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Fixed Effects Panel Data

A Fixed Effects Panel Data Model:
M athematics Achievement in the U.S.

Todd Sherron

Jeff M. Allen

University of North Texas

Statistical models that combine cross section and time series data offer analysis and interpretation advantages over

separate cross section or time series data analyses (Matyés & Severstre, 1996).

Time series and cross section

designs have not been commonplace in the research community until the last 25 years (Tieslau, 1999). In this
study, afixed effects pand data model is applied to the National Education Longitudinal Study of 1988 (NEL S:88)
datato determine if educational process variables, teacher emphasis, student self-concept, and socio-economic status
can account for variance in student mathematical achievement. A model that includes seven independent variables
accounted for 25% of the variance in student mathematical achievement test score. The study provides educationa

researchers with an applied model for panel data anaysis.

been commonplace in the research community

until the last 25 years (Tiedau, 1999). In fact,
the U.S. Department of Education’s National Center
for Education Statistics (NCES) was not mandated to
“collect and disseminate statistics and other data related
to education in the United States’ until the Education
Amendments of 1974 (Public Law 93-380, Title V,
Section 501, amending Part A of the Generd
Education Provisions Act).  Researchers commonly
have termed data that contains time series and cross
section units to be panel or longitudinal data. In this
study, these terms ae wused interchangeable.
Essentially, panel datais a set of individuals who ae
repeatedly sampled at different intervals in time, across
a multitude of cross sectional variables. The term
“individual” might be used loosely to imply a person,
a household, a school, school districts, firms, or a
geographical region. Figure 1 provides a typical Panel
data structure. Schools have been used to represent the
different “individuals’. (Note: the individua unit could
just as well have been different schools within a
particular district, school districts within a state, or an
aggregate representation by state).

Researchers who are interested in understanding,
explaining, or predicting variation within longitudinal
data are faced with complex stochastic specifications.
The problem that occurs when measures exhibit two-
dimensional variation—variation across time and cross
section, in model specification. In other words,
researchers need to specify a model that can capture
individual differences in behavior across individuas
and/or through time for estimation and inference
purposes (Greene, 1997). In general, longitudinal
(pandl) data sets contain a large number of cross
section units and a relatively small number of time-
series units.

The U.S. Depatment of Education began
collecting data in 1988 about critical transitions
experienced by students as they leave eementary
schools and progress through high school and into

Time series and cross section designs have not
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postsecondary institutions or the work force. The
Nationa Education Longitudina Study of 1988
(NELS:88) contains data about educational processes
and outcomes pertaining to student learning, predictors
of dropping out, and school effects on students’ access
to programs and equal opportunitiesto learn. The first
follow-up was conducted with the same students, their
teachers, and principals in 1990. The second follow
up survey was conducted in 1992, and the third in
1994. Datafrom NELS:88 will be used in this study
to determine if student perception of educational
process variables can account for the variance in
mathematical achievement.

Model Specification

When should a fixed effects or random effects
model be utilized? The answer to this question is
often debated. Some believe that it is dependent upon
the underlying cause in the model. For example, if the
individua effects are the result of a large number of
non-observable stochastic variables, then the random
effect interpretation is demanded. Others think the
decision rests on the nature of the sample — that is
when the sample is comprehensive or exhaustive, then
fixed effects models are the natural choice to enhance
the generalizability. On the contrary, if the sample
does not contain alarge percent of the population then
the random effects model would be the mode of
choice. According to Hasiao (1985), it is ultimately, “
up to the investigator to decide whether he wants to
make an inference with respect to population
characteristics or only with respect to effectsthat are in
the sample” (p. 131). It is unlikely that this debate
will ever be resolved per se, however, if the choice
between the two underlying methods is clear, then the
estimation method should be chosen accordingly.
However, if the choice is not clear, then the decision
should be based on the nature of the sample ad
statistical evidence. For example, if the individua
effects are significant then this is a sign that a
significant component of the model is accounted for
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Figure 1. Panel Data Structure

by the individual effects parameter and so fixed effects
might be preferred over random effects. However, the
Hausman test statistic, a statistic designed to test
model fit, can be used to determine when a random
effects modd is preferred, i.e. a large Hausman test
statistic indicates a random effects components
(Greene, 1997).

The Fixed-Effects Model
The fixed effects (FE) model takes O to be a

group specific constant term in the regression equation
Yit = + lelit + BZXZit R BKXKit +&; (1)

or in matrix notation

Yit = O + X B +g @)

and B = [B1, B2, .. . Bkl
The“i” indexes cross-section readlizations so that i
=1,23, ..., N and “t” indexes time-series realizations

sothatt=1,23,...,T. Theindividual effect a;, is
regarding to be constant over time (t) and specific to

theindividual cross-sectional unit (i). The termTi is

presumed to capture the unobservable, and non-
measurable characteristics that differentiate individual
units. Basically, this implies that all behaviora
differences between individuals (e.g., schools in Figure
1) arefixed over time and are represented as parametric
shifts of the regresson function. Métayas ad
Sevestre (1996, p. 34) state, “the intercept is alowed
to vary from individua to individual while the slope
parameters are assumed to be constants in both the
individual and time dimensions”.

2

The fundamental assumption of the fixed effects
model are:

E[S,t] = O,
COV(Sit, 8jt) = 0,
Var (g = E[€%{] = 0%,

and X is not invariant.
Under these assumptions, the ordinary least

squared estimator (OLS) can be useto obtain unbiased,
consistent, and efficient (BLUE) parameter estimates.

The Random Effects Model
The random effects (RE) model—also know as the
error component model, includes a non-measurable
stochastic variable, which differentiates individuals. It
is written as:

Yit = Qi+ BaXqj+B2Xoit - + BrXkirtuitEir  (3)

or in matrix notation

Yit = O + X' B+ ut g (4)
where Xit, = [Xlit' X2it: A, XKit]
and B = [B1. B2 .. . Bkl

The “i” indexes cross-section realizations so that
i=1,2,3,..., N and “t” indexes time-series redizations
sothatt=1,23,..., T. Theterm “u” is a stochastic
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varigble that embodies the unobservable or non-
measurable disturbances that accounts for individua
differences. Essentially, the effect is thought to be a
random individual effect rather that fixed parameter.
For example, aresearcher might try to discern whether
there is difference in achievement between districts in
the State of Texas. Instead of including every school
district in the equation (as we would have in the fixed
effects model using dummy variables) one can
randomly sample school districts and assumes that the
effect is random distributed across “individuals’ but
constant through time.

The fundamental assumptions of the random
effectsmodel are as such:

Efuj, Xaje] = Eluj, Xgi¢] = . .. = E[u;, Xkl =0,
Elgjd] =[u] =0,

Var () = E[w%] = 0", and

Cov(u, &) = E[U;, & = g,

Assuming normality u; ~ N(0, 0°,), €j; ~ N(0, 0%),
both “u;” and “€;;" are stochastic variables, but form
one composite error term-called omega (U +€;) = Wiy,

[ up + €11 ]
up + €12

up + &r
where W = ce
un * EN1
UN + EN2

UN + ENT
The error term now consist of two components: (1) the
error disturbance €j¢, and (2) the individual specific

disturbance U;j,. The RE model now takes the form of

Yig = O + BaXgje + B2Xojt - - - + BrXkit + Wit (5)
or in matrix notation
Yit = o + X' B+ (6)

The eror term in the mode now exhibits the
following characteristics:

o’e Og,u
Va(wy =| oy g 0y
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The OLS estimator can not be applied to equation 6
because the error term not longer possess ided
properties (constant variance and zero covariance) thus
the estimate would be inefficient and, hence generaized
least squares (GLS) is appropriate.  However, the
nature of datain behavioral sciences does not permit
the variance components 0%, and 0%, to be known,

therefore, aternative estimation methods must be
utilized. One common estimation method that can
ded with the unknown variance components feasible
generdized least squares (FGLS). FGLS takes an
estimate of the variance components and then
estimates the equation.

Theindividua effect in the random effect model may,
too, be tested with the following hypotheses:

Ho: Ui = 0, or equivalently, 0%, = 0

Ha 0%, # 0.

After correcting the error term (w;;) thet and F-test are

reliable, thus inference can be regarded as valid. Basd
on statistical evidence, a FE modd will be used in this

paper.

National Education Longitudinal Data Set:88

The NELS:88 database is divided into two
sections: (1) N2P, and (2) N4P. In this study, daa
were extracted from N2P. A representative sample of
students (N=16,749) enrolled in tenth grade in the
spring of 1990, who completed a questionnaire in both
the first follow-up and second follow-up, were
identified and used in the analysis. The LIMDEP
program (Greene, 1992) and output are in the
appendix.

Seven independent variables are included in the
specified model. They are listed as entered into the
model: (1) Review Work (F2S19BA), 2
ListenLecture (F2S19BB), (3) CopyNotes (F2S19BC),
(4) Cadculators (F2S19BF), (5) Think Problem
(F2S20D), (6) SES (F2SESl),and (7) Self concept
(F2CNCPT). The first four variables, (ReviewWork,
ListenLecture, Copynotes, Calculators), are frequency
measures of student educational processes and ae
scded as followed: (1) Never/Rardy, (2) 1-2
Times/Month, (3) 1-2 Times/Week, (4) Almost each
day, (5) Every Day. For example, the variable
ReviewWork is a measure of how frequently students
review their work for the previous day. The variable
ListenLecture is a measure of how frequently students
listen to the teacher’ s lecture. The variable CopyNotes
is a measure of how frequently students take notes.
The variable Calculator isameasure of how frequently
students use calculators. The variable ThinkProblem
measures student perception of teachers emphases on
mathematical objectives and is scaled, (0) none, (1)
minor emphasis, (2) moderate emphasis, (3) magor
emphasis. SES is a continuous variable
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Table 1. Estimated Fixed Effects

Standard

Group Coefficient Error t-ratio
North
East 45.84312* 0.42968  106.69
North
Centra 45.48305* 0.44005 103.36
South 43.06207* 0.42588 101.11
West 44.10279* 0.44472 99.17

Note. * Statistically significant at the p < .01.

indicating socioeconomic status. This measureis based
on Duncan’'s (1961) socioeconomic index for all
occupations. It was deived from the parent
guestionnaire data, the student questionnaire data, or
the first follow-up or second follow-up New Student
Supplement data. This variable has been standardized
to have amean of 0 and standard deviation of 1.

Selfconcept is a composite measure of all of the
self-concept items (question 66) in the student
guestionnaire.  Essentially, this variable measures
students' self concept on a four point scae with: (1)
strongly agree ,(2) agree ,(3) disagree(4) strongly
disagree. It should be noted that this variable was
reverse scaled before a composite score was crested and
was sandardized to have mean of zero and a sandard
deviation of 1. MathScore is the dependent variable
and it was derived by Item response theory (IRT) to
have amean of 50 and standard deviation of 10.

Empirical Results
The FE model below was specified and estimated.

(Mathscore),, = B3, + B.(ReviewWork),, +
B,(ListenLecture), + 3;(CopyNotes), +
Bi(Calculators);, + Bs(ThinkProblem), +
B(SES), + Bi(Selfconcept), + &,

Table 1 provides evidence that the FE model is
indeed the correct choice over the RE model; al t-
values are significant. Region is the cross section unit
(i=1, 2, 3, 4) indicating which of the four US Census
regions (1) Northeast, (2) Midwest,(3) South, or (4)
West.

Table 2 provides the descriptive statistics, measure
of central tendency, measure of dispersion, minimum
and maximum, and number of cases. Table 3 provides
the correlation coefficients for all of the variables used
in the analysis.

Six out of the seven independent variables were
statistically significant at the p < 0.0001 apha level
accounting for 25% of the variance in the dependent
variable (mathematics achievement score). See Table
4 for parameter estimates.

The variable RevievWork is dtatistically
significant (t = 3.27, p <.001). AsReviewWork in-

4

Table 2. Descriptive Statistics

Variable Mean SD Min Max
MathScore 51.81 993 2950 7149
(N =12,992)

ReviewWork 387 121 100 5.00
(N =13,577
ListenL ecture 424 103 100 5.00
(N = 13,565)
CopyNotes 4.01 1.27 1.00 5.00
(N = 13,565)
Calculators 369 138 1.00 5.00
(N = 13,560)
ThinkProblem 223 084 0 3.00
(N = 13,568)
SES 0.04 081 -324 275
(N = 16,563)
Selfconcept 001 070 -369 124
(N = 15,123)
Region 256 101 1.00 4.00
(N = 16,426)

creases by one unit, MathScore increases by 0.234
points. In other words, as students increase the
frequency in which they review their work, holding all
else constant, their math score increases by 0.234
points.

The variable ListenLecture is dtatistically
significant (t = 3.924, p < .001). As ListenLecture
increases by one unit, MathScore increases by 0.370
points. Or put differently, the more attentive the
student is to the teacher’s lecture, their math score
increases by 0.370 points.  The variable CopyNotes
is not statistically significant (t = -1.488, p < .1367).

The variable Calculatorsis statistically significant
(t =11.10, p <.001). As Calculators increases by one
unit, MathScore increases by 0.667 points.
Essentialy, this estimate is showing that students
math score will increase with the use of a calculator.

The variable ThinkProblem is dtatisticaly
significantly (t = 14.304, p < .001). Recal, this
variable measures student perception of teachers
emphasis on mathematical objectivesand is scaed, (0)
none, (1) minor emphasis, (2) moderate emphasis, (3)
major emphasis. As ThinkProblm increases by 1
unit, MathScore increases by 1.387 point. Abstracted
differently, the more teachers emphasize “thinking
about what a problem means and ways it might be
solved”, holding all else constant, students math score
increases by 1.387 points.

The variable SES is statistically significant (t =
47.333, p < 0.001). As SES increases by 1 unit,
holding &l else constant, MathScore increases by
4.937 points. Recall SES is a continuous variable
indicating member's socioeconomic status. This
measure is based on Duncan’s 1961 socioeconomic
Index for all Occupations.

The variable SelfConcept is statistically
significant (t = 10.071, p < 0.001). As SelfConcept

Multiple Linear Regression Viewpoints, 2000, Vol. 26(1)



Table 3. Correlation Matrix

Fixed Effects Panel Data

Math Review Listen Think Sdf
Score Work Lecture CopyNotes Calculators  Problem SES Concept

Review .099 1.000

Work

ListenL ecture 119 .369 1.000

CopyNotes .103 278 .535* 1.000

Calculators .148 135 .140 .095 1.000

Think

Problem 181 224 .256 .237 .099 1.000

SES 470 .042 .044 .084 .103 .050 1.000

Sdf

Concept 144 .085 .085 .076 .053 134 .081 1.000

Region -.103 .009 .022 -.031 .074 -.009 -.082 .002

Note. The moderate correlation between the two variables, CopyNotes and ListenLecture r = .535 is indicative of
multicolinearity. This correlation gives reason to question the inference drawvn from the t-ratio values on these two
variables, however, the parameter estimates for CopyNotes and ListenL ecture are still the best |east square estimates.

increases by 1 unit, MathScore increases by 1.137
points.  Essentidly, students who have a more
positive self perception, are scoring higher on the
standardized math test.

Conclusions
In this study, a fixed effects panel data modd
were applied to the National Education Longitudinal
Study of 1988 (NELS:88). The empirical evidence
presented here suggests that student mathematics test
score is influenced by educationa process variables,
teacher emphasis, student self-concept, and socio-
economic status. Specifically, a model that included
seven independent variables accounted for 25% of the
variance in student mathematical achievement test
score.
Caveat
The NELS:88 data set does not have a means of
extracting the time component in the data. Although,
models for analyzing time effects were not discussed in
the study, it is an important aspect of panel data that
should be coded when the data file is constructed. In
addition, the time series unit should be measured in
smaller periods of time. Residual analysis should be
performed on the error term. That is, the error term
should be andyzed for heteroscedasticity and
autocorrelation.

Correspondence should be directed to:
Todd Sherron
Educational Research Lab
University of North Texas
Denton, Texas 76203-1337
E-mail: sherron@coefs.coe.unt.edu

Table 4. Fixed Effects Estimates

Variable Coefficient  gf t  pvaue
ReviewWork 0.234 0.072 3.27 0.0011
ListenLecture 0.370 0.094 3.92 0.0001
CopyNotes -0.190 0.073 -1.49 0.1367
Cdculators 0.667 0.601 11.10 0.0000
ThinkProblem 1.388 0.097 14.30 0.0000
SES 4,938 0.103 47.73 0.0000
Selfconcept 1.137 0.113 10.07 0.0000

R2 = 0.246 R2adj =0.245
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Appendix

LimDep Code

READ;File=C:\WINDOWS\Program Files\ES Limdep\PROGRAM\nels6.1pj;
Nobs=16749;
Nvar=23;
Names=x1,x2,x3,%x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,%x15,x16,x17,x18,
x19,x20,x%x21,x22,x23%

SKIP$
DSTATS; RHS = X2,X3,X4,X7,X13,X19,X20,X23; OUTPUT = 2 &

REGRESS ; Lhs=X22
;Rhs=X2,X3,X4,X7,X13,X19,X20

;Str=X23

;Wts=X16

:Panel $

REGRESS ; Lhs=X22
;Rhs=X2,X3,X4,X7,X13,X19,X20
;Str=X23
;Panel
;Output=2
;Wts=X16
:Fixed $

Data Output

--> SKIP$
—--> DSTATS; RHS = X2,X3,X4,X7,X13,X19,X20,X23; OUTPUT = 2 $

Descriptive Statistics
All results based on nonmissing observations.

Variable Mean Std.Dev. MEinimum Maximum Cases

X2 3.87029535 1.21401018 1.00000000 5.00000000 13577

X3 4.24061924 1.02966250 1.00000000 5.00000000 13565

X4 4.00906612 1.27206705 1.00000000 5.00000000 13567

X7 3.69041298 1.37809060 1.00000000 5.00000000 13560

X13 2.23349057 .839799327 .000000000 3.00000000 13568

X19 .485648735E-01 .811172698 -3.24000000 2.75000000 16563

X20 .111955300E-01 .701701693 -3.69000000 1.24000000 15123

X23 2.55777426 1.01482683 1.00000000 4_.00000000 16426
Correlation Matrix for Listed Variables

X2 X3 X4 X7 X13 X19 X20 X23

X2 1.00000 .38402 .28129 .13514  .22252 .04671 .088381 .00758

X3 .38402 1.00000 .54066 .13636 .26014 .04523 .08992 .01662

X4  .28129 .54066 1.00000 .09404  .23307 .07737 .07659 -.03424

X7 .13514 .13636 .09404 1.00000 .10102 .10769 .05500 .07762

X13 .22252 .26014 .23307 .10102 1.00000 .05100 .14062 -.01871

X19 .04671 .04523 .07737 .10769 .05100 1.00000 .08907 -.08566

X20  .08881 .08992 .07659 .05500 .14062 .08907 1.00000 .01745

X23 .00758 .01662 -.03424 .07762 -.01871 -.08566 .01745 1.00000

6 Multiple Linear Regression Viewpoints, 2000, Vol. 26(1)



--> REGRESS;Lhs=X22
;Rhs=X2,X3,X4,X7,X13,X19,X20

Fixed Effects Panel Data

;Str=X23
;Wts=X16
;Panel $
e +
| OLS Without Group Dummy Variables |
| Ordinary least squares regression Weighting variable = X16 |
| Dep. var. = X22 Mean=  52.55493863 , S.D.= 9.343603189 |
| Model size: Observations = 10895, Parameters = 8, Deg.Fr.= 10887 |
| Residuals: Sum of squares= 731652.8662 , Std.Dev.= 8.19782 |
| Fit: R-squared= .230712, Adjusted R-squared = .23022 |
| Model test: F[ 7, 10887] = 466.44, Prob value = -00000 |
| Diagnostic: Log-L = -38376.9800, Restricted(b=0) Log-L = -39805.8044 |
| LogAmemiyaPrCrt.= 4._.208, Akaike Info. Crt.= 7.046 |
| Panel Data Analysis of X22 [ONE way] |
| Unconditional ANOVA (No regressors) |
| Source Variation Deg. Free. Mean Square |
| Between 20751.0 3. 6917 .00 |
| Residual 930327. 10891. 85.4216 |
| Total 951078. 10894. 87.3029 |
R +
o Ny o o o o +
|variable | Coefficient | Standard Error |b/St.Er.|P[]Z]|>z] | Mean of X |
o o Ry o o — o +
X2 .2150986215 .72295926E-01 2.975 .0029 3.8895953
X3 -3746630995 -95235646E-01 3.934 .0001 4.2207458
X4 -.1516385665 .73563678E-01 -2.061 .0393 3.9716586
X7 .7025006784 -59425942E-01  11.821 .0000 3.7239903
X13 1.398697309 -97973819E-01  14.276 -.0000 2.2173183
X19 5.040076855 -10413200 48.401 -0000 .86701895E-01
X20 1.035652953 -11377009 9.103 .0000 .42022957E-01
Constant 44.54122268 -41506161 107.312 .0000
e +
| Least Squares with Group Dummy Variables |
| Ordinary least squares regression Weighting variable = X16 |
| Dep. var. = X22 Mean=  52.55493863 , S.D.= 9.343603189 |
| Model size: Observations = 10895, Parameters = 11, Deg.Fr.= 10884 |
| Residuals: Sum of squares= 716924.2581 , Std.Dev.= 8.11601 |
| Fit: R-squared= .246198, Adjusted R-squared = .24551 |
| Model test: F[ 10, 10884] = 355.48, Prob value = -00000 |
| Diagnostic: Log-L = -38266.1998, Restricted(b=0) Log-L = -39805.8044 |
| LogAmemiyaPrCrt.= 4.189, Akaike Info. Crt.= 7.027 |
| Estd. Autocorrelation of e(i,t) -.000540 |
R +
o Ny o o o o +
|variable | Coefficient | Standard Error |b/St.Er.|P[]Z]|>z] | Mean of X |
o o Ry o o — o +
X2 .2342486655 .71596894E-01 3.272 .0011 3.8895953
X3 -3704126069 -94402933E-01 3.924 .0001 4.2207458
X4 -.1089542352 .73215840E-01 -1.488 .1367 3.9716586
X7 .6668605394 .60076332E-01 11.100 .0000 3.7239903
X13 1.387686017 -97011428E-01  14.304 -0000 2.2173183
X19 4.937094032 -10343209 47.733 -0000 .86701895E-01
X20 1.136968803 .11289363 10.071 .0000 .42022957E-01
Multiple Linear Regression Viewpoints, 2000, Vol. 26(1) 7
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Test Statistics for the Classical Model

| |
| Model Log-Likelihood Sum of Squares R-squared |
| (1) Constant term only -39805.80420 .9510780165D+06 -0000000 |
| (2) Group effects only -39685.63264 -9303270109D+06 .0218184 |
| (3 X - variables only -38376.97986 .7316528662D+06 .2307120 |
| (4) X and group effects -38266.19962 .7169242581D+06 -2461983 |
| |
| Hypothesis Tests |
| Likelihood Ratio Test F Tests |
| Chi-squared d.f. Prob. F num. denom. Prob value |
| (@) vs (1) 240.343 3 .00000 80.975 3 10891 -00000 |
| (3) vs (1) 2857.649 7 .00000 466.435 7 10887 -00000 |
| (4 vs (1) 3079.209 10 .00000 355.481 10 10884 .00000 |
| (4 vs (2) 2838.866 7 .00000 462 .825 7 10884 .00000 |
| (4 vs (3) 221.560 3 .00000 74.534 3 10884 -00000 |
e +

Random Effects Model: v(i,t) = e(i,t) + u(i)

Estimates: Var[e] .658696D+02
Var|[u] .489455D+01
Corr[v(i,t),v(i,s)] = -069167

Lagrange Multiplier Test vs. Model (3) = 6971.10

( 1 df, prob value = .000000)
(High values of LM favor FEM/REM over CR model.)

( 7 df, prob value = 1.000000)
(High (low) values of H favor FEM (REM).)

| |
| |
| |
| |
| |
| |
| |
| Fixed vs. Random Effects (Hausman) = .23 |
| |
| |
| Reestimated using GLS coefficients: |
| |
| |
| |
| |

Estimates: Var[e] = .663837D+02

Var[u] = -499445D+01

Sum of Squares .729365D+06

R-squared .233117D+00

N S d ° +

Fom—_—— — Fo Ry gy Fom e —_——_ Fom e Fom +
|variable | Coefficient | Standard Error |b/St.Er._|P[]Z]|>z] | Mean of X |
Fo—— o o e —— o o +
X2 .2341713422 -71596797E-01 3.271 .0011  3.8895953
X3 -3703833036 -94402278E-01 3.923 .0001  4.2207458
X4 -.1090676626 -73213889E-01  -1.490 -1363  3.9716586
X7 -6669200976 .60069733E-01  11.102 .0000 3.7239903
X13 1.387746607 -97011341E-01  14.305 .0000 2.2173183
X19 4.937585087 -10343032 47.738 -0000 .86701895E-01
X20 1.136524709 -11289247 10.067 -0000 .42022957E-01
Constant 44.62217113 1.1804686 37.800 -0000

--> REGRESS;Lhs=X22
;Rhs=X2,X3,X4,X7,X13,X19,X20
;Str=X23
;Panel

;Output=2
;Wts=X16
:Fixed $
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OLS Without

Group Dummy Variables

Fixed Effects Panel Data

I |

| Ordinary least squares regression Weighting variable = X16 |

| Dep. var. = X22 Mean=  52.55493863 , S.D.= 9.343603189 |

| Model size: Observations = 10895, Parameters = 8, Deg.Fr.= 10887 |

| Residuals: Sum of squares= 731652.8662 , Std.Dev. 8.19782 |

| Fit: R-squared= .230712, Adjusted R-squared = .23022 |

| Model test: F[ 7, 10887] = 466.44, Prob value -00000 |

| Diagnostic: Log-L = -38376.9800, Restricted(b=0) Log-L = -39805.8044 |

| LogAmemiyaPrCrt.= 4._.208, Akaike Info. Crt.= 7.046 |

| Panel Data Analysis of X22 [ONE way] |

| Unconditional ANOVA (No regressors) |

| Source Variation Deg. Free. Mean Square |

| Between 20751.0 3. 6917 .00 |

| Residual 930327. 10891. 85.4216 |

| Total 951078. 10894. 87.3029 |
R +
. Ry o o Fomm - R +
|variable | Coefficient | Standard Error |b/St.Er.|P[]Z]|>z] | Mean of X |

S o o Fom Fomm I +
X2 .2150986215 .72295926E-01 2.975 .0029 3.8895953

X3 -3746630995 -95235646E-01 3.934 .0001 4.2207458

X4 -.1516385665 .73563678E-01 -2.061 .0393 3.9716586

X7 .7025006784 -59425942E-01  11.821 0000  3.7239903

X13 1.398697309 -97973819E-01  14.276 0000 2.2173183

X19 5.040076855 -10413200 48.401 0000 -86701895E-01

X20 1.035652953 -11377009 9.103 .0000 .42022957E-01
Constant 44.54122268 -41506161 107.312 .0000
. +

Least Squares with Group Dummy Variables

I |
| Ordinary least squares regression Weighting variable = X16 |
| Dep. var. = X22 Mean=  52.55493863 , S.D.= 9.343603189 |
| Model size: Observations = 10895, Parameters = 11, Deg.Fr.= 10884 |
| Residuals: Sum of squares= 716924.2581 , Std.Dev. 8.11601 |
| Fit: R-squared= .246198, Adjusted R-squared = .24551 |
| Model test: F[ 10, 10884] = 355.48, Prob value -00000 |
| Diagnostic: Log-L = -38266.1998, Restricted(b=0) Log-L = -39805.8044 |
| LogAmemiyaPrCrt.= 4.189, Akaike Info. Crt.= 7.027 |
| Estd. Autocorrelation of e(i,t) -.000540 |
R +
o Ny o o o o +
|variable | Coefficient | Standard Error |b/St.Er.|P[|Z]|>z] | Mean of X |
o o Ry o o — o +
X2 .2342486655 .71596894E-01 3.272 .0011  3.8895953
X3 -3704126069 -94402933E-01 3.924 .0001 4.2207458
X4 -.1089542352 .73215840E-01 -1.488 1367 3.9716586
X7 .6668605394 .60076332E-01 11.100 0000  3.7239903
X13 1.387686017 -97011428E-01  14.304 0000 2.2173183
X19 4.937094032 -10343209 47.733 0000 -86701895E-01
X20 1.136968803 .11289363 10.071 .0000 .42022957E-01
Estimated Fixed Effects
Group Coefficient Standard Error t-ratio
1 45.84312 -42968 106.69106
2 45_48305 -44005 103.35884
3 43.06207 .42588 101.11422
4 44.10279 44472 99.16970
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Sherron & Allen

Test Statistics for the Classical Model

| |
| Model Log-Likelihood Sum of Squares R-squared |
| (1) Constant term only -39805.80420 .9510780165D+06 .0000000 |
| (2) Group effects only -39685.63264 -9303270109D+06 .0218184 |
| (3 X - variables only -38376.97986 .7316528662D+06 .2307120 |
| (4) X and group effects -38266.19962 .7169242581D+06 -2461983 |
| |
| Hypothesis Tests |
| Likelihood Ratio Test F Tests |
| Chi-squared d.f. Prob. F num. denom. Prob value |
| (@) vs (1) 240.343 3 .00000 80.975 3 10891 -00000 |
| (3) vs (1) 2857.649 7 .00000 466 .435 7 10887 .00000 |
| (4) vs (1) 3079.209 10 .00000 355.481 10 10884 .00000 |
| (4 vs (2) 2838.866 7 .00000 462 .825 7 10884 -00000 |
| (4) vs (3) 221.560 3 .00000 74.534 3 10884 -00000 |
e +

Multiple Linear Regression Viewpoints
needs your submissions.

See the inside Back cover for
submission details and for
iInformation on how to join the

MLR: GLM SIG and get MLRV.
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Canonical Analysis

Demystifying Parametric Analyses. |llustrating
Canonical Correlation Analysis as the
Multivariate General Linear Model

Robin K. Henson, University of Southern Mississippi

A review of the research literature suggests that teachers need to provide students with engaging problems, facilitate
their discovery of analysis methods, and encourage classroom discussion and presentation of their approaches to
solving problems. The present article illustrates how canonical correlation analysis can be employed to implement
all the parametric tests that canonical methods subsume as specia cases, including multiple regression. The point is
heuristic: all analyses are correlational, all apply weights to measured variables to create synthetic variables, and all
yield effect sizes analogous to r2. Knowledge of such relationships helps inform researcher judgement of analysis

selection and use.

n one of his seminal contributions, the late Jacob
“Jack” Cohen (1968) demonstrated that multiple
regression subsumes al the univariate parametric
methods as special cases, and thus provides a
univariate genera linear model (GLM) that can be
employed in al univariate analyses. At about the
same time, researchers increasingly also came to
realize that ANOVA was being overused, and in many
cases used when other methods would have been more
useful. One source of ANOVA overuse was that too
many researchers erroneoudly associated ANOVA as an
analysis with the ability to make causal statements
when using experimental research designs; however, it
is the design, and not the analysis that leads to the
ability to make definitive causal statements!
As Humphreys (1978) explained this
phenomonon:
The basic fact is that a measure of
individual differencesis not an independent
variable [in an experimental design], and it
does not become one by categorizing the
scores and treating the categories as if they
defined a variable under experimental
control in a factorialy designed analysis of
variance. (p. 873, emphasis added)
Similarly, Humphreys and Fleishman (1974) noted
that categorizing variables in a nonexperimental design
using an ANOVA analysis “not infrequently produces
in both the investigator and his audience the illusion
that he has experimental control over the independent
variable. Nothing could be more wrong” (p. 468).
Furthermore, as Cliff (1987) noted, the practice of
discarding variance on intervaly-scaed predictor
variables in order to perfform ANOVA-type analyses
creates problemsin amost al cases:
Such divisions are not infallible; think of
the persons near the borders. Some who
should be highs are actualy classified as
lows, and vice versa. In addition, the
“barely highs’ are classified the same as the
“very highs” even though they ae
different.  Therefore, reducing a reliable
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variable to a dichotomy makes the variable
more unreliable, not less. (p. 130,
emphasis added)
These various realizations have led to less frequent use
of ANOVA methods, and to more frequent use of
generd linear model approaches such as regression (cf.
Edgington, 1974; Elmore & Woehlke, 1988; Goodwin
& Goodwin, 1985; Willson, 1980).

Since all analyses are correlational, and it is the
design and not the analysis that yields the capacity to
make causal inferences, the practice of converting
intervally-scaled predictor variables to nominal scale so
that ANOVA and other OVAs (i.e, ANCOVA,
MANOVA, MANCOVA) can be conducted is
inexcusable in many cases.

However, canonical correlation analysis, and not
regression analysis, is the most general case of the
generd linear model (Baggaley, 1981; Fornell, 1978;
Thompson, 1991, 1998). [Structural  equation
modeling (SEM) represents an even broader generd
linear model, but SEM is somewhat different in that
this analysis usually also incorporates measurement
eror estimation as part of the analysis (cf. Bagozz,
Fornell, & Larcker, 1981; Fan, 1996, 1997).] In an
important article, Knapp (1978) demondtrated this in
some detail and concluded that “virtually al of the
commonly encountered parametric tests of significance
can be treated as special cases of canonical correlation
analysis’ (p. 410).

The present article will illustrate how canonical
correlation analysis can be employed to implement all
the parametric tests that canonical methods subsume as
special cases. The point is not that al research ought
to be conducted with canonical analyses, rather the
point is heuristic: al analyses are correlational, all
analyses apply weights to measured variables to cregte
synthetic variables that become the analytic focus, ad
all yield effect sizes analogous to r? that are important
to interpret. For example the R? obtained in a
multiple regression, the eta? obtained from an
ANOVA, and the sguared canonical correlation
coefficient obtained from a canonical correlation
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analysis all describe the variance-accounted-for between
two variables and/or sets of variables. Ultimately,
these statistics are directly analogous to the squared
Pearson correlation.

Understanding general linear model principles aids
in redizing that parametric analyses ae all
fundamentally related. Individua methods, such as
ANOVA or t-tests, can then be viewed from a global
perspective which will, hopefully, facilitate thoughtful
researcher judgment in selecting analyses as opposed to
employing “lock-step” decision strategies that limit
the utility of analyses.

The Basics of Canonical
Correlation Analysis

While a comprehensive discussion of CCA is
beyond a scope of the present article, the reader is
referred to Thompson (1991) for an accessible and user-
friendly treatment of CCA. Furthermore, neither the
analytic derivations of CCA nor the equivaent
derivations of the linear models for the various
analyses will be visited here. Since the purpose of
this article is to demonstrate equivalence of models
through obtained results, the reader isreferred to Knapp
(1978) for mathematical demonstration of the linear
models.

The theory of canonica correlation analysis
(CCA) has been with us for considerable time
(Hotelling, 1935), but did not come into practical use
until the onset of computerization (Krus, Reynolds, &
Krus, 1976). In canonica analysis, the variables are
considered to be members of two or more (in practice,
amost always two) variable sets (e.g., pretest ad
posttest scores, aptitude and achievement scores) —
otherwise we would anayze the data with factor
analysis so as to consder simultaneously al the
relationships, but without considering the existence of
variable sets. Each set will include more than one
variable, otherwise we generally would use a Pearson r
or regression analysis. As will be shown later, these
analyses are essentially the same thing anyway!

A CCA will yiddd many useful statistics, the
most recognized of which is the canonical correlation
(R). The canonical correlation describes the
relationship between two synthetic variables that have
been moddled from their respective variable sets by
applying weights to the measured variables. A
canonical correlation will be produced for each function
(i.e., for each set of standardized canonical function
coefficients and respective measured variables). The
number of functions, each of which will be perfectly
uncorrelated with the others, equals the number of
variables in the smaller of the variable sets. The
canonical correlation can be squared to yield a variance-
accounted-for effect size (R.?), or the percentage of
variance explainable in the criterion variable set
predictable with knowledge of the variance in the
predictor set.

12

One advantage of CCA, and other multivariate
methods, lies in its simultaneous examination of the
variables of interest, thus reducing risk of
experimentwise Type | error (Fish, 1988; Henson, in
press, Thompson, in press). A second, and perhaps
often overlooked, advantage is the flexibility of the
analysisin looking at various research problems. One
example of this versdtility can be found in a
measurement study involving multivariate criterion-
rdlated score validity (Sexton, MclLean, Boyd,
Thompson, & McCormick, 1988). Thus, CCA can
be used in either substantive or measurement inquiries.

Canonical Correlation Analysis as
the General Linear Model

An heuristic data set for 12 elementary, middle,
and high school students will be used to illustrate that
CCA can conduct the other parametric methods that it
subsumes, both univariate and multivariate alike.
CCA will be used to perform a t-test, Pearson
correlation, multiple regression, ANOVA, MANOVA,
and descriptive discriminant analysis. Table 1 lists
heuristic data on four intervally scded variables rdaed
to motivational and personality issues: attributions of
effort (EFFORT), attributions of ability (ABILIT),
locus of control (LOCUS), and degree of extroversion
(EXTROV). Also included are grouping data indicating
some experimental treatment (TREAT) and whether
students are in elementary, middle, or high school
(GRADE). The reader will also notice five planned
contrast variables which will be described | ater.

Analyses will be run using the SPSS (v9.0)
statistics package. The canonical correlation macro
(CANCORR) is a new addition to this version of
SPSS but it limits analyses to two sets of variables of
equa size. Since several examples used here include
analyses on variable sets of differing size, the
canonical macro was not used. Thereis aso a Genera
Linear Model menu which can be used to run a variety
of analyses. However, for the sake of consistency ad
clarity, auniform command syntax will be used in the
present article to illustrate the relationship between
canonical correlation the other parametric anayses.
This command syntax is included in the Appendix.
Note that CCA is conducted here using the MANOVA
command (again, suggesting that these analyses are be
rdlated). Using Table 1 variable names, the SPSS
commands for CCA are:

MANOVA
LOCUSEXTROV WITH EFFORT ABILIT
/PRINT=SIGNIF (MULTIV EIGEN DIMENR)
/IDISCRIM=(STAN ESTIM COR ALPHA(.99)).

The SAS datistical software has a more direct
command for CCA: PROC CANCORR. An example
of SAS syntax used to perform a similar heuristic
illustration can be found in Campbell and Taylor
(1996).

Multiple Linear Regression Viewpoints, 2000, Vol. 26(1)



Canonical Analysis

Table 1. Heuristic Data (n=12) for Canonical Correlation Illustration

ID |EFFORT ABILIT LOCUS EXTROV GRADE TREAT CGR1 CGR2 CTREAT CTGR1 CTGR2
1 10 12 18 15 1 1 -1 -1 -1 1 1
2 15 14 19 16 1 1 -1 -1 -1 1 1
3 17 18 18 13 1 2 -1 -1 1 -1 -1
4 14 13 15 10 1 2 -1 -1 1 -1 -1
5 09 15 14 04 2 1 0 2 -1 0 -2
6 06 19 16 04 2 1 0 2 -1 0 -2
7 06 20 12 07 2 2 0 2 1 0 2
8 07 19 16 03 2 2 0 2 1 0 2
9 18 11 06 18 3 1 1 -1 -1 -1 1
10 17 10 04 13 3 1 1 -1 -1 -1 1
11 12 09 10 12 3 2 1 -1 1 1 -1
12 14 13 09 14 3 2 1 -1 1 1 -1

Conducting Pearson Correlation
with Canonical Correlation

When examining relationships between two
variables, a Pearson correlation (r) is often invoked.
The reader should immediately note conceptua
similarities between a Pearson r and canonica
analysis, even before examining the results from the
SPSS analysis. Both investigate relationships
between variables, only in the canonical case the
messured variables of interest occur  within
multivariate sets.

A Pearson r was computed for EFFORT ad
ABILIT. Table 2 reports the obtained results, r = -
.6150, p = .033. Table 2 aso reports the CCA
results, including the canonical corrdation (R.),
squared canonical correlation (R.?), and Wilks lambda
(A). Wilks lambda, like R is a variance-accounted-
for type statistic. However, Wilks lambda indicates
the variance not accounted for in the canonica
correlation, modeled by (1 —R?). Itisused for testing
the statistical significance of R,. As the magnitude of
_ decreases (ranging from O to 1), the effect size (R.?)
increases as does the likelihood of obtaining statistical
significance.

For these variables, the CCA computed a squared
canonical correlation coefficient of .378. The simple
square root transformation of R? = .378 gives us R, =
.6148. The Pearson r and canonical correlation values
areidentical, savefor rounding error and the fact that a
canonical correlation cannot be negative. This is
because the weights that are used in CCA scde the
variablesin the same direction, as such R, will aways
range from O to 1. The p values are identical.

Herein lies the most fundamental of general linear
model principles: all analyses are correlational. The
canonical correlation is nothing more than a bivariate r
between the synthetic variables crested in CCA dafter
the application of weights. As Thompson (1991)
noted, “This conceptuaization is appealing, because
most researchers feel very comfortable thinking in
terms of the familiar bivariate correlation coefficient”

(p. 81).
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Since the present heuristic CCA only had one
variable in each set, the synthetic variables reflected
the same relationship as did a Pearson r between the
variables without the application of weights. This
result should not be surprising, given the fact that
multiplicative constants do not affect the value of r.
The only effect the weights had in this case was to
scale the variablesin the same direction, thus yielding
a positive value for R..

Conducting Multiple Regression with
Canonical Correlation

As Cohen (1968) indicated, multiple regression
subsumes al other univariate parametric analyses as
special cases. Therefore, there is a directly analogous
relationship between Pearson r and multiple
regression. Since CCA subsumes Pearson r, it should
be apparent that it will do the same for multiple
regression.

A multiple regression analysis was conducted with
EFFORT predicted by LOCUS and EXTROV. SPSS
results of the regression and canonical analyses ae
found in Table 3. Again, al parald statistics match
within rounding error, with the exception of the
weights. However, the difference between the weights
is arbitrary at this point. Beta (B) weights ad
dandardized function coefficients are easily converted
into each other using the following formulas
(Thompson, in press):

B/ R, = Function Coefficient

Function Coefficient * R=B

For example, LOCUS had a B weight of -
.171156. Using R, = .828 from the CCA, we find
that the sandardized function coefficient matches,
within rounding error, that reported in Table 3 (-
171156 / .828 = -.2067). Since we know from the
obtained results that the regression multiple R equals
the canonical R,, we can use the conversion formulas
to find canonical function coefficients using only a
regression analysis and B weights using only CCA.
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Table 2. Conducting Pearson Correlation with

Canonical (EFFORT by ABILITY)

Pearson r Analysis | Canonical Analysis
r -.615 R, .615

r? .378 R/’ .378
lambda .622

p .033 p .033

Note. R. cannot be negative.

Table 3. Conducting Multiple Regression with
Canonical (EFFORT by LOCUS and ABILIT)

Also of note here is the relationship between a
Pearson r, the obtaned multiple R from the
regression, and the R, from the canonical analysis. A
regression analysis applies weights to observed
(manifest) predictor variables to create a synthetic
variable called predicted Y (or sometimes Y 1), Which
isalinear combination of the predictor variables. The
multiple R from the regression analysis is nothing
more than a Pearson correlation between predicted Y
and the observed dependent measure, EFFORT in this
ca® (R predicted v, erFort).  FUrthermore, as shown
above, the canonical correlation (R,) aso is a Pearson
r between two synthetic variables. In this case,
however, only the predictor set (LOCUS ad
EXTROV) was linearly combined via the application
of weights. While technicaly the dependent measure
(EFFORT) dso was transformed by a multiplicative
weight, since only one variable existed, the weight
was +1 and the EFFORT variable did not change. As
such, the CCA and the multiple regression yieded
identical results, both of which are based on a simple
Pearson r between two variables (either manifest or
synthetic)!

Conducting t-test and Point-biserial
Correlation with Canonical Correlation

One of the most basic of statistical analyses is the
t-test which is used to compare means between groups.
Herea t-test was used to evaluate if the treatment and
control groups (TREAT) diffeeed on the EFFORT
variable. Results reported in Table 4 indicate that the
means of the groups were not statisticaly significantly
different, t =.310, p = .760. A canonical analysis on
the same variables yidded F(1, 10) = .100, p = .760.
Note that the p caculated values are identical between
analyses. Thetest statistics (t and F) are different only
in metric. In fact, the F distribution consists of
squared values of thet distribution. Squaring t = .310
produces .096 which does match the F value. The
dlight difference in the values is arbitrary and solely
due to rounding error by the statistics program.

A point-biserial correlation was also conducted to
illustrate the correlational nature of even the t-test. In
essence, a t-test is can be conceptudized as a
correlation between one dichotomous variable
(TREAT) which indicates group membership and one
continuous variable (EFFORT) as the dependent
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Regression Analysis | Canonical Analysis
R .828 R, .828
R? .685 R.2 .685
lambda 315
F(2,9) 9.797 F(2,9) 9.797
p .006 p .006
Beta Weights Function Coefficients
LOCUS -171| LOCUS -.207
EXTROV .767 | EXTROV .926

measure. The point-biserial correlation is a

generdization of the Pearson r illustrated above that
allowsfor adichotomy in one of the variables. Again
looking at Table 4, we see that the p vaues ae
identical across the t-test, point-biserial, and canonica
analyses. Furthermore, the point-biserial correlation
matches the magnitude of the canonica correlation
within rounding error. Remember that a canonical
correlation cannot be negative as discussed above. The
point is again made here that al anayses ae
correlation in nature, even those which utilize
dichotomous variables.

Conducting Factorial ANOVA with
Canonical Correlation

The SPSS syntax file (see Appendix) includes
commands to compute the five orthogona contrast
variables reported in the Table 1 data  Planned
contrasts can be used with ANOVA methods to test
specific, theory-driven hypotheses as against omnibus
hypotheses (Thompson, 1994). One advantage of
using planned contrasts is the ease of pinpointing
statistically significant effects without having to
conduct post-hoc tests which include Bonferroni-type
corrections for experimentwise error. It is important
to note that the contrasts will yield the same overall
effect [i.e, Sum of Squares (SS) explained] as the
omnibus test. They are necessary here to show that
CCA can conduct ANOVA.

In the present analysis, a 3 X 2 factorial ANOVA
was conducted with TREAT and GRADE &s
independent variables and EFFORT as the dependent
variable. For the CCA, the contrast variables from
Table 1 were used. The total number of orthogonal
contrasts that can be crested equals the degrees of
freedom for each main effect. The GRADE main effect
has two degrees of freedom and is represented by
CGR1 and CGR2. The TREAT main effect is
represented by CTREAT with one degree of freedom.
CTRGR1 and CTRGR2 are ssimply cross products of
the other main effectsand test the GRADE X TREAT
interaction effects. Table 5 presents results for the
ANOVA: GRADE, F =19.367; TREAT, F = .510;
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Table 4. Conducting t-test and Point-biseria
Correlation with Canonical (EFFORT by TREAT)

Canonical Analysis

Table 5. 3 X 2 Factoridl ANOVA
(EFFORT by GRADE and TREAT)

t-test Canonical Point-biserial Source SS d MS F p e
t(10) 314 | F(1, 10) .100 GRADE 158.167 2 79.083 19.367 .002 .743
p .760 p 760 p .760 TREAT 2083 1 2083 0.510 .502 .010

M(TREAT1) 12.500
SD(TREAT1) 4.848| R, .100| r -.100
M(TREAT2) 11.667| R2Z .010| r* .010
SD(TREAT2)  4.320|lambda  .990

Note. R, cannot be negative.

GxT 28.167 2 14.083 3449 .101 .132
Error 24500 6

Total 212917 11

GRADE X TREAT, F = 3.449. Note that the effect
size (r?) for the error term was .1323.

Obtaining comparable results with CCA requires
us to take several steps. The first step involves
conducting canonical analysesin four separate designs,
using EFFORT as the dependent measure and the
contrasts as independent variables.  Design 1 included
all planned contrasts, CGR1, CGR2, CTREAT,
CTRGR1, and CTRGR2, to test the total effect (SOS
explained). Design 2 used CTREAT, CTRGR1, ad
CTRGR2 to jointly test the TREAT and interaction
effects. Design 3 used CGR1, CGR2, CTRGR1, ad
CTRGR2 to jointly test the GRADE and interaction
effects. The final CCA, Design 4, used CGR1,
CGR2, and CTREAT to jointly test the GRADE ad
TREAT effects. Table 6 displays the Wilks lambda
valuesfor each design from the first step. Remember
that A is something of a “reversg’ effect size and will
equa the effect for the error term. A quick comparison
of A for the total effect (Table 6) with the error effect
size (Table 5) confirms this relationship between the
statistics.

After canonical lambdas have been attained, we
must use them to determine the omnibus ANOVA
lambdas. This was done by dividing the Design 1
total effect (lambda) by the lambdas of the other
designs. For example, to find the omnibus lambda for
the GRADE main effect the total lambda (.11507) was
divided by the Design 2 lambda (.85793), which
reflects the joint effect of the contrast variables for the
TREAT main effect and the GRADE X TREAT
interaction effect. This process “removes’ the effects
of the other hypotheses, leaving the omnibus lambda
for the GRADE main effect to be .13412516 (.11507 /
.85793 = .13412516 = A). The same process was used
to find the other ANOVA lambdas with results
reported in Table 6.

One final step remained. ANOVA lambdas were
converted into ANOVA F dtatistics using the
following formula: [(1 — A)/A]* (dferror / df effect) = F.

To illustrate, the F value for the GRADE main
effect was modeled by [(1 - .13413) /.13413] * (6 / 2)
= 19.36636. Table 6 also reports transformations for
both main effects and the interaction. Note that the F
statistics obtained by the canonical process match
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those obtained by the factorial ANOVA (see Table 5),
within rounding error of course.

It should also be noted that the equivaence of
ANOVA and CCA can be demonstrated with dummy
codes that represent group membership in the
independent variable (see Fan, 1978). However, the
predictors would be correlated in this case.  The use of
orthogonal contrast is useful here to maintain the
factorial structure of the groups.

Conducting Factorial MANOVA
with Canonical Correlation

Since SPSS can use the MANOVA command to
perform CCA, it would seem that the two are related.
To illustrate the relationship, a 3 X 2 factorid
MANOVA was computed with EFFORT and ABILIT
as dependent variables and GRADE and TREAT as
independent measures.  Results from this analysis ae
found in Table 7. Since MANOVA is a multivariate
method, Wilks lambdas are reported by SPSS and ae
used to test statistical significance of the F values.

The comparable canonica analysis was
performed using the same process as with the ANOVA
above. Four CCA designs using the contrast variables
were run with canonical lambdas reported in Table 8.
The subsequent conversion of these vaues to
MANOVA lambdas is also found in Table 8. The
reader will note the equivalence of the MANOVA sin
Table 7 with those obtained through the canonical
analysisin Table 8. The final conversion to F values
was not necessary here since the MANOVA uses the
A value to calculate F statistics, unlike the SOS vaue
used in ANOVA. However, the same full model F-
test formula used in the ANOVA section can be used
to find the F statistics in this case.

Conducting Discriminant Analysis
with Canonical Correlation

Discriminant analysis is a multivariate method
that can either be used predictively to classify persons
into groups or descriptively where variables identify
latent structures among groups (Huberty, 1994). The
descriptive discriminant analysis (DDA) case is
especialy useful as the preferred substitute for a one-
way MANOVA or asapost hoc analysis to multi-way
MANOVA analyses.
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Table 6. Conduct ANOVA with Canonical Analysis
(EFFORT by Contrasts)

Table 7. 3 X 2 Factorial ANOVA
(EFFORT and ABILIT by GRADE and TREAT)

Source  lambda of F p
Step One: Canonical Analyses on Four Designs GRADE .05061 4,10 8.61299 .003
Design [ Independent Variables lambda TREAT  .61798 2, 5 154541 .300
1 CGR1, CGR2, CTREAT .11507 GxT 44653 4,10 1.24122 .354
CTGR1, CTGR2
2 [CTREAT, CTGR1, CTGR2 .85793 Table 8. Conduct MANOVA with Canonical
3 | CGR1, CGR2, CTGR1, CTGR2 | 12485 Analysis (EFFORT and ABILIT by Contrasts)
4 CGR1, CGR2, CTREAT 24736 Step One: Canonical Analyses on Four Designs

Step Two: Conversion of Canonical Lambdas to Design | Independent Variables lambda
ANOVA Lambdas 1 |CGR1, CGR2, CTREAT 03184
ANOVA _ ANOVA CTGR1, CTGR2
Effect Designs| Transformation Lambda 2 |CTREAT, CTGR1, CTGR2 62924
GRADE 1/2 .11507/.85793 |.13412516 3 CGR1, CGR2, CTGR1, CTGR2 .05153
TREAT 1/3 .11507/.12485 |.92166600 4 CGR1, CGR2, CTREAT .07132
GxT 1/4 | .11507/.24736 | 46519243 Step Two: Conversion of Canonical Lambdas to
Step Three: Conversion of ANOVA Lambdas to MANOVA Lambdas
F-ratio ANOVA ANOVA
Source Transformation F-ratio Effect Designs| Transformation Lambda
GRADE [(1-.13413)/.13413]*(6/2) 19.36636 GRADE 1/2 .03184/.62924 |.05060072
TREAT [(1-.92167)/.92167]* (6/1) 0.50992 TREAT 1/3 .03184/.05153 |.61789249
GxT [(1-.46519)/.46519]* (6/2) 3.44898 GxT 1/4 .03184/.07132 |.44643859
Conclusion

To demonstrate the DDA and CCA relationship, a
descriptive discriminant analysis was conducted with
TREAT as the nominally scaled predictor variable ad
EFFORT and ABILIT as criterion variables. Table 9
reports a statitically non-significant result x?(2, 9) =
.648, p = .723. The canonica analysis was conducted
using the planned contrast variable CTREAT as the
predictor. Results of the CCA are also reported in
Table 9. The reader will note that the analyses yield
identical results. One arbitrary difference is in the
reporting of ax? statistic for the discriminant analysis
as opposed to the CCA F value. As with thet and F
distributions described above, the difference is arbitrary
since the x? and F dtatistics represent the same value
expressed in adifferent metric. The x? statistic can be
calculated by multiplying the F value by (j * k), where
j is the number of variables in the predictor set and k
is the number of variablesin the criterion set. In this
case, F =.33602, so x? = (1 * 2).33602 = .67204.
This transformation approximates the x? reported in
Table 9 with the difference due to rounding.

Table 9. Conducting Multiple Regression with
Canonica (EFFORT by LOCUS and ABILIT)

Discriminant Analysis | Canonical Analysis
R, .264 R, .264

R .070 R .070
lambda 931 lambda 931
.648 F .336

df 2,9 df 2,9

p 723 p 723
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The purpose of the present article has been to
illustrate that canonical correlation analysis represents
the multivariate parametric general linear model. As
such, CCA can be used to conduct the univariate ad
multivariate analyses that CCA subsumes, including
multiple regression. The point is heuristic and not in-
tended to suggest that all analyses should be conduct-
ed with CCA. Infact, it is quite clear in the ANOVA
and MANOVA examples that CCA, at least as
reported by SPSS, is the long way to the same results.
However, CCA would be superior to ANOVA ad
MANOVA when the independent variables are
intervally scaled, thus eliminating the need to discad
variance.

Knowing that there is a generd linear model and
understanding that al parametric andyses ae
intricately related can be of great educationa value to
both students and teachers of quantitative methods as
well as practicing researchers. Knowing these
relationships facilitates understanding of commonalties
and differences among all the parametric methods ad
serves to inform researcher judgement concerning
analysis selection and use.

The author would like to graciously thank Bruce
Thompson for areview of an earlier draft of the
manuscript.

Correspondence should be addressed to

Robin K. Henson

Department of Educational Leadership & Research

University of Southern Mississippi

Email: rrhenson@aol.com.

Multiple Linear Regression Viewpoints, 2000, Vol. 26(1)




References

Baggdey, A. R. (1981). Multivariate analysis. An
introduction for consumers of behavioral research.
Evaluation Review, 5, 123-131.

Bagozzi, R. P., Fornell, C., & Larcker, D. F. (1981).
Canonical correlation analysis as a special case of a

structural relations model. Multivariate Behavioral
Research, 16, 437-454.

Campbell, K. T., & Taylor, D. L. (1996). Canonica
correlation analysis as a general linear modd: A
heuristic lesson for teachers and students. Journal of
Experimental Education, 64, 157-171.

Cliff, N. (1987). Analyzing multivariate data. San
Diego,Harcourt Brace Jovanovich.

Cohen, J. (1968). Multiple regression as a generd
data-analytic system. Psychological Bulletin, 70,
426-443.

Edgington, E. S. (1974). A new tabulation of
statistical procedures used in APA journals.
American Psychologist, 29, 25-26.

Elmore, P. B., & Woehlke, P. L. (1988). Statistical
methods employed in American Educational
Research Journal, Educational Researcher, ad
Review of Educational Research from 1978 to
1987. Educational Researcher, 17(9), 19-20.

Fan, X. (1996). Canonical correlation analysis as a
generd analytic model. In B. Thompson (Ed.),
Advances in social science methodology (Vol. 4,
pp. 71-94). Greenwich, CT: JAI Press.

Fan, X. (1997). Canonical correlation analysis ad
structural equation modeling: What do they have in
common? Sructural Equation Modeling, 4, 65-79.

Fish, L. J (1988). Why multivariate methods ae
usually vital. Measurement and Evaluation in
Counseling and Development, 21, 130-137.

Fornell, C. (1978). Three approaches to canonical
analysis. Journal of the Market Research Society,
20, 166-181.

Goodwin, L. D., & Goodwin, W. L. (1985).
Statistical techniques in AERJ articles, 1979-1983:
The preparation of graduate students to read the
educational  research  literature.  Educational
Researcher, 14(2), 5-11.

Henson, R. K. (in press). Multivariate normality:
What isit and how is it assessed? In B. Thompson
(Ed.), Advancesin social science methodology (Vol.
5). Stamford, CT: JAI Press.

Multiple Linear Regression Viewpoints, 2000, Vol. 26(1)

Canonical Analysis

Hotelling, H. (1935). The most predictable criterion.
Journal of Experimental Psychology, 26, 139-142.
Huberty, C. (1994). Applied discriminant analysis.

New York: Wiley.

Humphreys, L. G. (1978). Doing research the had
way: Substituting analysis of variance for a
problem in correlationa analysis. Journal of
Educational Psychology, 70, 873-876.

Humphreys, L. G., & Fleishman, A. (1974). Pseudo-
orthogonal and other analysis of variance designs
involving individual -differences variables. Journal of
Educational Psychology, 66, 464-472.

Knapp, T. R. (1978). Canonica correlation analysis:
A generad parametric significance-testing system.
Psychological Bulletin, 85, 410-416.

Krus, D. J, Reynolds, T. S., & Krus, P. H. (1976).
Rotation in canonical variate analysis. Educational
and Psychol ogical Measurement, 36, 725-730.

Sexton, J. D., McLean, M., Boyd, R. D., Thompson,
B., & McCormick, K. (1988). Criterion-related
validity of a new standardized measure for use with
infants who are handicapped. Measurement ad
Evaluation in Counseling and Development, 21,
16-24.

Thompson, B. (in press). Canonica correlation
analysis. In L. Grimm & P. Yanold (Eds),
Reading and understanding multivariate statistics
(Voal. 2). Washington, DC: American Psychological
Association.

Thompson, B. (1991). A primer on the logic and use
on canonical correlation analysis. Measurement and
Evaluation in Counseling and Development, 24(2),
80-95.

Thompson, B. (1994). Planned versus unplanned and
orthogonal versus nonorthongonal contrasts. The
neo-classical perspective. In B. Thompson (Ed.),
Advances in social science methodology (Vol. 3,
pp. 3-27). Greenwich, CT: JAI Press.

Thompson (1998, April). Five methodology errors in
educational research: The pantheon of statistical
significance and other faux pas. Invited address
presented at the annual meeting of the American
Educational Research Association, San Diego.
(Internet URL http://acs.tamu.edu/~bbt6147/)

Willson, V. L. (1980). Research techniques in AERJ
articles: 1969 to 1978. Educational Researcher,
9(6), 5-10.

17



Henson

APPENDIX
SPSS Command Syntax for Canonical Demonstration

TITLE * Canonical correlation

demonstration ".
TITLE * Robin K. Henson ".
COMMENT Heuristic data for 12 cases
COMMENT EFFORT - attributions of
effort
COMMENT ABILIT - attributions of
ability
COMMENT LOCUS - external vs internal
locus of control
COMMENT EXTROV - degree of
extroversion scale
COMMENT GRADE - elementary(l),
middle(2), high(3) school
COMMENT TREAT - treat(l),
control (2) groups.
SET BLANKS=SYSMIS UNDEFINED=WARN
PRINTBACK LISTING.
DATA LIST
FILE="c:\ccaasglm.txt"
FIXED RECORDS=1
/1D 1-2 EFFORT 4-5 ABILIT 7-8
LOCUS 10-11 EXTROV 13-14
GRADE 16 TREAT 18.
EXECUTE.
COMMENT Show that cca can do Pearson r.
CORRELATIONS
/VARIABLES=EFFORT ABILIT
/PRINT=TWOTAIL NOSIG
/MISSING=PAIRWISE .
MANOVA
EFFORT WITH ABILIT
/PRINT=SIGNIF (MULTIV EIGEN DIMENR)
/DISCRIM=(STAN ESTIM COR).
COMMENT Show that cca can do
multiple regression.
REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT EFFORT
/METHOD=ENTER LOCUS EXTROV .
MANOVA
LOCUS EXTROV WITH EFFORT
/PRINT=SIGNIF (MULTIV EIGEN DIMENR)
/DISCRIM=(STAN ESTIM COR).
COMMENT Show that cca can do t-test
and point biserial correlation.
T-TEST
GROUPS=TREAT(1 2)
/MISSING=ANALYSIS
/VARIABLES=EFFORT
/CRITERIA=CIN(.95) .
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MANOVA

TREAT WITH EFFORT

/PRINT=SIGNIF (MULTIV EIGEN DIMENR)

/DISCRIM=(STAN ESTIM COR).

COMMENT Show cca can do point-biserial
which is a generalization of r.

CORRELATIONS

/VARIABLES = treat effort

/PRINT=TWOTAIL NOSIG

/MISSING=PAIRWISE .

COMMENT Show that cca can do

factorial ANOVA.

COMMENT Compute contrast variables
to do cca.

IF (GRADE = 1) CGR1 = -1.

IF (GRADE = 2) CGR1 = 0.

IF (GRADE = 3) CGR1 = 1.

COMMENT Tests equality of the
means of elementary(4) vs
high school(4) students.

EXECUTE.
IF (CGR1 = -1) CGR2 = -1.
IF (CGR1 = 0) CGR2 = 2.
IF (CGRL = 1) CGR2 = -1.
EXECUTE.

COMMENT Tests equality of means
of middle(4) vs
elementary high school(8) students.
IF (TREAT = 1) CTREAT = -1.
IF (TREAT = 2) CTREAT = 1.
EXECUTE.
COMMENT Tests equality of means of
treatment (6) vs control groups (6).-
COMPUTE CTRGR1 = CGR1 * CTREAT.
COMPUTE CTRGR2 = CGR2 * CTREAT.
EXECUTE.
COMMENT Tests treatment by grade
interaction effects.
COMMENT Show contrast variables
are orthogonal .
CORRELATIONS
/VARIABLES=CGR1 CGR2 CTREAT
CTRGR1 CTRGR2
/PRINT=TWOTAIL SIG
/MISSING=PAIRWISE .
COMMENT Step one: run factorial ANOVA
and cca on constrast variables.
ANOVA
VARIABLES=EFFORT
BY GRADE(1 3) TREAT(1 2)
/MAXORDERS ALL
/METHOD UNIQUE
/FORMAT LABELS .

Multiple Linear Regression Viewpoints, 2000, Vol. 26(1)



MANOVA
CGR1 CGR2 CTREAT CTRGR1 CTRGR2
WITH EFFORT
/PRINT=SIGNIF (MULTIV EIGEN DIMENR)
/DISCRIM=(STAN ESTIM COR).
MANOVA
CTREAT CTRGR1 CTRGR2 WITH EFFORT
/PRINT=SIGNIF (MULTIV EIGEN DIMENR)
/DISCRIM=(STAN ESTIM COR).
MANOVA
CGR1 CGR2 CTRGR1 CTRGR2 WITH EFFORT
/PRINT=SIGNIF (MULTIV EIGEN DIMENR)
/DISCRIM=(STAN ESTIM COR).
MANOVA
CGR1 CGR2 CTREAT WITH EFFORT
/PRINT=SIGNIF (MULTIV EIGEN DIMENR)
/DISCRIM=(STAN ESTIM COR).
COMMENT Show cca can do MANOVA.
MANOVA
EFFORT ABILIT BY GRADE(1 3)
TREAT(1 2)
/PRINT SIGNIF(MULT UNIV )
/NOPRINT PARAM(ESTIM)
/METHOD=UNIQUE
/ERROR WITHIN+RESIDUAL
/DESIGN
MANOVA
CGR1 CGR2 CTREAT CTRGR1 CTRGR2
WITH EFFORT ABILIT
/PRINT=SIGNIF (MULTIV EIGEN DIMENR)
/DISCRIM=(STAN ESTIM COR).

Canonical Analysis

MANOVA
CTREAT CTRGR1 CTRGR2
WITH EFFORT ABILIT
/PRINT=SIGNIF (MULTIV EIGEN DIMENR)
/DISCRIM=(STAN ESTIM COR).
MANOVA
CGR1 CGR2 CTRGR1 CTRGR2 WITH EFFORT
ABILIT
/PRINT=SIGNIF (MULTIV EIGEN DIMENR)
/DISCRIM=(STAN ESTIM COR).
MANOVA
CGR1 CGR2 CTREAT WITH EFFORT ABILIT
/PRINT=SIGNIF (MULTIV EIGEN DIMENR)
/DISCRIM=(STAN ESTIM COR).
COMMENT Show cca can do
discriminant analysis.
DISCRIMINANT
/GROUPS=TREAT(1 2)
/VARIABLES=EFFORT ABILIT
/ANALYSIS ALL
/PRIORS EQUAL
/CLASSIFY=NONMISSING POOLED .
MANOVA
EFFORT ABILIT WITH CTREAT
/PRINT=SIGNIF (MULTIV EIGEN DIMENR)
/DISCRIM=(STAN ESTIM COR).
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The Use of Problem Solving Strategies
in Teaching Mathematics

Randall E. Schumacker, University of North Texas
T. Mark Beadey, St. John's University, New Y ork

A review of the research literature suggests that teachers need to provide students with engaging problems, facilitate
their discovery of analysis methods, and encourage classroom discussion and presentation of their approaches to

solving problems.

Two separate studies compared differences in mathematics test scores involving students

randomly assigned to experimental and control conditions using a causal-comparative design. The results from both
studies indicated that mathematics test scores were significantly higher for the groups of students who learned
problem solving strategies. Confidence intervals, effect sizes, and bootstrap estimates are reported.

have examined the factors that are essential for

learning, especially in the area of problem
solving (Hudgins, 1977). For example, according to
several cognitive based studies, meaningful learning is
reflective, constructive, and self-regulated (Bransford &
Vye, 1989; Davis & Maher, 1990; Hiebert et al.,
1996; Marzano, Brandt, & Hughes, 1988; Rickard,
1995; Wittrock, 1991). Other studies have indicated
that specific transfer of knowledge paradigms exist for
the assessment of learning (Levine, 1975; Stolurow,
1966) and that contemporary research designs can be
useful to assess transfer of learning tasks (Cormier &
Hagman, 1987; Gick & Holyoak, 1987). Brooks ad
Dansereau (1987) have further identified four genera
types of learning transfer: (8) content-to-content; (b)
skills-to-skills; (c) content-to-skills; and (d) skills-to-
content. Snow (1989) conceptuaized the learning
process to include concept formation, procedural skills,
learning strategies, sef-regulated functions, ad
motivational orientations. Rosenshine, Meister, ad
Chapman (1996) recently reviewed numerous
intervention studies and found overall that teaching
students cognitive strategies for generating questions
about the materiad improved their learning
comprehension and understanding.

Identifying the important information in a
problem and using that information to attempt a
solution is basic to successful problem solving.
Subsequent use of that information in a new problem
under different circumstances presents an even higher
level of problem solving skill.  Problem solving, in
fact, has been shown to involve at least three stages:
understanding the problem, solving the problem, ad
answering the question (Charles, Lester, & O'Déffer,
1987; Whitener, 1989).

Palumbo (1990) further reviewed the reevant
issues in problem solving research, especiadly the
distinction between specific and generdized problem

N umerous studies in mathematics education
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solving which focuses on the strategy required to most
effectively solve a particular type of problem. Early
work by Bloom and Broder (1950) has also indicated
the ways in which students provide solutions to their
problems: (&) gaining an understanding of the nature of
the problem; (b) obtaining an understanding of the
ideas contained in the problem: (c) attempting a
general approach to the problem (e.g., guessing,
working backwards, logical reasoning, looking for
patterns); (d) using an implementation approach (no
work shown, possibilities overlooked, strategy not
clear); and (e) having a positive attitude and motivation
toward solving the problem. Consequently, effective
assessment of problem solving ability appears to
require more than simply an examination of
right/wrong answers given by students (Szetela &
Nicol, 1992).

A further review of the literature indicated that for
problem solving strategies to be effective in
mathematics they must be taught (Frederikson, 1984).
Rickard's (1995) case study results reveded that a
teacher generally structures teaching around their own
problem solving goals and beliefs, and not necessarily
those specified in the curriculum. These findings
indicated that we can not assume that a teacher has
taught the necessary strategies nor allowed students the
opportunity to explore and discuss their methods ad
solutions to a problem.

Biehler and Snowman (1990) and Ormrod (1990)
have provided specific mathematics problem solving
strategies that teachers can use.  Their research
involving 9™ and 10" grade public school children
enrolled in Algebra | classes indicated that students
who are aware of certain problem solving strategies are
more effective in working algebra problems. Overall,
their findings further suggest that teachers who want
students to think critically must explicitly emphasize
problem solving, use varied examples, and verbalize
their methods and strategies, especialy if they want

Multiple Linear Regression Viewpoints, 2000, Vol. 26(1)



students to generdlize, i.e., transfer, what they have
learned to new and different problems.

Effective teaching, therefore, should include both
the teachers involvement in providing engaging
problems and strategies using various subject matter,
as well as, the teachers facilitation of students to
become more aware of their own metacognitive
strengths and wesknesses in  problem solving.
Basicaly, in the teaching of problem solving
strategies, students should be provided an opportunity
to express their own strategies. The problem solving
skills most commonly cited as being needed by
students include:  identifying the  problem;
distinguishing relevant from irrelevant information;
choosing main points; judging the credibility of
sources; making inferences from information given;
observing accurately; interpreting observations;, and
making value judgments (National Center for Research
to Improve Postsecondary Teaching and Learning,
1989-1990).

Hiebert et a. (1996) argued that reform in
curriculum and instruction in mathematics should be
based on allowing the student to “problematize” the
subject, rather than mastering skills and applying
them. Their method involved allowing students to
contemplate why things are, to inquire, to search for
solutions, resolve incongruities, and to communicate
their problem solving method(s) to others. They
advocated an approach based upon Dewey’s “reflective
inquiry” which involves giving engaging problems,
dilemnas, and questions for the students to solve. The
features of this approach are: identifying problems;
active studying of the problem; and reaching a
conclusion. In this context, the teachers role is to
facilitate students analysis of the adequecy of the
methods to achieve a solution to a problem. That is,
the teacher should help the students to develop their
own problem solving strategies.

In a recent review across several decades of
research literature, Alexander (1996) addressed the role
knowledge playsin learning and instruction. Findings
indicated that the knowledge a learner possesses affects
what information they attend to in a problem, how
that information is perceived, what is judged to be
relevant or important, and what is understood ad
remembered. One further aspect of this review
suggests that a student's knowledge of topics,
procedures, or dtrategies can be influenced by
instruction. Problem solving strategies are therefore
important components in the student learning process
and are important factors to consider when teaching
mathematics.

One could easily assume that brighter students
naturaly excel at problem solving in the classroom
because of their high level of achievement ad
exemplary metacognitive ability. Related research
characterizing individuals with exemplary meta
cognitive ability indicate they are able to: perceive

Multiple Linear Regression Viewpoints, 2000, Vol. 26(1)
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large meaningful patterns; reach solutions rapidly;
represent problems at a deeper level; spend more time
analyzing a problem; and possess stronger sdlf-
monitoring skills (Chi, Glaser, & Farr, 1988); display
their ability to learn in specific domain areas (Minsky
& Papert, 1974); are better at judging the difficulty of
aproblem (Chi, Glaser, & Rees, 1982; Glaser, 1987);
and use memory more than ageneral reasoning process
(Posner, 1988). Asaresult of these findings, it seems
reasonable to assume that brighter students would not
benefit from instruction in problem solving strategies,
however, this has never been researched. In our
investigation of the use of problem solving strategies
in teaching mathematics, two separate studies were
conducted. We examined the effect of direct instruction
of problem solving strategies on mathematics test
score performance among two different groups of
students: high school students and accelerated early
college entrance high school students, respectively.
We gpecifically hypothesized that students given
problem solving strategy instruction would have
higher average test scores on a mathematics test than
students who did not receive such instruction. This
approach was employed because of the research focus
of our study and the overemphasis on single studies in
educational research (Rosnow & Rosenthal, 1989).

We further felt that our study has significant
educational importance due to the findings from the
Third International Mathematics and Science Study
(Beaton, et al., 1996). In 1994-1995, achievement
tests in mathematics and science were administered
aound the world to students in classrooms.
Performance expectations centered around four aress.
knowing, performing routine procedures, using
complex procedures, and solving problems. The
United States, in comparison to other world countries,
ranked among the last in mathematics test scores.
This may be due more to how we teach rather than to
what we teach (i.e. content).

Study One

Subjects and Design

The subjects in the first study were seventy-eight
(78) 10" grade high school students who were sdlected
for admission into an Academy of Mathematics and
Science, an early college entrance program for gifted
and talented students, during the spring semester.
Students were accepted into the Academy based on
SAT scores, personal interviews, letters of reference,
and high school transcripts. The students left their
respective high schools after completing 10" grade to
attend the Academy full time, which was housed, on a
university campus. While in the Academy, students
would take university undergraduste courses in
mathematics, science, and the humanities.  Students
who graduated from the Academy after two years
concurrently received their high school diplomas ad
two years college credit. The average SAT-Quantitative
score was 640 and the average SAT-Verba score was
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550. Studentsranged in age from 15 to 18 years with
37% females, 4% African-American, 9% Hispanic, ad
12% Asian-American.

Students met in a large auditorium for orientation
the first week of classes at the university. After a brief
presentation, students were directed to one of two
different classrooms based on randomly picked seats.

The students were randomly assigned to either a
control group (n=43) which only received the
mathematics test or an experimental group (n=35)
which was instructed in problem solving strategies,
followed by the mathematics test. The use of an
experimental control group design to investigate the
effectiveness of instructional interventions has been
used before (Schumacker & Miller, 1992).

Materials

A mathematics test, which included 13 problems
sdected from an Algebra | textbook used by high
school students (Coxford & Payne, 1990), was used as
the dependent measure. The types of mathematics
problems sdected involved skills-to-skills (e.qg.,
arithmetic to agebra) transfer in  mathematics
knowledge such as (&) determining profit and loss, (b)
the volume of water in different sized containers, ad
(c) determining the area of different shapes. Students
were reguired to indicate their problem solving
strategies for each math problem in the test booklet,
i.e.,, methods of analysis and steps taken to answer
each problem, not just provide a right/wrong answer.
Each math problem had five questions worth 1 point
each if correctly answered (5 points per math problem),
for a maximum possible score of 65.

A dandardized set of overhead transparencies was
prepared which presented different strategies for the
various types of mathematics problems. The problem
solving strategies were adopted from Biehler &
Snowman (1990) and Ormrod (1990). The strategies
involved information on how various mathematical
problems could be reorganized, thus leading to clues
on how to solve them. Each problem on the test was
different and therefore had a different problem solving
strategy associated with it, so as to minimize any
“teaching to the test” effect. An example math
problem and problem solving strategy is in the
Appendix.

Procedures

Students were directed to one of two different
classrooms based upon their randomly assigned
auditorium seating. One classroom represented an
experimental group while the other a control group.
Two different teachers were also randomly assigned to
one or the other classroom. The problem solving
strategies for various types of mathematics problems
were presented to students in the experimental group
using standardized overhead transparencies. The random
assignment of the two teachers and the standardization
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of the materials were done to reduce any bias or teacher
effectsin the study. The teacher in the experimental
group indicated that students had no problems or
concerns about the problem solving strategy
instruction provided. The two teachers and the
principal author scored the mathematics tests using a
scoring rubric.

Study Two

Subjects and Design

The subjects in the second study consisted of fifty-
two (52) 10™ grade high school students completing an
Algebra | class during the fall semester. The high
school students were randomly assigned to either the
control group (n=25) or the experimental group
(n=27). The same exact design and procedures were
followed as in the first study. These students were
from a different academic setting, but were of similar
age and demography as those in the first study.
Although the high school grade point averages were
similar for students in both studies, most of the high
school students in the second study had not taken the
SAT. These students mainly differed from students in
the first study in that they were not sdected to attend
an early college entrance program targeted for gifted
and talented students.

Materials and Procedures

The mathematics test used in the first study was
used in the second study. The same procedures were
followed with the exception that students did not attend
a university orientation session. Two high school
teachers were randomly assigned to one or the other
classroom. The problem solving strategies for the
various types of mathematics problems were again
presented to students in the experimental group using
the standardized overhead transparencies. The teacher
in the experimental group indicated that students hed
no problems or concerns about the problem solving
strategy instruction provided. The two teachers and the
principal author scored the mathematics tests with the
same scoring rubric used in the first study.

Results

The Cronbach (1951) Alpha internal consistency
reliability coefficient for the academy student scores in
the first study was .84. For the high school student
scores in the second study, Alpha was .85. The mean
test score difference between the groups in the first
study for the Academy students was 13.86. The mean
test score difference between the groups in the second
study for the high school students was 12.18. The test
score means and dandard  deviations for  the
experimental and control groups in both studies ae
also presented in Table 1.

Based on the sample characteristics from each
condition in these studies, O'Brien's (1981) test for
unequal variances was performed (Beadey, 1995;
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Ramsey, 1994). These tests verified that the
experimental groups had significantly less variability
in their math scores for both the Academy
[F(1,76)=9.31, p=.0031] and high school students
[F(1,50)=5.14, p=.0028]. Thus, it is reasonable to
assume that there were differences in the variability of
performance between the groups in each study.

In order to test mean differences under these
circumstances, independent t-tests for unequal variances
were performed using Satterthwaite's (1946) correction
for the degrees-of-freedom (df). A dsatistically
significant mean difference was found between the
experimental and control group in both the first
(t=4.74, df=64.07, p=.0001) and second (t=3.05,
df=36.23, p=.004) studies. Thus, students in the
experimental groups of both studies who received
instruction in problem solving strategies hed
significantly higher mean test scores than students in
the control groups, after the correction for unequa
variances. Students in both experimental groups also
demonstrated less variability in their scores, hence a
need to interpret results using unequal variances. The
results from both studies taken together indicate that
the use of problem solving strategies in teaching
mathematics is effective in improving mathematics
achievement.

Post hoc Analyses

Our findings are based upon significance testing,
which has recently been scrutinized because the
rescarcher controls the sample size, level of
significance, and power of the tests (e.g., Huberty,
1987; Robinson & Levin, 1997; Thompson, 1988,
19893, 1989b, 1993; 1997). It has been recommended
instead that effect sizes, confidence intervals, ad
bootstrap estimates be provided to better indicate the
practical and meaningful interpretation of results (Kirk,
1996). Therefore, the mean differences between the
groups, their respective effect sizes, and bootstrap
estimates were computed and presented in Table 2.

Because mean differenceswere of primary interest,
effect sizeswere computed using a program by Mullen
and Rosenthal (1985) in order to compare the results of
both studies. The standard metric used for calculating
the effect sizes was the dandard deviation of the
control group (Glass, McGaw, & Smith, 1981; Wolf,
1986). Interpretation of the effect size was based on
the amount of dandard deviation units the
experimental group scored above the control group. It
should be noted that in both studies, the control group
standard deviation was previously determined to be sig-
nificantly larger than the experimental group.
Therefore, the mean differences reported provide
conservative estimates of effect sizes.

Table 2 indicates that the Academy experimental
group scored .83 standard deviation units above their

Multiple Linear Regression Viewpoints, 2000, Vol. 26(1)

Problem Solving

Table 1. Means and Standard Deviations of
Experimental and Control Groups

Study n Mean SD
1. Academy

Control 43 43.14 16.76
Experimental 35 57.00 8.33
2. High School

Control 25 45.60 17.69
Experimental 27 57.78 9.54

respective control group, and the high school
experimental group scored .69 standard deviation units
above their respective control group. The gain
associated with these effect sizes can be obtained by
referring to a table of areas under the normal curve.
Looking in atable of the areas under the normal curve,
a .83 effect size corresponds to .30 of the area above
the mean (above the 50th percentile). Thus, an effect
size of .83 implies that if an average student in the
control group were to receive instruction on problem
solving strategies, they would now score at the 80th
percentile of the control group. Similarly, the .69
effect size for the high school students corresponds to
.25 of the area above the mean, and thus an effect size
of .69 impliesthat if an average student in that control
group were to receive instruction on problem solving
strategies, they would now score at the 75th percentile
of that group.

Bootstrap estimates and confidence intervals ae
also reported in Table 2 to further examine the
stability of these findings. The bootstrap estimate
(6*), the standard error of the bootstrap estimate,
SE(B *g), bias or the sampling error (6%, - 0), where
0 represents the contrast mean difference, and the 95%
confidenceinterval [0 + 1.965E(0* )] for each contrast
were computed using programs by Lunneborg (1987).
The bootstrap estimates were based upon 1,000
resampling trials.

Bias or sampling eror is determined when
bootstrap estimates are compared to the actual mean
differences. The bias or difference between the
bootstrap estimator and the sample mean differences
were .20 = (14.06 - 13.86) and .10 = (12.28 - 12.18),
respectively, which indicates that the magnitude of
difference reflected in the means are reasonably stable
estimates of the mean differences observed in the two
studies (Mooney & Duval, 1993).

The 95% confidence intervals reflect the range of
variation one could expect in the mean differences if
conducting 1,000 replicated studies (the number of
bootstrap resampling trials). The range of values for
the lower and upper confidence interval estimates in
both studies were similar. In the first study, the
confidence intervals indicate that the mean difference
between the two groups could vary between 8.12 and
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Table 2. Contrasts, Effect Sizes, and Bootstrap Estimates for Experimenta vs. Control Groups

Study Effect Size? Bootstrap Estimates’
Contrast
Mean
(1) Academy Difference A | Estimator (0%;)  SE(0*;)  Bias 95% ClI
Experimental
vs. Control 13.86 0.83 14.06 2.93 0.20 (8.12, 19.60)
(2) High School
Experimental
vs. Control 12.18 0.69 12.28 3.50 0.10 (5.32, 19.04)

Note. a The effect sizes (A) are based upon the mean difference divided by the standard deviation of the control group.
(see Glass et al., 1981 for rationale on choice of metric).

b Based on 1,000 bootstrap resampling trials.

19.60. In the second study, the confidence intervals
indicate that the mean difference could vary between
5.32 and 19.04.

Overdl, the satistically significant mean
differences, the small bootstrap estimator differences,
and the 95% confidence interval values from both
studies indicate strong evidence that the students in the
experimental groups who were taught problem solving
strategies performed better than those students in the
control groups on the mathematics test.

Discussion

In two separate studies, students in the
experimental group who were provided standardized
instruction on problem solving strategies scored on
average higher than students in a control group on a
mathematics problem solving test. The first study
involved 10" grade high school students who were
consdered above average or gifted and talented, ad
who had been sdlected to begin an early college
entrance program rather than return to high school for
their junior year. These students possessed high
academic achievement levels and metacognitive skills,
yet the experimental group of students still benefited
from learning problem solving strategies. The second
study involved 10" grade high school students who
would be returning to complete high school.
Although these students were in a different academic
setting, those in the experimental group also benefited
from learning problem solving strategies.  The
“lecture-type” presentation of problem solving
strategies was practica and effective in getting the
students to think about how to solve various
mathematics problems and improved their mathematics
test scores. The effect sizes, confidence intervals, ad
bootstrap estimates presented from both studies
strengthen the ability to generalize the findings from
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these two studies to other 10™ grade high school age
students taking Algebra| classes.

Our findings suggest that teachers should be
trained to explicitly emphasize problem solving
strategies in teaching mathematics. Previous research
by Biehler & Snowman (1990) and Ormrod (1990) was
supported. Hiebert et al. (1996) supports the idea of a
teacher using engaging problems and facilitating a
students “reflective inquiry” so that they can discover
methods to solve a problem (also see, Hiebert et al.
1997, Prawat, 1997, and Smith, 1997 for further
discussion). Other research has suggested that a
teacher should use a variety of examples and verbaize
their methods to increase students’ ability to learn and
to solve problems. Hattie, Biggs, and Purdie (1996)
also provide additional research support in their review
of the effects of interventions on student learning.
They broadly classified instructional interventions as
cognitive, metacognitive, and affective in nature. The
approach taken in this study could be characterized as a
cognitive intervention because specific tactics were
taught, which were grouped and purposefully used as
strategies (Derry & Murphy, 1986; Snowman, 1984).
Our findings should encourage teachers to address the
need for using problem solving strategies during
instruction (i.e., modd and verbalize strategies for
problem solving to their students). Given the
previous research literature cited and our findings, we
recommend that teachers practice giving engaging
problems to students to solve, facilitate discovery of
problem solving strategies and methods, use varied
problem examples, and verbalize their methods and
strategies, as well as, those of other students. We
highly recommend that university teacher preparation
programs instruct student mathematics educators in
these approaches in their curriculum and instruction
course work.

Multiple Linear Regression Viewpoints, 2000, Vol. 26(1)
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APPENDIX

Math Problem and Problem Solving Strategy

Mathematics Problem One

Problem Solving

Assume that you have just purchased alot on which you plan to build ahome. Y ou must tell the
lender the area of your lot. Unfortunately, your lot isin the shape of a parallelogram. How do you

determine the area of your paralelogram shaped lot?

1. What isthe problem?

2. What do | need to know?

3. What steps can | taketo solveit?

4. What other methods could be used?

5. What isthe area of your lot?

Problem Solving Strategy:

1. Convert the paralelogram into arectangle.

2. Usetheformulafor determining the area of arectangle:
(Area= Length x Width).

Method and Solution:

1. Drop aline perpendicular to side(length).

2. Move newly formed right triangle area to opposite side

to form arectangle.

3. Useformulafor determining area of arectangle:

(Area= Length x Width)

10
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Huynh

Extraneous Variables and the Interpretation
of Regression Coefficients

Cam-Loi Huynh, University of Manitoba

This paper addresses some difficulties concerning the interpretation of the regression coefficients in simple ad
multiple regression models. The root of the problem liesin the fact that the fitted multiple regression equation is the
result of transforming raw data of the independent variables into residualized scores. In the standard interpretation of
the partial regression coefficients, effects of the residual term have not been explicitly differentiated from those of the
regressors. Alternative interpretations of the regression coefficients are proposed. The recognition of residua and
residualized effects plays an important role in the evaluation of the obtained values of the regression coefficients, R?,
the overall F tests and the construct validity of the multiple regression model.

modd, namdy, the dependent variable (Y), a

least one regressor or indegpendent varidble (X,
j =1, ..., m) andthe unknown error term (g) estimated
by the resicud scores (e = Y - Y) which in tumn
represent the extraneous variables, where Y is the
predcted vdue of Y. Typicdly, the regression slope
coefficient in the simple regression modd Y = a + bX
is defined as, "the amount of the dfference in Y
associaed with a oneunit dfference in X" (Howdl,
1997, p. 242), or "The slope of the line equds the
gan in Y associaed with each 1-unit gan in X"
(Dalington, 1990, p.10). On the other hand, each of
the slope codfficients in the multiple regression mocd
Y =a+bX+...+bX,is cdled a patid regression
coefficient “to make dear tha it is the weght to be
goplied to an indegpendent variable (IV) when one or
more specified IVs are dso in the equation” (Cohen &
Cohen, 1983, p. 83). The codfficient b, ] =1, 2,...,
m, is defined as, "the change in the dependent variable
per unit change in the j" indgpendent vaiable,
assuming dl other independent vaiables ae hdd
constant” (Rawlings, 1988, p. 67). Similar dfinitions
are found in severd textbooks on regression andysis.
It will be argued in this paper that the above def-
initions of b and b, should be used with great care to
avoid misleadng interpretation on the effects of X; in
predcting Y for deta andysis. First, some possible
implications of "holdng dl regressors but one con-
stant” in the multiple regression modd are explored
Next, in an atempt to understand the meanings of
regression codfficients, severd ways to obtain ther
estimaes areinvestigated It will be demonstrated that
the indgpendnt vaiables can be opeaiondly
transformed into the residudized terms in the process
of computing the partid regression coefficients. This
leeds to the redization that a regression andysis
transforms the obta ned deta into another deta set caled
the residudized scores while reproducing the same
vadues for the patid regression coeffidents. As a
result, a simple way to deermine the residudized
soores in multiple regression modds is deve oped

T here are three types of vaiables in a regression
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Before proceadng, however, an explanation of the
terms "residud scores’ and "residudized scores' is in
order. The residud term (€) represents the dfference

between Y and Y as aresult of regressing Y aganst
one or more independent variables (X's); denoted as
e/ 1, &, Or e, , for regression modds involving one
or two regressors (where the first subscript represents
the dependent variable and the subseguent subscripts,
the independent variables). A residudized vaidble is
formed when the residud term (€) is used ether as a
regressor (E) or as a dependent vaiables yiddng
predicted vaues (®y; and ®y ;). The residud scores (€)
cgpture the portion of vaidbility in Y, cdled the
"uncontrolled" extraneous effect of the modd, tha is
not accounted for by dl indgpendent vaiables (X's).
On the other hand, the residudized scores of X, say E
(forany j =1, ..., m), represent the residud term when
X; is regressed on dl other independent variables.
Thus, when Y is regressed on the jth residudized
vaiable the resulting regression coefficient represents
only the effet of X; since the effects of other
indgpendent variables in the origind multiple
regression modd have been "partidled out."

Winne (1969) has studed the problems of
construct vaidty in using multiple regression modds.
He indcated that regressors in such modds do not
represent the constructs described by the origind deta
since the partid regression coefficients are computed
for the residudized scores instead However, he dd not
dscuss how these residudized scores can be interpreted
and andyzed Rather, Winne (1969) recommended tha,
"anchor variables not of drect interest in a research
study be messured and corrdated with residudized
vaiables. This supplementary andysis sheds light on
changes to construct vaidty tha must be known
before interpreting multiple regression andyses' (p.
187). On the contrary, it is suggestedin this paper that
the effects of regressors in multiple regression modd's
are interpreted as those of residudized scores, in the
same way as one would interpret partid corrdation
coefficients. Then, the simple regression eguations of
Y on the residudized variables (cdled the "residudized
regression equaions') are studed to shed light on the
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interpretation of the patid regression coefficients in
the conventiond multiple regression eguetion.
Moreover, the coefficient of determination associaed
with the multiple regression modd is explaned in
terms of the semi-partid coefficients of determination
obtained from the above residudized regression
equations. Findly, the residud plots of the multiple
regression modd and those of the residudized
regression equetions (cdled the patid regression
residud plots) ae examined for modd dagnostics.
These steps are recommended not only for identifying
the effects of "controlled' extraneous varidbles
associaed with the patid regression coefficients and
recapture the same R? but dso for obtaning test
statistics (t for the slopes and overdl F for the fit) that
teke into account the influence of the residud and
residudized variables. For the sake of illustration, dl
numericd anayses are based on the data set in Figure
1, Pand A. In the multiple regression under
consideretion, Test Score (Y) is regressed on
Cumulative GPA (X,) and Study Hour (X,).

Limitations of the
Conventional Interpretations
Wha Happens to Patid Regression Coefficients If
Only Vaues of One Regressor Are Changed?

The man dfference in the definitions of simple
and patid regression coefficients given aove lies in
the requirement that dl but one regressors in the
multiple regression modd are "hed constant.” It is
true tha if vaues of the jth regressor X;; in the
multiple regression eguétion for the ith subject (i = 1,
2, ..., n) is changed by a constant wherees the observed
vaues of remaning regressors ae intact then the
predicted vdue Y, for this particular subject is
modfied by an amount of b,. However, if vaues of X;
in the above example are modfied by a fixed constant
for dl subjects then in the resulting regression
equation, only the intercept term (8 will change (i.e,
vauesof Y, anddl slopesb,, ..., b, reman the same
fori =1, ..., n). Although only vaues of a single
regressor have been modfied, one no longer has the
same regression modd  since the intercept term has
changed The following example serves to illustrae
this point.

Based on the data set in Figure 1, Pand A, three
regression modds are considered, the first with the
origind vdues for Y, X, and X, and the remaning
two, with thelinearly transformed values of X; = X, +
5 and X, = X, + 3. As expected the resulting
regression equations have the same slopes but dfferent
intercepts:

Modd 1a Y =a + bX, + b,X,

=43.651 + 7.301X, + 2.839X,, R =.4105,
Modd 2: ¥ =&, + bX; + b,X,

= 7.145+ 7.301X, + 2.839X,, R* =.4105,
Modd 3: ¥ =a, + bX5 + bX,

=-1.373 + 7.301X, + 2.839X,, R* = .4105.

Multiple Linear Regression Viewpoints, 2000, Vol. 26(1)

Regression Coefficients

Figure 1. Data and Test Statistics for
Regression Models 1aand 1b

Panel A: Data Example

ID Y Xy X,
1 735 35 2.4
2 69.0 2.8 25
3 85.5 3.0 55
4 82.0 3.7 3.1
5 90.0 3.9 5.2
6 84.0 3.1 55
7 86.5 3.3 7.1
8 74.5 2.9 3.6
9 71.5 3.1 55
10 75.5 3.6 4.4
11 80.0 4.0 5.1
12 91.8 35 4.2
13 86.5 3.3 7.2
Mean 81.76 3.36 1.50
SD 7.96 0.36 1.50
r,=.3%4 r,=.34 r,,=.34

Panel B: Common Statistics for
Models 1a and 1b

t

Y SE (p<t)
Clintercept | 17.941 2.433
(.0322)

X, 5.082 1.437
(.1786)

X, 1232 2.305
(.0416)

Panel C: Goodness-of-Fit Statistics
for Models 1a and 1b

SSR MSR F

Model (SST) R2  (MSE) (p<F)
1a 33815 041 167.08  3.78

(823.77) (44.15)  (.0547)

1b 9393373 099 31311.24 709.20

(94419.35) (44.15)  (.0001)

Note. IV = Independent variable, SE = Standard error of
the regression coefficient estimae, SSR = Regression
sum of squares, SST = Totd sum of sguares, MSR =
Regression mean sguares, M SE = Error mean square.

(Note that & =& - 5b, and a, = @ - 5b; - 3b,.) For
example, given X, = 3.50 and X, = 2.40 for the first
subject then ¥ = 76.02 and e = 2.52 in the three
modds. Typicdly, the same interpretation gpplies to
the partid regression coefficients in these modds, say,
"If X, is heddconstant, then each 1-unit increase in X,

leads to an average incresse in Y of 7.301 units.”
However, if the units of measurement for any
independent variable has been changed, not only a new
regression modd with a dfferent intercept term is
needed but dso the statisticd significance of the
intercept term may dso be dtered (In the three modds
above, t(a) =2.433, p < .03, t(a) = 0.167, p > .870
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andt(a) =-0.032, p > .975, respectively). Apparently,
the standerd interpretation is focussed on the case in
which one wants to compute a predcted vaue Y,
given a cetain vaue of X;;, i =1, 2, ..., n, for eech
subject, one & a time However, the intercept term
should be considered when the scdes of measurement
have been changed for severd, if not dl, subjects.
Hence, the above statement could be modfied as, “For
each observation i, if X,; is hdd constant, then a 1-
unit increese in X,; leads to an incresse in Y ; of
7.301 units. On the other hand, if dl vdues of X, ae
changed by the same constant ¢, then a 1-unit increase
in Xy; leads to an average incresse in ¥, of (43.651 -
7.301c) units.”

The Same Vdues of Patid Regression Coefficients
May Not Yiedthe Same Regression Modds

The adove three regression modds have dfferent
vaues for the intercept teem but otherwise identicd
with respect to the test statistics of t for regression
coefficients as well as overdl F and R? for goodhess of
fit (as reported for Modd 1la in Figure 1, Pand C).
The regression coefficdents in Modd la can be
reproduced by regressing Y on C, X, and X, where C
is adummy variable of constant vdues, say C =1,

Modd 1b: Y =aC + b,X; + bX,

=43.651C + 7.301X,; + 2.839X,, R? =.995.

Although thet tests for the regression coefficients
in Modds laand 1b are identicd (Figure 1, Pand B),
they ae substantidly dfferent with respect to
goodhess-of-fit statistics (Figure 1, Pand C). Modd
la yidds poor fit with smal R® and margindly
significant overdl F. In Modd 1a R? represents the
ratio of sum of sguares of regression (SSR) over the
corrected tota sum of square (SST,). Since Modd 1b
has no intercept term, R? has been reddfined by using
the uncorrected tota sum of square (SST,). As a result,
both its R? and F have increased remarkably! It can be
explaned tha this phenomenon occurs when
extraneous effects indgpendent of the predctors have
been accounted for in the regression modd. Hence the
significance test of the falure to control for the impact
of extraneous variables under the null hypothesis can
be conducted by means of the following F test with
degrees of freedom (g, df,):

_ R¥(Moddl.1b) - R*(Model.1a) - df,

F 2
1- R%(Modél.1b) q

1,

where f, =theresidua degree of freedom in Modd 1b
and q = (the dfference in number of regressors in
Modds 1b and 18 = 1 (Dalington, 1990, pp. 124-
125; Cohen and Cohen, 1983, pp. 145-151). For the
dtaa hand, F = (.9610 - .2652)(11) = 7.653, p <
.00001.
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Different Ways to Obtain Values
of the Regression Coefficients

In an dtempt to enhance the understandng, and
thus improving the interpretations, of simple and
patiad regression coefficients, it is necessay to
investigate severd ways to obtain the same vaues of
these coefficients for a given data set. Some of the
steps presented below have been dscussed dsewhere
(Drgper and Smith, pp. 196-201) but for a dfferent
objective, namdy, the confirmaion of the lesst-
squares results by vaious methods rether than the
dfferencein ther interpretations.

As presented in Table 1, thirteen regression
mode's can be computed on the basis of two predictors
X, and X, (in Figure 1, Pand A). The three modds g,
h and k ae the pivot modds against which dl
remaning modds will be compared For identification
purposes, the subscripts "g", "h" and "k" are atached
to the regression coefficients when necessay. The
predcted vaues ¥ and X;, j =1, 2, in steps h, k, 4
and 5 are used as dependent variables (Yy,, Yy,) or
regressors ( X,, and X,) in steps 6 and 7, respectively.
For the remaning modds (steps 8 to 13), ether the
residud scores (obtained in steps h and k) or Y ae
regressed on the residudized scores (E; obtaned in
steps 4 and 5) and X;. The intercept terms are present
in dl regression modds with raw data, except in steps
8 and 9 where only the residud and residuaized scores
areinvolved

The regression modds in Table 1 were computed
using both rav and standardzed deta with identica
vaiables. All the regression modds with standerd zed
scores must be fitted without the intercept terms (The
computed vaues of the intercegpt terms would be zero
had they been included). The results in Table 2
illustrate tha it is the vaiable type, not the daa
metric, which determines the d ements constituting the
"extraneous variables."

Approach 1 (Based on Raw Data)

The simple regression coefficients for X; and X,
ae 7.775 (step h) and 2.911 (step k), respectivdy.
Ther patid counterpats ae by ,, by, = 7.301 and
By 21 by =2.839 (step g).

Approach 2 (Based on Standard zed Scores)

For simple regression modds (in steps h and k),
the simple, or zero-order, corrdations of Y and X; are
used insteed of by (i.e, ry; 1, =.3545and 1y, 1, =
.5476). For multiple regression modds, each ry;
denotes the patid corrdaion of Y and X, or the
corrdaion of Y and X;, given that X, has dready
entered the modd (ry;, gy = .3329, and ry,; Iy =
.5341 in step g).
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Table 1. Regression Modd's for Comparing
Regression/Corrd ation Coefficients and R®.

Step Regression Modd s

Y isregressed on X, and X,
Y isregressedon X, (yiddng Yy, ande, )
Y is regressed on X, (yiddng Yy, ande, ,)
X, is regressed on X, (yiddng X, and E,)
X, is regressed on X, (yiddng X, andE,)
¥ (from step h) is regressed on X,

(from step 4)
7| Yy (from step k) is regressed on X,
(from step 5)
8 | ey, (from step h) is regressed on E,
(from step 4) (without the intercept term)
9 |ey, (from step k) is regressed on E,
(from step 5) (without the intercept term)
10 |Y isregressed on E, (from step 4)
11 |Y isregressed on E, (from step 5)
12 |Y isregressed on X, and E; (from step 4)
Y is regressed on X, and E, (from step 5)

o 01~ X TSQ

13

Approach 3 (Based on Pred cted and
Residudized Scores)

The same vdues of the slopecorrdation
coefficients in the simple and multiple regression
modds can adso be obtaned by fitting regression
modds on the basis of predcted (Y) and resicudized
soores. In step 6, by regressing Y., obtainedin step h
on X, in step 4, the simple regression/corrdaion
coefficients in step h ae recovered Similaly, the
results in step k are reproduced in step 7 by regressing
Y., (step k) on X, (step 5). The two partid
regression/corrdation coeffidents in step g ae
reclamed by fitting two simple regression modds in
terms of residuaized scores (&y; and E)) in steps 8 and
9, respectivey.

Identifying the Extraneous Variables in
the Multiple Regression Model
What Are the Residuaized Scores for X;?

A much simple procedure to obtan the
residudized scores for any regressor and show tha its
effect can be messured by the correspondng patid
regression coefficient is described bel ow.

Step (i). Fit X; on the remaining regressors.

X, =a+bX; + ... + b X5+ buX.,
For Modd 1a this is redized by obtaning the
regression equations in steps 4 (for X,) and 5 (for X,)

in Table 2.
Step (ii). Obtain the residuaized scores for X;:

E=X- X forj=12 .., m.
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Thus, in the example, the residud terms obtained
by fitting the regression equations in steps 4 and 5
(Table 2) yidd the residudized scores for X, and X,
respectively.

Step (iii). Reproduce the patid regression
coefficient for X;, by fitting the regression equaions in
steps 8 and 9 (or steps 10 and 11, Table 2).
Alternatively, they can be computed as:

b, = Cov(Y, E)/S*E) = r(Y,EXS(Y)/S(E)},

where E; = the jth residudized varidble, Cov(Y, E) =
covaiance of Y and E;, S*(E;) = sample variance of E,
S(Y) = sample standard deviaion of Y, and r(Y,E) =
the zero-order correlation of Y and E. For the example,
S(Y) =7.9603, S(E,) = .3626, S(E,) = 1.496, r(Y,E,)
= .3325 and r(Y,E,) = .5337. Therefore, the patid
regression coefficients for X, and X, are:

b, = r(Y,E){S(Y)/S(E)} = (.33)(7.96)/.36 = 7.30,
and b, = r(Y,E)/{S(Y)/S(E,)}=(.53)(7.96)/1.49 = 2.84,
respectively.

Understand ng the Simple Regression
Corrdaion Coefficient

So fa, the regression and corrdaion coefficients
in asimple regression modd play the same roles. The
same vdues of simple regression/corrdetion
coefficients are reproduced in steps h and 6 (Table 2)
because the predcted vaues of Y and Y., in these
equaions are determined by X, independently of X,.
Andogously, the regression/corrdaion coefficients in
steps k and 7 are identicd since the rdevant predcted
vaues of ¥ and Y, are determined by X, and free of
X;. Since the dfferent vdues of regression and
corrdaion coefficients are simply due to data metrics,
their meanings should be interpreted similaly. The
simple corrdaion coefficient has been defined as "a
messure of the degree of doseness of the linear
rdeionship between two variables' (Snedecor and
Cochran, 1967, p. 173). This staement remans
meaningful in the context of simple regression modds
with ethe raw or standardized scores. A linesr
rdaionship is one in which the vaiaion in Y,
produced by a specified change in X, is constant. The
“linear rdaionship” between X and Y in the simple
regression modd with the intercept has two
components, constant (determined by the intercept) and
linearly changesble (accounted for by the slope).
Therefore, the slope regression coefficient in a simple
regression modd can be intepreted as, "In rawv dita
metric, the slope b represents the rdaive weght of X

to account for the linear variability in Y that is free
of the unknown extraneous effects represented by the
resicud e=Y -Y .

In other words, bX represents the linear trend of,

or portion of the linear variation in, the vaues of Y
tha is not atributed to unknown extraneous effects.
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Table 2. Results and Test Statistics for the Regression Models in Table 1.

Regression Model Regression Model SSR F

Step (Raw Data) (Standardized) (SST) R2 | MSR MSE (p<F)
g ¥ =g+ byX, + byX, ¥ =1 X, + 1%, 33815 .4105[169.07 44.15 3.83
=43.652 + 7.301X, +2.839X, | =.3329X, + .5341X, | (823.77) (.05)

h ¥ =a +bX, ¢ =rx,=.3545%, | 10350 .1256|103.50 60.06 1.72
= 55.606 + 7.775X, (823.77) (:00)

k ¥ =a+bX, ¥ =rX,=.5476X, | 247.03 .2999(247.03 4806 5.14
= 67.874 + 2.911X, (823.77) (.09

4 X, =a + by,X, X, =1, X, 0 0016 O 014 0.02
=3.317 + .010X, =.0404X, (1.71) (-89)

5 X.=a +b, X . =r. X 005 .0016| 004 242 002
4210 + 160X, = |0404X, (29.15) (:89)

6 Yyi=a+b X, Yyi=tosa 017 .0016| 017 861 0.02
= 55.606 + 7.775 X, =.3545 X, (103.50) (:89)

7 Yvo=a+bX, Vvo=tiso 040 .0016| 040 2055 0.02
= 67.874 + 2.911 X, = 5476 X, (247.03) (:89)

8 21 =byE By =g 234.65 .1580(234.65 37.36 6.28
=7.301E, = .3329E, (720.27) (.03)

9 By, = by, By, =I5 91.12 .3258| 91.12 37.36 2.44
=2.839E, = .5341E, (576.74) (.14)

10 ¥ =Y +byE ¥ =rE 91.12 .1106| 91.12 61.05 1.49
=81.764 + 7.301E, = .3329E, (823.77) (-29)

11 ¥ =Y +b,E ¥ =1,E, 234.65 .2840(234.65 49.09 4.78
=81.764 + 2.839E, = .5341E, (823.77) (:05)

12 ¥ =g+ bX, + byE, Y =0X, + 1, 33815 .4105|169.07 44.15 3.83
=67.874 + 2.911X, + 7.301E, | =.5476X,+ .3329E, | (823.77) (:05)

¥ =g+ bX, + bF, Y =0X, + 6, 33815 .4105|169.07 44.15 3.83

13 | =55.606 + 7.775X, + 2.839E, | =.3545X, + .5341E, | (823.77) (.05)

Note. For variables with double subscripts, the first subscript refers to the dependent variable and the second

subscript denotes the regressor.

Moreover, a+ bX constitutes the vaue of ¥ with the
maximum vaue of R? if it can be assumed that the
influence of the unknown extraneous effects is equdly
dstributed to dl membes of the sample This
assumption can be checked by running the regression
modd without the intercept that contans X and a
dummy vaiable C of fixed vadues. As a result, the
same vdue for b in the origind simple regression
equation is reproduced in the multiple regression modd
without the intercept. For the regression modds in
steps h and k, by letting C = 1 for dl subjects, say,
we get

Y =3, + bX, =55.606C + 7.775X,,

R? =.9954, (revisedstep h)
Y =3C + bX, = 67.874C + 2.911X,,
R? =.9939, (revised step k)

The vaues of R? have been increased dramatically
(as compared to those reported for steps h and k in
Table 2) to reflect the fact that extraneous effects have
been (atificidly or stetisticdly) controlled
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Understand ng the Partid Regression

Corrdation Coefficient

The residud term in step h is regressed on the
residud term in step 4 to produce the residudized
scores By, in step 8, representing the portion of
vaidion in Y that is free of X,. Andogously, the
residua terms in steps k and 5 are used to yidd the
residualized scores &y, in step 9 representing the part
of vaiaion in Y tha is not influenced by X,.
Therefore, by, (in steps g and 8) denotes the rdaive
weight of X, in the raw data metric (or ry, the simple
corrdaion between Y and X, in terms of standerd zed
scores) that is free of X,. Andogously, b, (in steps g
and 9) signifies the rdative weight of X, in raw dita
metric (or r,,, the simple corrd aion between Y and X,
based on standard zed scores) that is free of X,. Since
the patid regression coefficents in step g can be
reclamed as two simple regression codfficients in
steps 8 and 9, the simple and partid regression
coefficients should be logicaly defined and explained
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similaly. This is the goproach adopted in the
following dscussion.

The patid corrdaion codficient, say r,,5 IS
commonly defined as, "the corrdaion between
vaiables 1 and 2 in a cross section in indviduds dl
having the same vadue of vaiable 3" (Snedecor and
Cochran, 1967, p. 400). In the regression context, the
patid corrdaion ry, 5 say, represents the
portion of the corrdation of Y and X, which has no
Oependence on vaues of the variables X, ..., X, and
extraneous effects. In the same vein of Iogic, the
patid regression coefficients for X; in a multiple
regression modd can be intepreted as, "In raw data
metric, the slope by represents the relaive weight of X;

to account for the linear vaiability in Y tha is free
of the effects due to other regressors in the modd and
the unknown extraneous effects."

The effects due to other regressors are estimated by
the residualized scores &, ; (steps 8 and 9) wheress the
unknown extraneous effects ae estimaed by the
residud Y - Y (step g). The meming of this
interpretation is further explained by the two multiple
regression equaions in steps 12 and 13. The patid
regression coefficient b, in step 12 represents the
simple regression coefficient (or reaive weight) of X,
wheress b,,, the patid regression coefficient in step g,
is actudly transformed into an extraneous effect, being
the slope of a residudized vaiable (E;). A similar
interpretation gpplies to b, and b,, in step 13. The
transformation of regressors into residud and
residudized variables in the multiple regression modds
is not expected to influence the test statistics. Indeed,
as shown in Table 2, R? the sum of squares, mean
squares, and F of the three modds g, 12 and 13 ae
identicd.

As shown above, had the extraneous effects been
"controlled' by a dummy vaiable say C = 1, the
regression modd in step g can be reproduced but with
amuch greater vaue of R?,

Implications of Taking Extraneous
Variables into Consideration

There are a lesst three pertinent outcomes rendered
by the recognition of extraneous effects in the
regression modd: (i) an undastandng of the
limitations in the construct vdidty of multiple
regression modds, (ii) a proper decomposition for the
coefficient of degerminaion (R?», and (iii) an
improvement in the evduetion of estimates of the
regression/corrdation coefficents and the overd!l F
tests.

Construct Vdidty in Multiple Regression Andysis
The extent to which the regressors can be used to
meaningfully explain and accuratdy predct vaues of
the dependent variable represents the construct vaidty
of the regression modd. The andysis so far indcaes
that, dthough the regressors (X, ..., X, ae used in
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the multiple regressions, the regression slopes and R?
messure the contributions of the residudized scores
(E;, ..., E,) or a mixture between regressors and
residudized scores unless X, ..., X,, ae uncorrd aed
Hence the construct vdidty in multiple regression
andysis may be low. The following illustration is
adepted from Winne (1989), given the results in Table
2. From the three basic regression modds (in steps g,
h and k), how do the rdaionships among Y, X; and
X, be explaned? One may be tempted to arive a the
following conclusions:

(i) If the entry order was X; and X, then X;
accounted for 12.56% of the variability in Y and X,
accounted for an addtiona 28.49% of the varigbility in
Y (since R? = .4105 in step g, R? = .1256 in step h
and .4105 - .1256 = .2849). On the other hand, if the
entry ordxr was X, and X; then X, accounted for
29.99% of the variability in Y and X, accounted for
the remaining 11.06% of the variancein Y.

(i) When dl vaidles ae transformed to
standardzed scores, an increment of one standad
deviaion in X, is associaed with a 33.29% incresse in
Y. Similaly, an increment of one standard deviation in
X, yidds anincreasein Y by 53.41 percent.

Although intuitivdy meaningful, both of these
statements are wrong with respect to the revised
interpretations of  patid  regression/corrdetion
coefficients! In thefirst statement (i), for the (X;, X,)-
entry order, X, dd not account for the addtiond
28.49% of the vaiability in Y but the residudized
scores E, dd The statement is correct if X, is replaced
by E,. This can be seen by following the series of
equaions in steps h, 11 and 13 (dther raw deta or
standard zed scores). The last modd (step 13) contains
the same vaues for the slopes and the sum of R”s
reported for the combinaion of modds h and 11.
Similar aguments apply to the (X,, X,)-entry order in
the second part of statement (i) above based on the
results for steps k, 10 and 12. Statement (ii) is wrong
since X, and X, are corrd ated. The statement is correct
by ether of the following modficaions. First, the
percentages are changed to 35.45% and 54.76% for X,
and X,, respectivey (see steps h and k). The pairs
(33.29%, 53.41%) and (35.45%, 54.76%) ae quite
cose to each other since the corrdation between X,
and X, is quite smdl (r;, = .04). Greaier dfference is
expected for larger ry,. Altenaivdy, X; and X, ae
replaced by E; and E,, respectivdy (see steps 10 and
11).

The mistakes made in staements (i) and (ii)
presage a serious eror tha mateidizes when one
atempts to assess the statistica significance of the
slopes and determine the proportiond contributions of
the regressors to variaionsin Y in multiple regression
models. For these purposes, the results of Table 2
should be obtained and examined in conducting the
stetisticd evduation of the standard multiple
regression modd. In paticular, the regression modds
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in steps 10 and 11 in terms of residudized scores
should be used for studying the statistica inference of
the patid regression/corrdation coefficents. We
return to this point laer. Meanwhile, the following
dscussion saves to illustrae how to andyze the
multiple regression modd teking into consideraion
the effects of residudized scores and extraneous factors.

Decomposition of the Coefficient of Determination

The decomposition of R? for the multiple
regression modd is given by Engdhart (1936) as, say
form=3,

R? = Bv,lz + Bv,zz + Bv,sz + 2B,1By 1

+ 2B 1By als + 2By 2Byl @
where _,; = the standadzed patid regression

coeffident of X; and r, , = the zero-order correlaion of
X; and X,. From this eguation, it was argued that the
tota vaiancein Y is reproduced by the drect variance
(indcated by the betas squared) and shared variance
(denoted by twice the sum of the corrdaiond cross
products) of the regressors. Engdhat (1936) argued
that the shared variance is dvided among each of the
regressors in the same proportions as the drect
variance. Chase (1960) modfied this equation to be

R? = (B,+* + BBtz + BraBraris)
+ (B2" + BrabBy iz + BeoBrsrzs)
+ (Bs + ByaBraria t Brobyara)- @

so that “the totd drect and shared variance in the
ariterion assodiated with the i indgpendent variable is
given by the square of the betafor thei™ variable, plus
haf of dl the covariance terms in formula (1) which
indude the beta for the i" varidbleg® (p. 266). The
decomposition of R? for step g in Table 2 yidds:

Direct effect of X;: B,,* = (.3329)* =.11082,
Direct effect of X,: B, ,° = (.5341)* = .28526,
Shared effect of X, and X,

[B¢ 1By ot1 2= (:3329)(.5341)(.04044) = .00719],
Totd effect of X,: .11082 + .00719 =.11802,
Totd effect of X,: .28526 + .00719 = .29245,
The multiple coefficient of determination:

R? =.11802 + .29245 = .41047.

Although this decomposition reproduces the
multiple coefficient of determination (R?), it is not
useful in determining the contribution of the
residudized vaidbles since the coeffidents of
determination in steps 10 and 11 (Table 2) are not
equd to the totd effects of X; and X,, assumed in (2)
as the ocomponents of R% Moreover, the
decomposition (2) "has none of the most important
properties that a "contribution to vaiance' has when
variables are uncorrdated’ (Darlington, 1968, p. 170).
A more gppropriae patition of R? is based on the
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semi-patid coefficients of determinaion. The generd
form of the semi-patid coefficient of determination
for the ™ resicudized varieble (R .) isR?,; » = R* -
r’y;, forj #j* =1, ..., m, where R* = the (multiple)
coefficient of determination of the full modd and ry; =
the zero-order corration of Y and X;. The semi-partid
coefficients of daerminaion for X; and X, in the
example ae R%, ,, = R? - r3,; = .4105 - (.3545)* =
2849, and R%,,, = R® - 1%, = .4105 - (.5476)" =
.1106, respectively. As a result, the coefficient of
determination in the multiple regression modd can be
expressed as R? = {R?% 1, + R% 5, + Py + Py ;}/2.

Effects of Extraneous Variables on Statisticd Inference

In andyzing the goodness of fit of the multiple
regression modd, the researcher would get a dearer
understandng of the role played by patid regression
coefficients by fitting the conventionad (step g) and
residudized versions (steps 10 and 11). The modd in
step g has the advantage tha the regressors ae
expressed in tems of the origind unit of
messurement. Hence, with a reasonable R?, it can be
used for predcting Y. However, in assessing the
contributions of the regressors to vaiaions in Y, the
regression coefficients of the residudized scores in
steps 10 and 11 are more meaningful and should be
used

For the multiple regression modd in step g, the
slope of X, is sttisticdly significant a a = .05 [t(b,)
= 2.305, p < .05] whereas that of X; is not [t(b,) =
1.437, p > .18]. However, the significance of X, may
be misleading in light of the overd| F statistic (p >
.05, Table 2). On the othe hand, the regression
modds of Y using the residudized variables in steps
10 and 11 fadilitate the evduaion of the statisticd
inference on the regressors in the multiple regression
mode (step g). Evidently, both E; and E, ae not
staisticdly significant (p > .25 and .05, respectivey
in Table 2). Whereas the multi-dmensiond graph of Y
aganst X's tha dso contains the regression line for
the multiple modd in step g is had to daw, the
regression lines of the residudized varidbles can be
essily depicted since the simple modds 10 and 11
involve only single regressors (E, or E,) and their
intercept term is equd to the sample meaen of Y. The
plot of the regression line for step 10, say, is the same
& the plot of Y on X, a given vdues of X, (as
illustrated by Mullet, 1972) but with much less ffort.

Conclusions

It is suggested tha the patid regression
coefficient by represent the effect of the j'" resicuaized
vaiable which is computed as the dfference between
X; andits pred cted val ues obtained by regressing X; on
dl other independent vaiables in the multiple
regression modd. The revised interpretations of the
regression codfficients are based not only on the
mathematicd properties of the regression eguation but
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aso on the sources of the vaues reported by such an
equaion. The proposed interpretations of simple and
patid regression coefficients reflect the same
meanings conveyed by their correspondng corrdation
coefficients. The consideration of residudized effects in
regression anaysis leads to explanaions tha are more
uniform in terminologies for both simple and patid
regression coefficients. Moreover, it endbles a
recognition of low construct vdidty in regression
moddling and sheds light on how to andyze the test

Regression Coefficients

staistics in fitting regression modds. In the simple
regression modd, due to the lack of residudized
vaiables, the simple regression coefficient for X;
measures its effect in predcting Y without recognizing
extraneous vaiables. On the other hand the partid
regression coefficient for X; measures its contribution
in predcting Y when the extraneous effects to X;
generaed by dl other regressors have been explicitly
accounted for. In dl regression modd's, the remaining
effects of the extraneous variables are represented by
theresidud term (e).
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Path Model of Treatment Outcome in a
Multidisciplinary Pain Management Clinic

Daisha J. Cipher, Southern Methodist University
P. Andrew Clifford, Cognitive Psychophysiological Institute at Dallas

The treatment of chronic pain disorders has become multifaceted as the field of pain research has recognized the
complex nature of chronic pain. Multidisciplinary pain management has been developed in order to address the
complexities of chronic pain disorders. However, in the study of multidisciplinary pain management, there have
been few models predicting patients' response to treatment. This study examined a path model of treatment
outcome, incorporating such variables as coping styles, treatment compliance, and treatment outcome. Results
indicated that a coping style involving the suppression of negative emotion is associated with more treatment
compliance, functional capacity, and perceived life control. A coping style involving amplification of negative
emotion was found to be associated with poorer treatment compliance, functional impairment and emotional distress,
such as depression and anxiety. Possessing an aggressive coping style was found to be associated with poor
treatment compliance, as well as anger, hostility, and alow probability of benefiting from a treatment program.

The factors extracted are summarized below:

hronic pain is reported by 80 million

Americans (Bonica, 1987), and 60% of all

social security disability claims involve the
alegation of pain (Simmons, Avant, Demski, &
Parisher, 1988). In view of the vast empirical support
for psychological treatments for pain, the strict
biomedical intervention for pain has given way to
multidisciplinary pain management (Flor, Fydrick, &
Turk,. 1992). Multidisciplinary pain management
typically incorporates not only pharmacotherapy ad
physica therapy, but aso biofeedback, operant
conditioning, relaxation and cognitive restructuring.
The most common goals of multidisciplinary pain
centers (MPCs) are functiona capacity, pain reduction,
reduction in addictive medication, reduction of hedlth-
care utilization, increased activity including return to
work, closure of disability claims, and reduction in
emotional distress, with functional capacity considered
most important, by clinicians and insurance companies
alike (Turk, 1996).

In the MPC treatment outcome research, most
salient isthe need for predictors of success (and for that
matter, failure) of MPC treatment. Such predictors
would alow clinicians to identify those patients who
will benefit from an MPC approach, and those who
might need an alternative form of treatment.
Preliminary studies have indicated that the coping
scales of the Millon Behaviora Health Inventory
(MBHI) are good predictors of behaviora treatment
outcomes (Wilcoxson et al., 1988, Gatche et al.,
1985), and there is evidence that these scales can be
used to classify distinct coping styles of chronic pain
patients (Dickson et al, 1992, Cipher & Clifford,
1996; Marron et al, 1984). The MBHI coping scales
are described below (see Table 1).

A recent factor analysis (Cipher, 1999) performed
on the eight MBHI coping styles confirmed past
cluster analytic findings of Cipher & Clifford (1996),
aswell asthe actual authors of the MBHI.
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Factor One; Expression of Negative Emotion.
The MBHI Inhibited and Sensitive Scales loaded
negatively on Factor One, consistent with other
studies finding these scales to be grouped together
(Dickson et al., 1992; Gatchel et al, 1985; Marron et
a., 1984). The Confident and Sociable scales loaded
positively on Factor One. Based on these loadings and
the results from the correlational analyses, Factor One
appears to be a dimension of expression of negative
emotion. That is, on one end of the dimension, there
appears to be a high reporting of emotional distress
and neuroticism. On the other end, there is an
underreporting of distress coupled with high
defensiveness. For example, Factor One is negatively
corrdlated  with  affective  distress,  functional
impairment, depression, and overall psychopathology
(MPI' I, MPI AD, MMPI-2 D, MMPI-2 F scdes).
Factor One is positively correlated with a subjective
sense of life control (MPI LC scale), and positively
correlated with defensiveness and the denia of
psychopathology (MMPI-2 K aid F scales,
respectively) — similar to a “Polyannish” attitude.
Thus, on one end of the dimension, there is
suppression of negative emotion, and on the other end,
“amplification” of negative emotion. Consequently, it
appears that Factor One has largely captured the
clustersfound by Cipher and Clifford (1996) onto one
dimension, with suppression of negative emotion ad
stress on one end (e.g. Repressors), and amplification
of negative emotion on the other (e.g. Amplifiers).

Factor Two: Aggression. The Cooperative scae
loaded negatively on Factor Two, while the Forceful
scale loaded positively. This factor appears to be a
dimension of aggression. One end of the dimension
represents aggression and forcefulness. The other end
represents passiveness and cooperation.  Correlational
analyses reveded Factor Two to be positively related
to anger, cynicism, anti-socia practices and Type A
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behavior (MMPI ANG, CYN, ASP, and TPA scdes,
respectively). Factor Two is not related to neuroticism
per se; rather, it is associated with anger, hostility,
resentment of authority, having a temper, being
impatient, and being critical. Factor Two was
negatively related to defensiveness, and is associated
with frankness and self-centeredness (MMPI K scale).
In sum, Factor Two appears to be separate from
amplification; it is a dimension of active independence,
anger, and resentment on one end, and passive
dependence and cooperation on the other.

This study examined the role of coping styles in
the chronic pain patient’s treatment compliance and
outcome in order to identify those patients who
respond (and do not respond) to multidisciplinary pain
management. Patients compliance with their
treatment regimen is an important factor in any
clinical setting, but is often overlooked when
examining treatment outcome and cost effectiveness.
In one of the few studies quantifying treatment
compliance in the pain management context, Lutz,
Silbret and Olshan (1983) found a significant
relationship between compliance and treatment
outcome. However, compliance has not been
examined as a mediator between coping/personality
styles and outcome.

The findings of Cipher and Clifford (1996)
indicated that certain coping styles might be predictive
of chronic pain patients treatment compliance ad
post treatment outcome. As outlined by Turk (1996),
functional impairment is one of the most common ad
useful outcome variables examined in
multidisciplinary pain centers. This study assessed the
predictive value of the MBHI coping styles in a
cognitive-behavioral pain management treatment
outcome model, with treatment compliance as a
mediator between coping styles and treatment
outcome. Figure 1 below illustrates the proposed
model of treatment outcome.

Path Model of Treatment Outcome

Table 1. Brief Descriptions of High Scorers on the
MBHI Coping Style Scales

Style Description

Introversive Keeps to self, quiet, unemotional,
not easily excited, lacks energy

Inhibited Shy; socially ill-at-ease, avoids
close relationships, fears rejection

Cooperative Soft-hearted, reluctant to assert sdif,
submissive, dependent

Sociable Charming, emotionally expressive,
histrionic, talkative

Confident Self-centered, egocentric, acts self-
assured

Forceful Domineering, abrasive, intimidates
others, blunt, aggressive

Respectful Serious-minded, efficient, rule
conscious, emotionally constrained

Sensitive Unpredictable, moody, passively
aggressive, negativistic

Method

Data were collected from 67 outpatients who
completed treatment at a University pain clinic. All
patients had been previously diagnosed with some sort
of chronic pain syndrome. Exclusion criteria were the
presence of any cognitive deficits due to neurological
disorders, progressive terminal illnesses, or any other
medical conditions which were not stable (e.g. end-
stage cancer). The most common diagnoses were low
back pain, neck/shoulder pain, headache, neuropathy,
and fibromyalgia. The average age of patients was 45
yearsold.

Treatment.

Treatment consisted of multi-disciplinary pain
management, which included cognitive-behaviora
therapy incorporating biofeedback and relaxation train-

Figure 1. Path Model of MPC Treatment Outcome

Expression of
Negative Emotion \
Treatment ‘ AN Functional
Compliance “— Impairment
Aggression
‘A represents change from pre-treatment to post-treatment
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ing, and pharmacotherapy. Licensed psychologists
provided cognitive-behavioral therapy. Pharmaco-
therapy was provided on a monthly basis by attending
anesthesiologists. Goals of pharmacotherapy involved
tapering the patients to lowest possible dosages of
analgesics required to minimize the pain.

Measures

Millon Behavioral Health Inventory (MBHI).
The Millon Behaviora Hedth Inventory (MBHI;
Millon, Green, & Meagher, 1979) was desgned to
measure people's response to medica evaluation and
treatment. The MBHI consists of eight scales which
assess coping stylesin the medical setting as well as
14 other scales measuring psychogenic attitudes,
somatization, and prognoses. The eight coping styles
on which this study focuses include Introversive,
Inhibited, Cooperative, Sociable, Confident, Forceful,
Respectful, and Sensitive (see Table 1 for
descriptions). The MBHI appears to be a valid ad
reliable instrument (Millon, Green, & Meagher,
1982). The factor scores produced by the MBHI
factor analysiswill be used to represent coping styles
in this study.

Treatment Compliance/Collaboration  Rating
Scales. Theserating scales were developed in order to
measure the level of treatment compliance,
interpersonal  rapport, alliance, and collaboration
between the therapist and the patient in a
multidisciplinary pain treatment setting. No other
instrument of this kind has yet been developed.
Domains of the treatment compliance/collaboration
rating are pain management, relaxation, emotional
management, activity management, social functional
restoration, recreationa  functional  restoration,
vocational functional restoration, substance/med-
ication management, weight management, and auto-
nomic nervous system management/neuromuscular
re-education (see Appendix A). Domains of
compliance/collaboration are rated by the patient’s
attending psychologist on a 5-point scale ranging
from Needs Improvement to Self-Directed. An
Overall Compliance Score is computed by adding the
10 ratings and dividing by the number of domains
rated (e.g. excluding “not applicable’). For a sample
of 31 patients, the median inter-rater reliability for the
overall compliance score was found to be .87 among
three raters (therapists).

Multidimensional Pain Inventory (MPI). The
West Haven-Yae Multidimensional Pain Inventory
(MPI; Kerns, Turk, & Rudy, 1985), as described in
Study |, is a comprehensive, psychometrically sound
instrument which is composed of three sections with
atotal of 13 empirically derived scales (Kerns et al.,
1985). The present study focuses on only one of the
scales, Interference.  The Interference scale assesses
the patient’s perception of how much and in what
ways the patient perceives hig’her pain to affect daily
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functioning, and thus will be used to represent functional
impairment. The means and standard deviation for the
Interference scale among a sample of chronic pain patients
are M=55.66, SD=7.98. Higher numbers are indicative of
more functional impairment. The MPI is a reliable ad
valid instrument (Jamison, Rudy, Penzien, & Mosley,
1994). An improvement score was generated for esch
patient by subtracting the pre-treatment Interference score
from the post-treatment Interference score. Thus, negative
scores are indicative of improvement from pre-treatment to
post-treatment.

Procedure

The patients recelving treatment at the pain center
completed the MBHI during their first visit.  After
completing 18-22 sessions of cognitive-behavioral therapy
within a 6-month period of time, the patients were
administered the MPI.  Within two months after patients
completed treatment, their attending psychologist
completed a Treatment Compliance Rating Scale.

Data Analysis

The factors retained from the factor analysis represented
the classifications of coping styles in the current path
model. First, these factors were corrdlated with treatment
compliance ratings and improvement in functiona
capacity. A path analysis was then conducted to obtain
direct and indirect effects between the variables, alowance
for error terms (e.g. measurement error), amodel RZ, and an
indication of overall “fit” of thismodel. Path analysis also
allowed for multiple dependent variables in one path mode
(as compared to multiple regression, which only alows
one dependent variable at a time to be andyzed). Path
analysis dlowed for a graphical representation of
relationships between variables, as represented by path
coefficients. Path coefficients are either Pearson correlation
coefficients or beta weights, depending upon the number of
variables predicting the endogenous (dependent) variable
(Schumacker & Lomax, 1996). Moddl fit indicesyielded g
the difference between the path coefficients and origina
(correlation) coefficients among the variables (thus
indicating any under/overidentification of the model); and b)
the likelihood that this model will replicate across different
samples of chronic pain patients. The path diagram, as
illustrated  in Figure 1, shows  treatment
compliance/collaboration as hypothesized to be the
mediating variable between coping styles and treatment
outcome. The R? for predicting treatment compliance was
.375 and the R? for predicting functional impairment was
.274. The R for the path model is therefore equal to:
1-(1-.375)(1- .274) = .546.

Results
Correlational analyses revealed Factor One (Expression
of Negative Emotion) to be positively related to
compliance, whereas Factor Two (Aggression) was
negatively related to compliance (Table 3). Compliance
was positively related to reductions in functional impair-
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Table 2. Means for Treatment Outcome Variables

Standard
Mean Deviation
Factorl 0.03 1.02
Factor2 0.02 1.04
Compliance 3.70 0.62
Interference -1.44 1.17
(Improvement)

Path Model of Treatment Outcome

Table 3. Correlations Among Treatment Outcome
Variables (N=67)

Improvement Compliance Factorl
Improvement 1.00
Compliance -0.21 1.00
Factorl -0.04 0.25 1.00
Factor2 -0.09 -0.33 * -0.06

Note. * indicate values with probability of p <.05.

ment. As shown in Table 4, the fit indices for this
model appear to be a good mode fit. However,
correlations between compliance and the other
variables may be underestimated due to the small
variance associated with compliance (see Table 2).
The lowest compliance rating given a patient was a
three (out of five points). Thus, most patientsin this
study wererated ashaving at least satisfactory overall
treatment compliance.

Discussion

These results lend support for a mediationa
model of treatment outcome in a pain management
center. Coping styles predict the manner in which
patients comply with treatment, and compliance
predicts patients improvements in functiona
capacity. Results indicate that amplification of
emotional distress leads to less compliance with
treatment, resulting in poorer outcome. The more
emotionally constrained or stabilized, the more
compliance patients exhibit and in turn, the higher
improvements they attain in functional capacity.
Likewise, the more aggressive and forceful patients
are in their coping styles, the less likely they are to
comply and respond to treatment.

Thus, it appears that possessing a defensive,
Polyannish style of coping is much more advan
tageous in terms of complying with treatment ad
having a positive treatment outcome. Undergoing
emotional distress, depression, and/or other psycho-
pathology, coupled with a lack of defensiveness,
appears to put patients at risk for not complying with
treatment, and in turn, having a poor treatment
outcome. Moreover, being forceful, having Type A
personality traits, and being aggressive is aso a
detriment to treatment compliance and outcome.

The confirmation of this model emphasizes the
importance of treatment compliance in MPCs.
Moreover, the psychologist-rated compliance scales
gopeared to be useful as a measure of treatment
compliance as well as a predictor of treatment
outcome. Compliance appears to be the link between
coping/personality styles that patients possess when
entering into treatment, and the improvement they’ve
accomplished by the end of treatment. These findings
confirm that of other studies using the MBHI as
predictors of compliance in health care settings (Tracy
et a, 1988).

Multiple Linear Regression Viewpoints, 2000, Vol. 26(1)

Conclusions

Findings from Study |1 indicate that having a coping
style that involves suppression and denial of negative
emotion facilitates compliance with treatment. However,
these findings are not intended to suggest that suppressing
negative emotion is functional. Possessing defensive
coping traits (e.g. being emotionally constrained/stable,
Polyannish) can be healthy when one is living a relatively
stressfree life. However, when the non-expressive person
isfaced with a severe stressor that does not go away, such
as a chronic pain disorder, denying emotional distress ad
being defensive may become maladaptive (Wickramasekera,
1993). . This phenomenon has been evidenced in the study
of End State Renal Disease patients. Social withdrawal ad
social alienation were found to be significantly related to
poor compliance and poor prognosis (Tracy et al., 1987).
Likewise, in a study by Esterling et a. (1990), those
chronic pain patients who were repressors, were non-
expressive, and disclosed little about themselves were found
to have the lowest levels of immune functioning.
Defensiveness, which is closely related to avoidance and
non-disclosure, has also been found to be related to lower
levels of immune functioning (Jamner et a, 1988).
Consequently, while being on the non-expressive end may
appear to be better than being on the amplifying end, both
are likely to be dysfunctional for patientsin the long run.

Expression of Negative Emotion and Aggression are,
by and large, orthogonal factors. Patients scoring either
high or low on Expression of Negative Emotion can score
either high or low on Aggression. Judging from the path
analytic results, it is most desirable to score on the
repressive end of the Expression of Negative Emotion
factor and the passive end of the Aggression factor. These
patients are likely to be most compliant with treatment ad
exhibit the most treatment improvements. The most
difficult patients are most likely those who score on the
amplifying end of Represson/Amplification and the
aggressive end of Aggression. Not only are these patients
suffering from high levels of emotional distress ad
functional impairment, but they are also hostile, resentful
and aggressive in their approach to treatment. These
patients are likely to be most difficult to work with ad
have a smaller chance of completing a treatment program.

Address correspondence to:
Daisha J. Cipher, Ph.D.
Southern Methodist University
Dallas, Texas 75275-0500
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Table 4. Goodness of Fit Criteria for Path Model
of Treatment Outcome.

Acceptable
Criterion Vaue Level*
Chi-square 3.04| Tabled Chi-
square value
GFI 0.98 0 (nofit) to
(Goodness of fit) 1 (perfect fit)
AGFI 0.92] 0 (nofit) to
(Adjusted GFI) 1 (perfect fit)
RMSEA
(Root-mean-square 0.01 <.05
error of approximation)
AlC 17.04 Negative
(Akaike information criterion) value = poor
fit

Note. * based on Schumaker & Lomax, 1996.
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