the plots
for the lincar formulae, the logistic formula being
morc accurate in the tail regions than in the central
regions. A comparison of the scales of the plots,
however, demonstrates that the increased tail accuracy
is not at the expense of accuracy in the central
regions. Formula 3 meets or exceeds the performance
of the other two formulae even in the central regions.
The formulae developed by this study offer a new
way to compute the power of ANOVA designs.
These formulae resulted from a directed “trial and
error” search among those predictors which seemed
reasonable. Certainly, the study did not exhaust all
possible predictors of power. Thus, other researchers
may discover better (simpler and/or more accurate)
formulae than those presented here. This may be
done with the tool of regression, as used in this
study, or by some other method not yet considered.
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Table 1. Independent Variables of the Linear Regression Model

Variable Description Values or Range
a significance level 01, .05, .10
u=k-1 numerator degrees of freedomfor 1 -24

a k-group ANOVA
n per group sample size 2-1000
f Cohen’s effect size 05 - .80

Table 2. Comparison of Residuals of Formula 1 and Formula 2

Formula Mean Standard Deviation Minimum Maximum
1 .0006 .0254 -1387 0617
2 .0006 .0251 -.0901 .1080

Table 3. Residuals of Linear Formula 1, pin [.25, .90].

p=-.0347° +(~240—.720\/75)n’ +(

2.178v +.043u)n - (.192f+.268)

u Values n Values St Dev Min Max
All All 1094 -7782 0617
(1, 8] All 0340 -2301 0617
(1, 8] n>5 0313 -.1466 L0617
(1, 8] n=10 0306 -1414 0608
[1, 4] All 0254 - 1387 0617
[1, 4] n$ 0242 -0979 0617
[1, 4] 1210 0235 -.0897 0608
Table 4. Residuals of Lincar Formula 2, p in [.25, .90].
P =.058+.1491n(at) + (.355+.045u) 7 +.197In(n)VF
u Valucs n Valucs St Dev Min Max
All All 1167 -7375 1080
(1, 8] All 0350 -2027 .1080
(1, 8] n25 0338 -1221 .1080
(1, 8] n210 0335 -.1221 .1080
[1, 4) All 0250 -0901 .1080
(1, 4] nx5 0247 -.0876 .1080
[1,4] 0210 0243 -.0876 1080
Table 5. Residuals of Formula 3, p in [.01, 99}
1
= 14+2.81a = Pul31-27mng[910-(2314.17u)n]

u Values n Values St Dev Min Max
All All 0445 -5195 .0320
{1, 8] All .0160 -2156 0320
(1, 8] n=s 0126 -.0984 0320
(1, 8] n=10 0115 -0516 0295
[1, 4] All .0143 -.1276 0320
(1, 4] n5 0125 -.0984 .0320
[1.4] 1210 0113 -0516 0295
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Figure 2. Formula 1, p in [.25, .90), u in [1, 4], n
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Comparison of General Linear Model Approaches to Testing
Variance Heterogeneity in True and Quasi-Experiments

T. Mark Beasley
St. John’s University, New York

Simulation results indicated that when groups were sampled from the same platykurtic population the O’Brien
(1981) transformation was preferred except when a positive sample size/variance correlation existed, then the Welch
test performed on the O’Brien scores was more powerful. Also consistent with previous research, when grouped data
were sampled from the same leptokurtic population the Brown & Forsythe (1974) transformation was preferred for
equal sample sizes. The O’Brien test was more powerful with an indirect sample size/variance relationship regardless
on distribution shape(e.g., Algina et al., 1989; Olejnik & Algina, 1987, 1988). The study also demonstrated that
the Welch test performed on Brown-Forsythe scores was more powerful when a positive sample size/variance
correlation existed in leptokurtic data. Furthermore, choosing a test of variance based on an initial test of kurtosis
may improve power (Ramsey, 1994). When data were sampled from populations with drastically different shapes
(kurtosis), the Type I error rate of most tests was unstable excluding the Hartley Fmax test which performed

surprisingly well,

most widely used statistical procedures in

educational research. Namely, it is the technique
of choice for True Experiments in which members
sampled from the samc population are randomly
assigned to treatment conditions. In ficld research and
Quasi-Experiments, comparisons among groups are also
of intcrest; however, there exists the possibility that
these groups are sampled from different populations, In
cither case, behavioral rescarchers often compare groups
with different distributional propertics, which may be a
result of (a) sampling from different populations or b)
an experimental treatment affecting something other
than central location. Thus, as far as analytic
procedures are concerned, the distinction between True
and Quasi-Experiments becomes ambiguous. For the
purposcs of this study, a True Experiment is defined as
sampling data from a singlc population and randomly
assigning cases to groups. A Quasi-Experiment is
defined by scparately sampling data from populations
which differ in distributional shape (i.e., skew and
kurtosis).

One of the most critical conditions for any linear
modecling procedure involves the assumption of
homoscedasticity across levels of the independent
variable. In the ANOVA, it follows that heterogeneous
variances may obscure the magnitude of test statistics
for comparisons among means. Thus, testing variance
equality appropriately is important in checking a vital
assumption of the ANOVA. Furthermore, despite the
existence of differences in central location,
heterogeneous variances may constitute substantive and
theoretically valuable results. That is, it may be

T he analysis of variance (ANOVA) is one of the

interesting to know that the responses of two separately
sampled populations differ in scale or that an
experimental treatment significantly affects response
variability,

Traditional tests of variance homogeneity (e.g.,
Hartley’s Fmax) can be very simple, calculating the ratio
of two sample variances. The Fmax test, however, has
long been known to be extremely sensitive to
deviations in kurtosis (Box, 1953; Scheffe', 1959),
Slight departures from normality which involve
kurtosis have been shown to make substantial difference
in the Type I error rate of the Fmax test (Pcarson &
Please, 1975). For instance, Hartley's Fmax test has
been shown to be conservative for platykurtic
distributions and liberal when distributions have
positive kurtosis (Durrand, 1969). Although several
tests of variance have been proposed, the Fmax remains
popular in a varicty of applicd studies because of its
simplicity.

In a simulation study, Conover, Johnson, and
Johnson (1981) compared several procedures for testing
homogeneous variances and found that most are liberal
(i.e., the Type I error rate was considerably larger that
the nominal alpha). Thus few tests exist that actually
control the Type I error rate. Over the past two decades,
robust tests of variances based on applying the ANOVA
to transformed scores (e.g., Brown & Forsythe, 1974;
O'Brien, 1981) have been proposed. Under conditions
of a “True Experiment” and equal sample sizes, these
tests have been shown to be powerful in a variety of
population distributions (Algina, Olejnik, & Ocanto,
1989; Olejnik & Algina, 1987; Ramsey, 1994; Ramsey
& Brailsford, 1990). The Brown-Forsythe (BF) test has
been criticized because it has low power for small, odd

.
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sample sizes and only moderate power for platykurtic
and normal populations (O'Brien, 1981; Olejnik &
Algina, 1987). Under these same conditions, the most
common form of the O'Brien (OB) procedure has been
shown to be more powerful than BF, Also for unequal
sample sizes, OB has been suggested for platykurtic
distributions and BF with symmetric and/or leptokurtic
distributions (Algina et al., 1989).

Despite these recommendations based on the
kurtosis of distributions, a criterion for identifying
population shape was not suggested. Ramsey and
Brailsford (1990) noted that tests of kurtosis could be
used to decide between BF and Fmax. Following the
suggestions of previous studies, Ramsey (1994) has
recently suggested two conditional procedures based on
testing kurtosis for each group separately. Ramsey's
results confirmed the robustness of OB and BF but
indicated that optimal power can be established with the
conditional procedure of testing kurtosis to decide
between the these tests. However, the power of these
conditional procedures has been shown to be dependent
on the power of the test of kurtosis. Also, Ramsey's
results are limited in the sense that only the conditions
of a True Experiment were simulated. That is, the two
groups were sampled from the same population, In
field research and Quasi-Experiments, comparisons of
groups sampled from different populations are often of
interest and the suggested conditional procedures have
yet to be fully investigated under such conditions,

Olejnik and Algina (1988) found that both OB and
BF held the Type I error rate for a limited number of
distributions which differed in location and form. The
OB tended to be most powerful with equal sample sizcs
and with an inverse relationship between sample sizes
and population variances (i.c., larger sample has the
smaller variance). When sample sizes and population
variances had a direct relationship (i.c., larger sample
has the larger variance), using OB transformed scorcs as
dependent variables and performing the Welch (1951)
statistic was the most powerful procedure.

A variety of nonparametric tests of variance are also
available; however, they have presented problems$ with
robustness and low power. Two of the better known
procedures were proposed by Klotz (1962) and Siegel
and Tukey (1960). When data were sampled from a
normal population, both tests demonstrated the
appropriate Type I error rate (Penfield & Koffler, 1985,
Olejnik & Algina, 1985). Also, the Klotz test had
power equal to or greater than the power of OB or BF
when samples differed in variance only. However, both
the Siegel-Tukey and Klotz tests were strongly affected
by differences in central location (Moses, 1963). When
the sampled distributions share the same asymmetric
shape but differ in location, the tests are liberal. Yet,
both tests become less powerful as location parameters
increase when groups share the same symmetric shape
(Olejnik & Algina, 1985). To date, attempts to modify
these tests through mean- and median-alignment have
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not drastically improved their statistical properties (e.g.,
Conover et al,, 1981; Olejnik & Algina, 1988).

Thus the purpose of this study was to investigate
the robustness and power of OB, BF, and the use of the
Welch statistic on these transformed scores (WoB and
WBF, respectively) under conditions of a 7rue
Experiment (i.e., groups are randomly constructed from
the same population) and a Quasi-Experiment (i.c.,
groups are sampled from two different populations).
Furthermore, the effectiveness of conditional procedures
based on tests of kurtosis (e.s., Ramsey, 1994) was
examined. Although tests of variance are themselves of
interest, in most educational research differences in
central location are to be expected; therefore,
nonparametric procedures such as the Siegel-Tukey and
Klotz tests were excluded from this study. Under
several circumstances, the results were expected to
replicate those of Ramsey (1994) and Olejnik and
Algina (1987, 1988). Furthermore, the findings of this
study should address the issue of the appropriate

. procedure for testing variances in Quasi-Experiments in

which the populations may differ in variance and form
and the samples differ in size.

Statistics for Testing Variances

Although many statistical tests for comparing
population variances have been developed, only a few of
these procedures have demonstrated robustness when
populations are nonnormal (i.e., Conover et al., 1981).
Of these tests, the general linear model procedures,
which involve performing the ANOVA (or some
variant) on transformed scores, have shown both
robustness and superior power,

Hartley’s Fmax test. This test was investigated
because of its wide use and known propertics when
kurtosis deviates form normality. The Fmax test is the
ratio of the largest to the smallest of J variance,

S(z
Fmay = 22argest, )

Ssmallest .

The degrees of freedom are (Niyps = 1) for the numerator
and (n,,,,, - 1) for the denominator, Although it is
often recommended that the Fmax test only be used with
approximately equal sample n’s, its statistical properties
were examined under all condition of this study,
Critical values were obtained from the sampling
distribution derived by Hartley (1950).
Brown-Forsythe Transformation. To test
differences in variances, Levene (1960) proposed using
the ANOVA but replacing each score, Yy of subject i
within group j with the absolute deviation from its
respective group mean. Although this procedure is
fairly robust, it was found not to be adequately powerful
(Conover et al,, 1981). Brown and Forsythe (1974)
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proposed applying the ANOVA to absolute deviations
from respective group medians, m,, such that:

by = lyy-m,| . ?)

O’Brien Transformation. O’Briern (1979)
proposed that the original score, Yy of subsect 7 in
groupj be replaced with '

ri(w) =

(wWAn;-2) ny(yy-3) -ws,(u,-1)
(nj- 1) (n-2)
, (€)

where w is a parameter ranging between zero and one
and y; equals the mean, sz equals the variance, and nj
equals the sample size of group J. For most cases,
O'Brien (1981) has recommended a value of w = 0.5
from which the group means for r in (3) are the
variances of each group y: 7; = sjz. The ANOVA is
performed on the transformed r values.

Welch Statistic. 1t is not known whether the
OB or BF tests are asymptotically distribution free,
Furthermore, because the variance of r is dependent on
sample size, O'Brien (1981) suggested using a Welch
(1951) approximate degrees of freedom analysis on r
values in place of the ANOVA when sample sizes are
not equal (WOB). This procedure may also be
performed on BF transformed scores (WBF). The Welch
statistic is calculated by

J

> cj(.;-j';)/("' 1)

W = el @)
J
L 28D 5 gy
L ¢

where J equals the number of groups, C;=n; /s,z,

¢+ = ¥cj, and 7 = Z ¢sr /¢, The Welch statistic is
approximately distributed as F with degrees of freedom
equal to (/- 1) and

J .
[ X a-DUe-0]' o
J2-1]=]

Beasley

For J =2 groups, the degrees of freedom in (5) follow
the Satterthwaite (1946) formula.

Conditional Tests. Based on the simulation
studies of Olejnik & Algina (1987, 1988), BF is
preferred for leptokurtic populations, while OB is
recommended for normal and platykurtic distributions.
To achieve optimal power, Ramsey (1994) proposed
two procedures for testing variances that are conditioned
on applying a test for kurtosis.

Pearson's traditional sample measure of population
kurtosis, y,, in group jis by = my4 / m?, where
me=3% (yy-y;)" /n;. Thus mg is the second
moment about the mean, the biased sample variance.
Although standardized population moments for
skewness and kurtosis provide popular significance
tests, Ramsey and Ramsey (1993) have supplied a
detailed and accurate table of critical values for b,,
which are used to test kurtosis against the null
hypothesis (Ho: B, = 3).

For the tests proposed by Ramsey, tests of kurtosis
are applied in each of the two samples at the o = .05
significance level. A score of -1, 0, or +1 is recorded
depending on whether the test of b, indicates that the
distribution was significantly platykurtic,
nonsignificant, or significantly leptokurtic,
respectively. Combining scores from the two samples
results in a total score, S, ranging from -2 to +2, In a
J-group study, S would range from ~/ to +J, The test of
kurtosis is taken as identifying the population for the
entire experiment as platykurtic if S < -1, mesokurtic if
S =0, and leptokurtic if S 2 +1. In onc conditional
procedure, OBRBF, kurtosis is tested and OB is applied if
the samples are platykurtic or mesokurtic (§<0)and
BF if the distributions arc significantly leptokurtic (S >
+1). This approach is based on the recommendations of
Olejnik and Algina (1987) but does not control the
Type 1 error rate under certain distributional conditions;
therefore, Ramsey (1994) suggested another conditional
procedure that demonstrated superior power and adequate
robustness. This approach, BFp, involves testing the
fourth moment and applying OB with significantly
platykurtic distributions (S < -1) and BF otherwise s>
0).

Methods

Consistent with previous studies (e.g., Miller,
1968, Olejnik & Algina, 1987, 1988; Ramsey &
Brailsford, 1990), the present investigation was
restricted to the two-group case. These studies yielded
results congruent with multi-group studies.
Furthermore, the restriction to two groups allows more
carcful consideration of other factors. Since previous
studies have indicated that shifts in central location have
little to no effect on general linear model tests of
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variance, (Beasley & O'Connor, 1995; Olejnik &
Algina, 1988), three population variables were
manipulated: shape in the form of kurtosis (v2),
variance in one group, (c2); sample size ().

Conditions

Population Kurtosis. Previous studies have
indicated that skewness affects the robustness and power
of nonparametric tests (Olejnik & Algina, 1988) but
only affects the statistical properties of parametric tests
in combination with nonnormal kurtosis (Conover et
al,, 1981; Olejnik & Algina, 1988; Pearson & Please,
1975). The normal and six nonnormal distributions
that had no skewness but varied in kurtosis were
simulated. They are presented in ascending order from
platykurtic to leptokurtic. The first population was
extremely platykurtic (XPLT) and continuous with
skewness (y;) equal to zero and kurtosis (y;) equal to
-1.80. The second population was also platykurtic
(PLAT) and continuous with skewness (y1) equal to
zero and kurtosis (y,) equal to -1.00. It was chosen
because it has been used in a variety of other simulation
studies (e.g., Olejnik & Algina, 1987, 1988). The third
population was slightly platykurtic (SPLT) with y; =
0.0 and y, = -0.50. It was selected as a continuous
distribution which closely matches the moments of one
of Micceri's (1989) data sets. The fourth population
was the normal distribution (NORM) generated with the
SAS RANNOR function, The fifth population (LEP1)
was sclected as a slightly leptokurtic, y; = +1.00,
continuous distribution with no skew comparable to the
sccond population (PLAT). The sixth (LEP3) and
scventh (XLEP) were selected as highly leptokurtic (y,
= +3.00 and +3.75, respectively) with no expected
skewness,

Group Size and Variance Ratio
Parameters. Equal sample sizes of nj =10, 13, and
20 and uncqual sample sizes of (10, 20) and (13, 20)
were employed. To investigate power, variance ratios
of VR = 2.0 and 5.0 were imposed by taking the
population from which Group Two was sampled and
multiplying it by constant equal to the square root of
VR

Because Olejnik and Algina (1988) found that tests
of variance were differentially powerful depending on the
relationship between group size and population
variance, all conditions were crossed when power was
investigated. For example, when the variance ratio was
VR = 2.0 and Group One, with n1 =13, was sampled
from the normal distribution, while Group Two (nj =
20) was sampled from a platykurtic distribution, an
inverse relationship between group size and population
variance (negative condition) was imposed. In order to
Create a positive condition, the sample sizes were
reversed so that the larger group had the larger variance.
Also because power and robustness may depend on
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population shape, the seven populations were
systematically manipulated as long as conditions did not
duplicate (e.g., when investigating Type I error rate for
equal sample sizes all population combinations are not
necessary). Table 1 shows the sample size conditions
for the analyses in this study. Note that two sample
size configurations were added to impose positive and
negative sample size/variance correlations for
investigating power in True Experiments. For Quasi-
Experiments, all possible sample size conditions were
used since the Type I error rate has been shown to
depend on sample size/kurtosis configurations. In
examining power, variance constants were imposed on
both Group One and Group Two because power has also
been shown to depend on the configuration of sample
size, kurtosis, and variance (Beasley & O'Connor, 1995;
Olejnik & Algina, 1988),

Procedure

The second through seventh populations were '
generated separately for each group using the RANNOR
function is SAS/IML, which provides a clock generated
pseudorandom standard normal deviate, zj; (SAS
Institute, 1990). Fleishman’s (1978) method was used
to transform these distributions into non-normal data
with specified mean, variance, skewness, and kurtosis
values via a polynomial equation of the form,

Yy=a+bz,+ cz,f +dz/3 . (9]

Since the minimum kurtosis derived by Fleishman is
¥2 = -1.00, the first population (XPLT) was simulated
by combining three uniform distributions that varied in
central location. A small distribution of 20 cases that
centered around 0 and two larger distributions of 990
cases each which centered around -0.75 and 0.75 were
concatenated to create this heavy-tailed distribution,
Lincar transformations were used in order to have the
expected variances used in this study. During the
simulation procedures, observations were randomly
sampled from these distributions during each
replication. For each condition elaborated, 5,000
replications were completed. The proportions of
rejections at the o = .05 level of significance were used
as measures of empirical power and Type I error rate.
Since 5,000 replications were conducted in each
condition with o = .05, the standard error is .0031.
Thus, any Type I error rate of .0562 or greater exceeded
two standard errors and was considered a significant
inflation of the Type I error rate. Other less stringent
criteria include upper limits of .06 (Cochran, 1954) and
075 (Bradley, 1978). In order to avoid the problems
with making multiple comparisons within this study,
the standard error of simulation was used as a general
heuristic rather than as a statistical test when comparing
empirical power estimates. Furthermore, if the
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empirical Type I error rate of a test exceeded the
nominal alpha by two standard errors, its power was
interpreted cautiously. If its Type I error rate exceeded
Cochran’s limit of .06, its power estimate was not

reported.
Results

Simulation Accuracy

When multiplied as in (6), the resulting mean,
variance, skewness, and kurtosis of Yj approximate the
characteristics of the distribution of interest. It should
be noted, however, that the simulated data are not
governed by a known mathematical function, Rather,
the simulated data represent a distribution with the same
skewness and kurtosis as the desired distribution. Table
2 demonstrates the adequacy of the Fleishman
simulation method in this study. Values for the mean
(W), variance (%), skew () and kurtosis (y,) for each
group of nj were taken across 15,000 replications for nj
= 10 and 13 and across 30,000 replications for nj =20,
For all seven populations, p, o, and, y, were
adequately simulated. Furthermore, kurtosis (v2) was
reasonably simulated for platy- and mesokurtic
distributions, especially with nj =20. For leptokurtic
distributions, however, the kurtosis of the group was
drastically underestimated which is most likely due to
the small sample sizes used.

True Experiments

Type I Error. Table 3 shows the empirical Type
Ierror rate for the seven sampled populations under the
conditions of a True Experiment (i.c., both groups
drawn from the same population). As would be
expected the Hartley’s Fimax test showed a conservative
rejection rate with platykurtic populations (c.g., XPLT,
PLAT, & SPLT) but more importantly was liberal
when the data were sampled from leptokurtic
populations. Furthermore, when sample sizes are
uncqual, the suspension of the Fmax test is often
suggested. However, the Type I error rate remained
under the nominal alpha of .05 even with unequal
samples under the meso- and platykurtic conditions,
All other tests, except for WOB which exhibited minor
inflation with disparate sample sizes, held the Type 1
error rate under the nominal alpha.

Power. Tables 4 and 5 show representative results
from the comparative power analysis of True
Experiments with different populations and variance
ratios of VR =2.0 and 5.0, respectively. For all tests,
except Fmax, it can be seen that heavy-tailed
distributions presented a more powerful situation when
testing variance heterogeneity. For example, the
empirical power estimates were higher when data were
sampled from the PLAT population as compared to
normally distributed data. Also, higher power estimates
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were yielded when data were sampled from the normal
distribution as compared to the leptokurtic
populations(e.g., LEP1 and XLEP, see Tables 4 & 5).

Under the conditions of a normally distributed
population, the Hartley’s Fmax was robust and
demonstrated superior power, except when there was a
positive relationship between sample size and group
variance. In this case, the WOB was most powerful.
When the sample size/variance correlation was negative
Finax and OB were of similar power.

When data were sampled from the PLAT
distribution, the OB transformation and Ramsey’s
OBBF were the clear choices in low power situations
(see Table 4). However, with a variance ratio of VR =
5.0, the Fimax test was more powerful except when the
sample size/variance correlation was positive. Thus, in
cases where the smaller group had the smaller variance,
WOB was most powerful namely because neither Fmax
nor the Ramsey’s procedures make provisions for such
situations, In high power situations (VR = 5.0)
whether the data were meso- or platykurtic, the Fmax
was more powerful. However, both Fmax and OB are
very likely to reject the null hypothesis in such cases.
Thus, if the data sampled are platykurtic, one should
consider the O'Brien transformation in low power
situations. In all conditions with meso- and platykurtic
data and a positive relationship between sample size and
variance, performing the Welch statistic on O’Brien
scores was the most powerful procedure.

When data were sampled from leptokurtic
populations, the Fmax test was disqualificd because it
inflated the Type I error rate (see Table 3). Of the
remaining tests, BF and BFgp had similar empirical
power estimates with small (n; = 10) cqually sized
samples.  Similarly, as was obscrved with platykurtic
distribution, BF,; was more powerful than BF, which
indicates that the Ramsey conditional proccdures can
provide more power. When sample sizes were uncqual
and positively related to the group variances, the WBF
was more powerful. This finding seems consistent with
previous rescarch but has yet to be rcported in the
literature. When a negative relationship between
sample sizes and group variances existed, OB was more
powerful regardless of the leptokurtosis of the sampled
population. Increasing the group Variance Ratio to VR
= 5.0 magnified these findings. However, under these
more powerful conditions, the power estimates of BF
were more competitive and actually exceeded those of
OB when there was an inverse sample size/variance
relationship. For example in Table 5, when ni =20,

0':;' = 1.0, n2 = 13, and 0'% = 5.0, the power of BF,
.5590 was much higher than that of OB, .5110. This
indicates that OB is only more powerful under negative
sample size/variance conditions in low power situations
(i.e., small sample sizes, small differences in variance),
That is, if samples are rather large and drawn from
leptokurtic populations, the BF and WBF may be better
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choices for testing variances. Thus, consistent with
previous research, when there is a negative correlation
between sample sizes and variances, the advantage in
power of OB over BF seems to dissipate with increasing
(a) sample sizes for both groups, (b) variance for the
smaller group, and/or (c) kurtosis of the sampled
population (Olejnik & Algina, 1988; Ramsey, 1994).

Quasi-Experiments

Type I Error. When one group was sampled from
a population with extremely negative kurtosis (XPLT),
while the second group was sampled from population of
varying shapes, the Type I error rates for all tests,
except for Fmax, were unstable and generally above the
nominal alpha of .05 (see Table 6). However, as the
extremity of platykurtosis declined, the Type I error
rates became more stable for most tests (see Table 7).

When the two groups were sampled from
populations with similar positive Kkurtosis, the results
were predictable from the Type I Error results for True
Experiments. Table 8 shows that when both groups
had positive kurtosis most tests, except for Fmax, held
the Type I error rate at the nominal alpha of .05.
However, WOB showed inflations when the larger
group was sampled from a less leptokurtic distribution,
These results extended to situations where one group is
sampled from a slightly leptokurtic distribution (LEPI)
and the other is sampled from a slightly platykurtic
distribution (SPLT).

Although the mixture of LEPI and the normal
distribution did not affect the Type I error rate of most
tests (sce Table 8), when the variance of a normally
distributed sample was tested against the variance of data
sampled from morc leptokurtic populations (c.g.,
LEP3, XLEP), the Type I Error rate of all tests were
affected when sample sizes were uncqual (see Tablc 7).
When the normally distributed data were compared to
samples from platykurtic populations (PLAT), the Type
I error rate was controlled for all tests with equal sample
sizes. When sample sizes were not equal, only Fmax
and BF were consistently robust to these violations to
the normality assumption. When the larger group was
more platykurtic, OB, WOB, and OB gr tended to inflate
the Type 1 error rate (see Table 7). Thus it would
appear that if data are sampled from different
populations with similar kurtosis, keeping group sizes
approximately equal would be a reasonable step in
controlling the Type I error rate.

In some situations where the kurtosis of the sampled
distributions differed in sign, the Type I error rate of
Fmax remained under the nominal alpha of .05.
However, when the disparity in kurtosis increased this
was not the case. For example, in comparing the
variance of data sampled form the extremely platykurtic
population (XPLT, y, = -1.80) to the variance of
samples from highly leptokurtic distributions (LEP3,
Y2 = 3.00), no test was robust (see Table 6). Thus, it
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appears that if the kurtosis of distributions differ in sign
to the same absolute degree, then the Fmax test of
variance is robust. This supposition was confirmed in
an ad-hoc simulation in which the variance of data
sampled from the XPLT distribution was tested against
the variance of two leptokurtic distributions with
population kurtosis values of ¥Y2 = 1.75 and 2.00.
When comparing these variances under the null
hypothesis, the Type I error rate of Fmax remained under
the nominal alpha of .05 while all other tests were not
robust.

Power. 1t should be noted that since Type I error
rates for these tests of variance were dependent on the
sample size and population kurtosis configuration,
power was also dependent on combinations of sample
size, population kurtosis, and group variance. In
general, when the group with the larger variance was
sampled from the heavier-tailed distribution there was
more power for the tests of variance. When the more
leptokurtic distribution was more variant, a reduction in
power was observed. Therefore, results comparing the
power of these tests are reported for both situations,

In quasi-experimental situations in which one group
was sampled from the extremely platykurtic population,
only Fmax controlied the Type 1 error. Therefore, only
Fmax can be validly used for testing variances when
only one group is sampled from an extremely
platykurtic population. As this negative kurtosis
increased in value and became less extreme, more
comparisons werc possible.

When one group was sampled from the platykurtic
population (PLAT, y; = -1.00) while the other group
was normally distributed, all tests of variance held the
Type 1 crror rate for cqual sample sizcs and are
comparablc (sce Table 7). Table 9 shows that under
thesc conditions, OB and OBBF were the most
powerful. With uncqual sample sizes, OB, WOB, and
OBBRBF, tended to inflate the Type I crror rate, and
thercfore, Fimax and BF seem to be the most dependable
tests. Furthermore, when there was a positive sample
size/variance correlation, WBF was robust and more
powerful as long as the disparity in sample sizes was
not extreme. With an inverse sample size/variance
relationship, Fmax is robust and adequately powerful.
However, onc may consider that OB, WOB, and OBBf
only inflated the Type I error rate when the more
platykurtic group was larger in size. Thus, under
conditions where the sample sizes are equal or the
smaller group is more platykurtic, OB and OBBF were
more powerful except when the larger (more leptokurtic)
sample had the larger variance, in which case, WOB was
more powecrful.

As with the extremely platykurtic population, the
Type 1 error rate was controlled by Fmax when the
platykurtic distribution (PLAT, Y2 = -1.00) was
comparcd to a group sampled from a population with an
equal degree of leptokurtosis (LEPI, y2 = 1.00);
however. no other test was robust (see Table 8). Thus
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for a test of variance to be valid when one group is
platykurtic, the other group must be eithcr (a) similar)+
platykurtic, (b) symmetric, or (c) lept.::urtic to th
same degree. If the sampled distributior: are similari+
platykurtic, OB or WOB are preferred. If a second grouy;
is symmetric in shape then overall, Fmax is adequate;
however, if the platykurtic distribution has more
variance, OB, WOB, BF, WBF may be considered. If
the kurtosis of groups differ in sign to the same degree,
only Fmax is adequate.

Table 9 also shows that when normally distributed
scores were compared to data sampled from a leptokurtic
distribution with vy, = 1.00, all tests of variance that did
not violate the Type I error rate were similarly
powerful. Since OB and BF exhibited similar power,
one of the conditional procedures may be used to decide
which test to perform. That is, BFOB or OBRBF can
provide more power (Ramsey, 1994). With a positive
sample size/variance correlation, the Welch procedures
(WOB and WBF) showed more power relative to the
other tests. With a negative sample size/variance
correlation, OB remained the test of choice. Similar
findings extend to situations where one group was
leptokurtic (y; = 1.00) and the other was slightly
platykurtic (y2 = -0.50; sece Table 10). However, in
this situation the Welch procedures were more likely to
inflate the Type I error rate, and BF should be considered
when the sample size-variance correlation is positive.

As was the case when samples were sclected from
the same lcptokurtic distribution, sampling from
differcnt lcptokurtic populations demonstrated the
superiority of the BF procedure and its variants. For
examplc, Tablc 10 shows comparative power cstimates
for the tests of variance when one group was sampled
from an extremely leptokurtic population (LEP3, y, =
3.00) while the other group was less Ieptokurtic (y; =
1.00). With equal samplc sizcs, BF and BFQp were
more powerful. As was the case in Truc Experiments,
the high power of BFgp relative to BF indicates the
cffectivencss of testing kurtosis before applying a test
of variancc (Ramsey, 1994). When the sample
size/variance correlation is positive, WBF was clearly
the most powcrful procedure, while OB was more
powerful with a negative rclationship. As with the
results for True Experiments, the advantage of OB with
an inversc sample size/variance relationship dissipated
in high power situations (V'R =5.0, results not shown).

Discussion

Summary

The results demonstrated that when data were
sampled from the same population and randomly
assigned (i.e.,, True Experiments) to equally sized
groups, Hartley’s Fmax test was only robust when the
population kurtosis was near or below zero. This
confirms the findings of many other studies and
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establishes the need for analytic alternatives for testing
variances when data are nonnormal. When data had a
negative kurtosis, the O’ Brien (1981) transformation
was generally the best choice, while the Brown &
Forsythe (1974) transformation was robust and showed
superior power for testing variances in leptokurtic data.
Also consistent with previous studies, the O’Brien test
was generally more powerful when sample sizes and
variances were negatively correlated, regardless of the
shape of the distribution (Algina et al., 1989; Olejnik
& Algina, 1988; Ramsey, 1994). The Welch procedure
performed on O’Brien scores was more powerful when
the sample size/variance correlation was positive in
platykurtic samples (Algina et al., 1989).

Furthermore, under the conditions of a positive
sample size/variance correlation in leptokurtic samples,
the Welch test applied to Brown-Forsythe scores was
robust and demonstrated superior power. Although this
finding seems reasonable given previous research, it had
yet to be empirically confirmed until this study. The
results also demonstrated that choosing a test of
variance based on an initial test of kurtosis can increase
power (Ramsey, 1994); however, the power of these
conditional tests has been shown to be dependent on the
power of the test of kurtosis (Beasley & O'Connor,
1995). Thus, if tests of kurtosis are to be used to
detcrmine the most powerful and appropriate test of
variance to perform, one must be concerned with the
power of both tests,

This study also presented many new findings about
the statistical propertics of testing variances when
groups were not sampled from the same population
(i.e., Quasi-Experiments). When both groups were
sampled from similarly platykurtic or similarly
leptokurtic distributions, the results were predictable
from the results of Truc Experiments. However, when
onc group was extremely platykurtic, only the Fmax
tests controlled the Type I error rate. Furthermore, if
the kurtosis of the groups differed in sign to the same
absolute degree, the Fmax test was robust.

When the variance of normally distributed data were
tested against the variance of data sampled from a
platykurtic population, the Type I error rate of many
tests were less stable which in turn affected the validity
of power estimates and recommendations for use. Most
notably, when the larger group was normally distributed
with a larger variance and the smaller, platykurtic group
was less variable, WOB was robust and more powerful.
Fmax was preferable when sample sizes were equal or
negatively correlated to variances. However, when the
larger group was platykurtic, the Type I error rates of
OB and WOB were inflated. Thus, when the more
platykurtic group had a larger variance, the OB exhibited
more power when the sample sizes were equal or
inversely related to variance (platykurtic group was
smaller in size). For a positive sample size/variance
correlation (i.e., larger platykurtic group had larger
variance) only BF was robust and adequately powerful.
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When the variance of normally distributed data was
tested against the variance of data sampled from
leptokurtic populations, the Type I error rate of Fmax is
extremely inflated and the BF is preferred when sample
sizes are equal; however, OB showed similar power,
When the sample size/variance correlation was positive
the Welch test applied to BF scores is generally more
powerful, while OB was more powerful when the
smaller group had a larger variance despite the
leptokurtic shape of one group.

Recommendations

Educational researchers are typically interested in
estimating change and differences. However, simply
examining shifts in central location does not fully
address these issues, all distributional differences should
be investigated. Thus testing all moments in the
distribution is recommended when comparing groups
whether they are intact or randomly constructed. Not
only does this approach test the major assumptions for
the ANOVA, but it also investigates the issue of
whether a treatment condition affected the shape or
response variability of a distribution of scores in True
Experiments. In this case, tests such as the
Kolmogorov-Smimov test may be used to answer the
question “Did the treatment affect the distribution of
scores?” If intact groups are compared in central location
or if differences in scale of the dependent variable are of
interest, a test of variance is needed. The results
demonstrate that the shape of the distributions should be
examincd before choosing a test of variance.

Table 11 shows a summary of thesc
reccommendations based on the kurtosis of the
distributions and whether the samplc sizes arc cqual,
positively correlated, or ncgatively correlated with the
variances.  Entrics on the diagonal exhibit
.recommendations for data sampled from the same (ie.,
True Experiments) or similar populations. Off-diagonal
entrics reveal the recommendations for Quasi-
Experiments and field research. Since the conditional
tests examined arc used to select one of these tests of
variance (i.e., OB and BF), they are not represented.
Furthermore, conditionally choosing the most powerful
test based on sample characteristics may capitalize on
chance differences in the data and inflate the Type 1 error
rate.

In evaluating the recommendations in Table 1 1, one
should consider that educational data tends to be
platykurtic in nature (Micceri, 1989). It should also be
noted that the recommendations for situations where the
groups are either both leptokurtic or both platykurtic
extend to most values of kurtosis. However, one
should be aware that for situations in which one group
is leptokurtic and the other is platykurtic the
recommendations in Table 11 apply only if the kurtosis
is of similar absolute value. Thus it is suggested that
all relevant tests of variance be performed and agreement
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among the results assessed. If all tests reject the null
hypothesis under conditions in which the Type 1 error
rate is controlled, then the statistical significance is
likely to represent a valid result. If there is
disagreement among tests, then the consistency of
disagreements with empirical findings should be
assessed. For example, if equally sized, platykurtic
samples are tested for variance heterogeneity and only
the O'Brien test rejects the null hypothesis, there is
indication of statistical significance because the OBrien
test is robust and most powerful in this situation (see
Table 11).

Although this investigation was limited to the two-
sample tests, it is believed that these results extend to
most multi-group situations. For True Experiments,
other studies have shown this to be the case (e.g.,
Miller, 1968), For Quasi-Experiment .
recommendations, one should consider the several
factors. If the kurtosis values for all groups indicate
similar positive or similar negative kurtosis, then the
recommendations for leptokurtic and platykurtic groups
in Table 11 should be valid. Also if about half of the
groups are mesokurtic while the other half are either
lepto- or platykurtic, then Table 11 can be used. If the
groups are mostly leptokurtic, using the leptokurtic
recommendations is advised; however, if the groups are
mostly platykurtic, recommendations are more difficult
to make. If the groups have drastically different shapes,
the results indicated that Fmax was the preferred test in
the two group situation, but one must consider that the
Fmax only uses the data of two groups. Thus, if
multiple groups are present and the groups with the
largest and smallest variances (the values used for Finax)
have kurtosis estimates of opposite signs, Fmax may be
allowable as long as the kurtosis values have
approximatcly the same absolute value.
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Table 1. Summary of conditions analyzed for Sample Size and Population configurations

True Experiment Quasi-Experiment
Type 1 Power Type 1 Power " Power
2 2 2 2 2 2

(ny, np) Error (01 <03y) Error (0] <07) (07 >03)
(10’ 10) * * * x *
(13’ 13) * * * * *
(20’ 20) * * * * *
(10, 20) * + * + ;
(13, 20) * + ! + )
(20, 10) U - * - +
(20, 13) U - * - +

Note. * indicates the analysis was completed. U indicates the analysis was
unnecessary and not completed. - indicates a negative relationship between
sample size and variance. + indicates a positive relationship between sample size
and variance, '

Table 2. Average population parameters across Type I error simulations.

Population Parameter
Population T} c? Y1 Y2
1. XPLT E(y;) = -1.80
n=10 +0.003937 1.009481 -0.001320 -0.964967
n=13 +0.003508 1.011025 <0.006166 -1.205637
n=20 -0.003517 1.006298 -0.010828 -1.447347
2. PLAT E(yp) = -1.00
n=10 +0.005843 1.007704 -0.012320 -0.421073
n=13 +0.005508 1.009243 -0.008166 -0.541785
n=20 +0.013517 1.011201 -0.030828 -0.686890
3. SPLT E(y,) = -0.50
n=10 +0.000090 1.017263 +0.039203 -0.172836
n=13 +0.001756 1.015814 +0.046087 -0.233373
n=20 -0.004001 1.012889 +0.058859 -0.302452
4. NORM E(y3) = 0.00 .
n=10 -0.002803 1.006276 -0.027654 -0.003053
n=13 -0.001429 1.001976 -0.034611 -0.009850
n=20 +0.000057 1.003101 -0.028943 -0.010843
5. LEP1 E(y;) = +1.00
n=10 -0.000713 1.024512 +0.061602 +0.261224
n=13 +0.058517 1.022624 +0.065461 +0.339038
n=20 +0.023376 1.027412 +0.052777 +0.493708
6. LEP3 E(y;) = +3.00
n=10 +0.011568 1.028524 +0.032652 +0.553391
n=13 +0.008883 1.012206 +0.035397 +0.765899
n=20 +0.005923 1.020455 +0.213038 +1.218371
7. XLEP E(y;) = +3.75
n=10 +0.010142 1.013801 +0.040116 +0.662791
n=13 +0.005774 1.028358 +0.017173 +0.904860

n=20 +0.004539 0.998350 +0.017142 +1.357478
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Table 3. Empirical Type I Error Rate for seven procedures in True Experiments with no differences in central
location.

Pop.  nym,  Fmax OB BF  WOB  WBF OBpr BFop
1. XPLT (y, = -1.80)
10, 10 0006 0248 0338 0242 0292 0248 0284
13,13 0018 0272 0058 0262 .0054 0272 027
20, 20 0006 0262 0186  .0256 .0172 0262 0272
10, 20 0030 0372 0366 0288 0316 0372 0380
13, 20 0026 0296 0232 0288 0114 0294 0308
2. PLAT (y, = -1.00)
10, 10 0152 0438 0344 0380 0324 0444 0392
13, 13 0142 0464 0256 0430 0248 0468 0400
20, 20 0082 0474 0386 0456 .0378 0476 0444
10, 20 0124 0494 0384  .0580* 0436 0498 0474
13, 20 0110 0464 0326 0510 0316 0464 0424
3. SPLT (y, = -0.50)
10, 10 0354 0396 0330 0320 .0312 0400 0362
13, 13 0340 0416 0306 0366 0294 0422 0346
20, 20 0306 0486 0436 0458 0432 0498 0456
10, 20 0368 0498 0458  .0604* 0526 0518 0494
13,20 0332 0458 0382 0472 0414 0468 0406
4. NORM (y, = 0.00)
10, 10 0484 0336 0402 0258 0370 .0352 0414
13, 13 0528 0384 0312 0320 0274 0402 0346
20, 20 0460 0416 0366 .0392 0358 0428 0368
10, 20 0462 0364 0392 0530 0492 0380 0400
13, 20 0478 0422 0344 0442 0356 0440 0380
5. LEP1 (y, = 1.00)
10, 10 0648* 0352 0404 0260 0368 0366 0412
13,13 0648* 0362 0324 0316 0298 0376 0358
20, 20 0678* 0380 0398 0352 0382 0412 0388
10, 20 0624* 0368 0366 .0460 0456 0388 0370
13, 20 0664* 0408 0328 0396 0348 0416 0362
6. LEP3 (y, = 3.00)
10, 10 1466* 0278 0328 0188 0286 0294 0338
13, 13 1538* 0332 0346 0278 0316 0364 0360
20, 20 A766* 0292 0364 0256 0348 0362 0368
10, 20 J1476% 0366 0358 0438 0494 0420 0368
13, 20 A567% 0316 0384 0302 0396  .0368 0392
7. XLEP (y, = 3.75)
10, 10 1400* 0240 0340 0168 0278  .0266  .0348
13, 13 1496* 0294 0338 0234 0298 0326 0346
20, 20 1752% 0346 0412 0300 0380 .0438 0418
10, 20 1502% 0382 0372 0448 0506 .0416 0390
13, 20 1662* 0340 0370 0344 0412 0388 0384

Note. * indicates the Type I error rate exceeded .0562 and is 2 standard errors above the nominal alpha of o = .05,




Beasley MLRYV, Winter, 1995 47

Table 4. Empirical Power for seven procedures in True Experiments with no differences in central location and © %

2
=1.0and G} = 2.0.

Pop. n.n, Fmax OB BF wOB WBF OBBF BFOB
1. XPLT (y, = -1.80)
10, 10 0228 4566 1842 4424 1742 4558 4502
13,13 0336 6310 0444 6168 0420 6296 6196
20, 20 0856 8662 2306  .8608 2278 8662  .8630
Pos. 10, 20 0282 6502 2004 7602 2024 6494 6470
Pos. 13,20 0392 7640 2044 8330 1952 7642  .7620
Neg. 20, 10 0546 7038 1846  .5224 2192 7036  .6964
Neg. 20,13 0686 7544 0600 6422 0302 7542 7458
2. PLAT (y, = -1.00)
10, 10 0984 1412 1116 1188  .1050 .1424  .1262
13, 13 1364 2206 1348 2020 1300 2204  .1648
20, 20 2680 4086 2950 3950 2910 4084  .3392
Pos. 10,20 1230 - 1600 1716  .3420% 2480  .1620  .1804
Pos. 13,20 1530 2424 2144 3612 2668 2442 2384
Neg. 20, 10 1898 3176 1740 .1184* 0918 3176 2142
Neg. 20,13 2150 3390 1912 1952 1264 3392 2390
4. NORM (y, = 0.00)
10, 10 1508 0994 1070 0782 0978  .1030  .1130
13,13 2022 1454 1298 1262 1226 1484 1368
20, 20 2850 2348 2182 2190 2122 2412 2250
Pos. 10, 20 16200750 1230 2502 2172 .0806  .1244
Pos. 13,20 2116 1330 1732 2416 2282 1406  .1758
Neg. 20, 10 2530 2452 1616 0650 0766 2454 1734
Neg. 20, 13 2572 2382 1654 1072 0952 2396  .1752
5. LEP1 (y, = 1.00)
10, 10 e 0686 0882 0522 0782 0728 0904
13,13 - 1040 1114 0870 1044 1118 .1148
20, 20 --- 1610 1864 1470 1812 1850  .1888
Pos. 10, 20 - 0462 1016 1934 2158 0562  .1002
Pos. 13,20 -e 0766 1372 A710 1976 0952 1376
Neg. 20, 10 me JA912 - 1528 0400 0630  .1982 1580
Neg. 20,13 - 1798 1544 0668 0834  .1904 1576
7. XLEP (y, = 3.75)
10, 10 - 0602 0830 0444 0724 0672 0848
13,13 —- 0830  .1010  .0654  .0900 0910  .1020
20, 20 - 1438 1776 1322 1712 1764 1792
Pos. 10, 20 - 0302 0916  .1680  .2020  .0438  .0910
Pos. 13,20 - 0746 1376 1568 2034 0984  .1384
Neg. 20, 10 - 1620 1336 0280  .0492 1688  .1366
Neg. 20,13 - 1520 1386 0536  .0786  .1668  .1420

Note. * indicates that the Type I error rate exceeded the nominal alpha by 2 standard errors and shou_ld be interpreted
cautiously. Blank entries indicate that the Type I error rate exceeded Cochran’s limit of .06. qu. md1cate§ a
positive correlation between sample size and variance; Neg. indicates an inverse sample size-variance relationship.
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Table 5. Empirical Power for seven procedures in True Experiments with no differences in central location and © 21

= 1.0 and c% =50.
Pop.  nmom,  Fmax OB BF  WOB WBF OBpr BFgp
1. XPLT (y, = -1.80)
10, 10 6612 5450 4874 4762 4532 5476 5134
13, 13 8402 7594 6582 7186 6332 7600 6974
20, 20 9724 9590 9104 9526  .9062 9592 9406
Pos. 10, 20 7794 6856 7010 9348 8618 6878 7170
Pos. 13,20 9040 8550 8138 9452 8858 8554 8352
Neg. 20,10 8782 8684 7238 4664 4442 8688 7788
Neg. 20, 13 9278 9158 8086 7322 6380 9160 8544
2. PLAT (y, = -1.00)
10, 10 6612 5450 4874 4762 4532 5476 5134
13, 13 8402 7594 6582 7186  .6332 7600 6974
20, 20 9724 9590 9104 9526 9062 9592 9406
Pos. 10,20 7794 6856 7010  .9348* 8618 6878 7170
Pos. 13,20 .9040 8550 8138 9452 8858 8554 8352 °
Neg. 20, 10 8782 8684 7238  4664* 4442 8688 7788
Neg. 20, 13 9278 9158 8086 7322  .6380 9160 8544
4. NORM (y, = 0,00)
10, 10 6396 3616 4136 2876 3772 3698 4200
13, 13 7690 5528 5646 4924 5392 5630 5726
20, 20 9350 8428 8330 8198 8266 8594 8396
Pos. 10,20 7264 3800 5680 7796 7604 3964 5654
Pos. 13,20 8388 5860 6978 7894  .8008  .6052 6992
Neg. 20, 10 8148 7458 6470 2860 3664 7538 6584
Neg. 20, 13 8648 7880 7084 4954 5342 7986 7224
5. LEPI (y, = 1,00)
10, 10 2600 3432 1984 3086 2762 .3446
13, 13 4088 4924 3574 4640 4446 4944
20, 20 6656 7536 6384 7438 7454 7550
Pos. 10,20 2186 4674 6032 6792 2690 4628
Pos. 13,20 3838 5948 6250 7142 4524 5934
Neg. 20,10 6160 5600 1838 2890 6372 .$650
Neg. 20, 13 6400 6362 3452 4530 6852 6406
6. LEP3 (y, = 3.00)
10, 10 2062 2990 1590 2636 2268 2986
13, 13 - 2948 4090 2490 3866 3502 4094
20, 20 4962 6662 4616 6532 6556 6676
Pos. 10,20 - 1400 3666 4794 6086 2082 3598
Pos. 13,20 2610 4902 4750 6274 3678 4878
Neg. 20, 10 5262 5166 1256 2366 5696 5184
Neg. 20,13 5110 5590 2358 3732 5888  .5606

Note. * indicates that the Type I error rate exceeded the nominal alpha by 2 standard errors and shou_ld be interpreted
cautiously. Blank entries indicate that the Type I error rate exceeded Cochran’s limit of .06, qu. mdxcatqs a
positive correlation between sample size and variance; Neg. indicates an inverse sample size-variance relationship.
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Table 6. Empirical Type I Error Rates for seven procedures in Quasi-Experiments with no differences in central
location and Group One is platykurtic Y, = -1.80.

Group 2
Pop. ny,n, Fmax OB BF WOB WBF OBgFr BFop

2. PLAT (y, = -1.00)

10, 10 0092 .0620* 0484 0584% 0460  .0640% 0632%
13, 13 0068  .0642* 0114  0616* 0110  .0654* 0634%
20,20 0022 .0542 0476 0524 0460 0550 0550
10, 20 0048 0282 0408 0402 0658* 0348 - 0364
13, 20 0044 0362 0160 0454 0126 0388 .0408
20, 10 0062 .1178* 0532 0808* 0460  .1180* 1178*
20, 13 0054 0840* 0494 0600* 0418 0842% 0844*
3. SPLT (y, = -0.50)
10, 10 0148 .0734* 0600%  0694* 0568* . 0752% 0738%
13, 13 0116 .0750% 0160  0742% 0150 0766* 0742%
20, 20 0084  0674* 0582%  0656* 0566* 0678% 0680*
10, 20 0082 0358 0458 0462 0682* 0420 0452
13, 20 0068 0468 0162 0560 0122 0492 0492
20, 10 0096  .1238* 0660* 0936* 0580% .1240% 1230+
20, 13 0108  .0992% 0560  0782* 0500 .0994% 0990*
4. NORM (y, = 0,00)
10, 10 0216 .0860% 0668+ 0832+ 0628% 0880* 0858*
13, 13 0170 0856 0178 0830* 0156 0874* 0826+
20, 20 0136 0748 0676+ 0738* 0644* 0756 0786
10, 20 009 0438 0464 0560 0752% 0480 0516
13, 20 0122 .0606* 0202 0686 0132 0636 0610*
20, 10 0234 1530 0814% 1168* 0780* 1528+ 1508
20, 13 0156 .1238* 0752+ 0988% 0652* 1244+ 1266*
5. LEPI (y, = 1.00)
10, 10 0324 1090 0712+ 1052% 0674* 1106 1054*
13, 13 0262 .1038* 0248 1022+ 0230 1052+ 0992
20, 20 0252 .1036* 0872+ 1022+ 0836 1040+ 1074+
10, 20 0160 0614+ 0548 0706* 0838* . 0642% 0652*
13, 20 0224 0818* 0252 0886+ 0144 0846 0790*
20, 10 0460 .1930% 1034+ 1732+ 1068+ 1934+ 1934+
20, 13 0354 .1624* 1078+ .1440* 1018* 1630* 1626*
6. LEP3 (y, = 3.00)
10, 10 0538 1392% 0934+ 1354+ 0884* .1400* 1366*
13, 13 0564*%  1470% 0398 1454+, 0366 1470% .1380*
20, 20 0608* 1316* 1172+ .1300* 1140* 1316+ .1438*
10, 20 0328  .0844% 0680* 0888+ 1012% 0856* 0856*
13, 20 0446 .0990* 0404 .1036* 0234 .1006* 0942*
20, 10 0820% .2430* 1338+ 2182% 1518* 2426* 2398*
20, 13 0804%  2]188* 1418* .1890* .1496* 2190% 2178*

Note. * indicates the Type I error rate exceeded .0562 and is 2 standard errors above the nominal alpha of o = .05,
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Table 7. Empirical
location and Group One is normally distributed ¥,=0.
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Beasley

Type 1 Error Rates for seven procedures in Quasi-Experiments with no differences in central

Group 2 .

Pop. n., Fmax OB BF WOE WBF OBRF BFop

2. PLAT (y, = -1.00)
10, 10 0362 .0458 .0432 0420 .0404 0470 .0484
13, 13 .0280 .0472 .0340 .0434 .0328 .0478 .0412
20, 20 .0280 .0532 .0500 0516 .0492 .0534 .0506
10, 20 0304 0588* 0536 0860* .0668* 0606* .0588*
13, 20 .0304 0566* 0484 .0654*% 0536 .0578* 0534
20, 10 .0304 .0516 .0390 0468 .0404 .0532 .0456
20, 13 0228 .0422 .0328 .0360 .0282 0430 .0400

3. SPLT (y, = -0.50)
10, 10 .0446 .0400 .0396 .0312 .0370 .0416 0412
13,13 .0408 .0444 0312 .0368 .0296 .0454 .0372
20, 20 0428 .0482 0414 0444 .0412 .0498 .0430
10, 20 0442 0404 .0404 0670* 0592 0416 .0406
13, 20 0422 0474 0424 0522 .0460 .0490 0442
20, 10 0424 0394 0354 0454 0424 .0410 .0380
20, 13 0370 0442 0310 0402 .0338 0454 0356

6. LEP3 (y, = 3.00)
10, 10 1048* 0478 0500 0374 0440 0496 0510
13, 13 J060* 0460 0442 0370 0404 0494 0464
20, 20 J1188* 0536 0562% 0488 0542 0598* 0572+
10, 20 0960* ,0586* 0470 0292 .0366 0602* 0492
13, 20 J018*  0564% 0454 0340 0364 0584* 0482
20, 10 d194* 0434 0614*  .0990*%  ,0926% 0474 .0624*
20, 13 A184* 0524 0638%  0730* .0746* .0568* .0640*

7. XLEP (y, = 3.75)
10, 10 J076% 0422 .0494 0326 0458 0446 0500
13, 13 Ad174% 0480 0474 0406 0452 0524 0510
20, 20 J228% 0564 0658* 0526 00648*  0660*  0650%
10, 20 J1056*  .0584* 0468 0280 0336 0614* 0484
13, 20 A166* 0554 0510 0344 0384 - .0606*% 0524
20, 10 A272% 0 .0496 0680*  1040*  .0996* .0550 .0686*
20, 13 A376* 0548 0676*  .0802* .0814*  0594* 0672*

Note. * indicates the Type I error rate exceeded .0562 and is 2 standard errors above the nominal alpha of a = .05

test.
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‘Table 8. Empirical Type I Error Rates for seven procedures in Quasi-Experiments with no differences in central
location and Group One is leptokurtic y, = 1.00.

- Group 2
Pop. ny,n, Fmax OB BF WOB WBF OBBF BFop

2. PLAT (y, = -1.00)

10, 10 0406 0524 0434 0436 0410 0530 0492
13, 13 0444 0622* 0460  .0566* 0436  .0632* 0546
20, 20 0448 0684* 0616* .0656* .0606* .0696* 0656
10, 20 0538 .0730*  0720% .1134* 0980* 0756+ 0740
13, 20 0478 0752%  .0744*  0954%  0826* .0768* (0756
20, 10 0268 0520 0362 0400 0336 0520 0438
20, 13 0350 0548 0352 0402 0322 0550 0446
3, SPLT (y, = -0.50)
10, 10 0602* 0436 0412 0350 0368 0448 0442
13,13 0548 0472 0350 0394 0316 0474 0404
20, 20 0528 0510 0464 0460 0458 0534 0480
10, 20 0622* 0484 0556  .0922% .0798* 0498 0576+
13, 20 0586* 0468 0494  0630* .0562* 0492 0502
20, 10 0458 0546 0380 0386 0410 0558 0404
20, 13 0436 0452 0358 0354 0288 0474 0394
4. NORM (y, = 0,00)
10, 10 0702% 0322 0378 0242 0348 0336  .0396
13, 13 0702* 0370 0302  .0302 0272 0382 0342
20, 20 0772* 0470 0460 0424 0444 0516 0492
10, 20 0734% 0444 0444  0714*  0616* 0466 0452
13, 20 0700% 0400 0432 0514 0496 0428 0444
20, 10 0628* 0436 0378 0402  .0420 0464 0402
20, 13 0670% 0400 0342 0346 0306 0422 0360
6. LEP3 (y, = 3.00)
10, 10 0858* - 0326 0370 0264 0328 0336  .0380
13, 13 0812* 0366 0354 0316 0320 0384 0382
20, 20 0982* 0472 0472 0426 0460 0512 0480
10, 20 0858* 0462 .0392 0350 .0408 0496 0402
13, 20 0936* 0434 0390 0304 0342 0480 0404
20, 10 A134* 0384 0476 .0682% .0722* 0424 0478
20, 13 1248% 0380 0448 0522 0540 0428 0456
7. XLEP (y, = 3.75)
10, 10 J012* 0352 0382 0254 0338 0380  .039
13, 13 J1078* - 0374 0360 0296  .0326 0400 0360
20, 20 J1200% 0402 0492 0360 0472 0500 0494
10, 20 0996* 0492 0382 0282 0342 0530  .0040
13, 20 JA110* 0464 0438 0350 0338 0526 0444
20, 10 J1264% 0408 0514  .0704* 0734* 0452 0534
20, 13 1210% 0382 0496  .0568* .0584* 0432 0502

Note. * indicates the Type I error rate exceed .0562 and is 2 standard errors above the nominal alpha of o = .05 test.
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Table 9. Empirical Power Estimates for seven procedures in Quasi-Experiments with no differences in central
location and Group One is normally distributed y, = 0.00.

Group Two
PLAT ¥, = -1.00 c% =1.0 c‘% =20
Pop. n,n, Fmax OB BF WOB WBF OBBF BFop
10, 10 1540 1724 1550 1496 1462 1748 .1682
13,13 .1868 2386 .1862 2234 .1784 2418 2046
20, 20 2956 3974 3526 .3888 .3488 .4032 3672
Pos. 10,20 .1684 2120% 2358 —— —— — .2380*
Pos. 13,20 .2064 2746* 2758 —— 3274 2812% 2842
Neg. 20, 10 2104 .2906 2048 1242 .1248 2940 2198
Neg. 20,13 2276 3222 2246 .2038 1542 3256 .2456
2 2
Group Two PLAT v, =-1.00 01 =20 O, =10
10, 10 12920710 0722 0540 .0652 0723 .0760
13, 13 1810 1150 0856 0964 0806 1154 0960
20, 20 2998 2264 1748 2086  .1706 2268 1978
Neg. 10, 20 .2406 2520* 1386 ——— o - 1762*
Neg. 13,20 2686 .2396* 1340 — 0718  .2402* 1700
Pos. 20, 10 J268 0474 0930 2142 1762 0512 0908
Pos. 20, 10 1890 0976 1232 2182 1770 .0992 1262
2 2
Group Two LEP1 vy, =100 G| =10 Gy =20
10, 10 - 0640 0798 0458 0722 0670 0814
13,13 w—- 0940 0890 0772 0798  .0968  .0924
20, 20 o 1690 1690 1556 1640  .1844  .1736
Pos. 10, 20 e 0404 0878 1816  .1820  .0486  .0882
Pos. 13,20 — 0692 1130 1618 1670  .0794  .1130
Neg. 20, 10 e 852 1238 - o 1884 1314
Neg. 20,13 “man 1676 1224 0608 0682  .1732  .1306
2 2
Group Two LEPt vy, = 1.00 g1 =20 Gy =10
10, 10 e 1038 1148 0826 1054 .1088 1178
13, 13 — 1460 1420 1218 1346 1514  .1472
20, 20 R 2526 .2646 .2386 2598 2690 .2658
Neg. 10, 20 am—- 2320 1758 .0608 .0818 2352 .1822
Neg. 13,20 v——— 2348 1920 .1058 1118 2404 .1984
Pos. 20, 10 - .0880 .1654 ———- - 0990 .1622
Pos. 20,13 ——— 1412 .1998 2518 2632 1574 2010

Note. * indicates that the Type I error rate exceeded the nominal alpha by 2 standard errors and shou}d be interpreted
cautiously. Blank entries indicate that the Type I error rate exceeded Cochran’s limit of .06. Pos. mdlcatqs a
positive correlation between sample size and variance; Neg. indicates an inverse sample size-variance relationship.
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procedures in Quasi Experiments with no differences in central

location and Group One has positive kurtosis ¥, = 1.00.
2 2
Group Two SPLT vy,=-0.50 01 =10 G5 =20
Pop. n,n, Frmax OB BF WOB WBF  OBpgfp BFop
10, 10 - 1390 1362 1102 1272 1442 1418
13, 13 2428 1954 1782 1722 1682 2012 1854
20, 20 3410 3082 3042 2960 3006 3218 .3084
Pos. 10, 20 —-— 1278 1866 e - 1382 1864+
Pos. 13,20 .2652*% 1878 2338 e 2974% 1994 2330
Neg. 20, 10 2680 2582 2040 0844 1114 2622 .2086
Neg. 20,13 2858 2706 2174 1454 1462 2778 2244
’ 2 2
Group Two SPLT y, =-0.50 ] =20 05 =10
10, 10 —— 0588 0674 0452 0602  .0610 0700
13,13 1740 0796 0748 0638 0674 0814 0782
20, 20 2730 1408 1286  .1298  .1244 1486 1362
Neg. 10, 20 2242 1832 1098 0350 0424 1854 1218
Neg. 13,20 2552 1682 1150 0614 0574 1718 1258
Pos. 20, 10 - 0318 0698 ——- -~ 0364  .0690%
Pos. 20,13 2058* 0694 1032 e JA510% 0768 1044
2 2
Group Two LEP3 vy, =3,00 gy =10 Oy =20
10, 10 —— 0460 0630 0344 0530 .0496 0650
13, 13 —— 0690 0782 0558 0704 0768  .0812
20, 20 - 1048 1238 0978 1196 .1278  .1236
Pos. 10,20 - 02720722 1450 1654 ,0362 0716
Pos. 13,20 - 0444 0832 1174 1386 0576  .0836
Neg. 20, 10 —— 388 1052 — ——- 1460 1086
Neg. 20,13 - JA272 1062 0436 0530 1386 .1096
2 2
Group Two LEP3 vy, =3.00 01 =20 0y =10
10, 10 - 0932 1174 0712 1002  .0982  .1200
13, 13 - d112 1354 0920 1234 1232 1374
20, 20 — JA898 2402 1770 2346 2288 2412
Pos. 20, 10 - 0732 1490 2386 2654  .0876  .1476
Pos. 20,13 - 1020 1812 2104 2450 1272 1796
Neg. 10,20 — 1962 1716 - — 2102 (1746
Neg. 13,20 —— 2010 1876 0796 1112 2150  .1902

Note. * indicates that the Type I error rate exceeded the nominal al
cautiously. Blank entries indicate that the Type I error rate excee
positive correlation between sample size and variance; Neg. indic

pha by 2 standard errors and should be interpreted
ded Cochran’s limit of .06. Pos. indicates a
ates an inverse sample size-variance relationship.
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Table 11. Recommendations based on Variance Ratios and whether the sample sizes are equal, positively
correlated, or negatively correlated with the variances for both True and Quasi-Experiments.

Smaller Larger Variance

Variance PLAT SPLT NORM LEPT
PLAT

Equal OB OB, Fmax Fmax Fmax
Positive WOB WOB WOB Fmax
Negative OB OB Fmax Fmax
SPLT

Equal OB, Fmax OB, Fmax Fmax, OB OB, BF
Positive WOB WOB WOB BF
Negative OB OB, Fmax Fmax, OB OB
NORM

Equal OB Fmax, OB Fmax BF, OB
Positive BF wOB WOB WBF, WOB
Negative OB Fmax, OB Fmax OB
LEPT

Equal Fmax OB, BF BF, OB BF
Positive Fmax BF BF, WBF WBF
Negative Fmax 0B OB OB

Note. Entries on the diagonal represent recommendations
for True Experiments, while off-diagonal entries are for
Quasi-Experiments, PLAT = platykurtic; SPLT = slightly
platykurtic;, NORM = Normal; LEPT = leptokurtic; OB = O'Brien
BF = Brown-Forsythe; W refers to performing Welch procedure




MINUTES

OF THE
ANNUAL MEETING
’ OF THE
MULTIPLE LINEAR REGRESSION: GENERAL LINEAR MODEL SIG
(New Orleans, LA)

APRIL 19, 1995

Professor Adria Karle-Weiss (Murry State University), SIG Chair, opened the business meeting.
The first order of business was the call for nominations of Chair-elect, three replacement
Executive Board/Editorial Board members, and Executive Secretary. Executive Secretary, Steve
Spaner (University of Missouri - St. Louis), explained that the MLRSIG election procedures call
for the election to be held by mail ballot and the business meeting to be a nominating meeting
only. It was moved and passed by the members attending to suspend the election by mail ballot
rule and to hold the election at the business meeting. Nominations for chair-elect were Professors
Randy Schumacher (University of North Texas) and Mark Beasley (St. John's University).
Professor Randy Schumacher and was elected Chair-elect for 1996. His term of office will begin
following the 1996 business meeting. The nominated Ex ive Board/Editorial Boar:
replacemen rs Carolyn Benz (University of Dayton). Mark Beas ff
Kromrey (University of South Florida). No additional nominations were offered so all were
elected by acclamation. Professor Carolyn Benz will complete Professor John Pohlmann's
(Southern Illinois University - Carbondale) term (1994 - 98). Pohlmann has taken on the MLRV
Editorship thereby sitting on the Board by virtue of office. Professors Mark Beasley and Jeff
Kromrey replace Board members Carl Huberty (University of Georgia) and Randy Schumacher

and assume the four year terms from 1995 - 99. Finally, Stev ner w. r

Executive Secretary for another three-vear term (1995 - 98), No additional nominations were

offered so Spaner was elected by acclamation.

Chair Karle-Weiss called upon Steve Spaner to give the treasurers report and the membership
update. Spaner reported that the SIG treasury was $1995.56 on 1-1-94, the beginning of the new
membership year, and $1917.93 just before the business meeting (3-31-95). Spaner reported that
the current paid membership was down from 1994. Spaner attributed the decline to the reduced
number of issues of and irregular schedule for the Multiple Linear Regression Viewpoints, the
MLRSIG's journal.

(Secretary's note: 1995 membership payment was due at the

beginning of the 1995 calendar year; if vour mailing label has 94

or earlier at the end of the first line, you are unpaid for the past
1995 MLRSIG membership year as well as now owing for the
1996 MLR:GLM/SIG membership year)




Discussion ensued following the Executive Secretary's report regarding the future of the MLRSIG
and the MLRV. It was affirmed that the SIG wanted to continue and wanted to produce the
journal. It was suggested, once again, that persons making presentations under the MLRSIG
sponsorship at the AERA conference should at least be invited to submit their papers to the
MLRYV.

It was also pointed out that in the 1970s and 1980s the SIG sponsored presessions on MLR (Joe
Ward, Earl Jennings to name a few) and on Path Analysis (Lee Wolfle, John Williams to name a
few). These presessions were very successful and provided significant numbers of new members
for the SIG. Past chair Keith McNeil and incoming chair Isadore Newman pledged to develop
and conduct an AERA presession on MLR/GLM at the 1996 AERA meeting.

Comment was made regarding the name of the SIG (Multiple Linear Regression SIG) and the
possible datedness of the term MLR verses, for example, GLM (General Linear Model). After

considerable discussion a motion was offered and passed to change the name of the SIG to
Multiple Linear Regression; General Linear Model Special Interest Group (MLR:GLM/SIG).

A comment regarding the role and responsibility of SIG Executive/Editorial Board members drew
attention to the fact that some journals expect if not require their editorial board members to
regularly contribute to their journal. A motion was made and passed to i : edi

0 send 8 letter to ea : itori

Finally, SIG member Sue Trace (California State University - Fresno) moved a resolution
thanking the 1994 MLRSIG Chair, Adria Karle-Weiss for her leadership and work for the SIG
over the past year, in particular her advocacy for participation and recognition of the female SIG
members. i i :

The meeting was adjourned to allow members to attend the SIG's social that was to follow.

Respectfully submitted,

Steven D. Spaner, Executive Secretary

Multiple Linear Regression: General Linear Model SIG
Department of Behavioral Studies

University of Missouri - St. Louis

St. Louis, MO 63121-4499
sspaner@umslvma.umsl.edu
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