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Comparison of Logistic Regression, Linear Probability,  
and Third-Degree Polynomial Models:  

Which Should a Researcher Use? 
Isadore Newman     Russell Brown      John W. Fraas 

    University of Akron    University of Akron       Ashland University 
The purpose of this study is to present a comparison of three types of regression models that could be 
used to analyze dichotomous criterion variables under three different data structures, and to discuss the 
implications of the results of those comparisons. The three types of models used were (a) logistic 
regression, (b) linear ordinary least squares, and (c) polynomial ordinary least squares models.    

ogistic regression is commonly used in medical literature as a means to account for the variance in 
a binary (or categorical) dependent variable (King & Ryan, 2002), and its use is growing in the 
social sciences literature as well.  Peng, So, Stage, and St. John (2002) reported that "research using 
logistic regression has been published with increasing frequency in three higher education journals: 

Research in Higher Education, The Review of Higher Education, and The Journal of Higher Education” 
(p. 259).  This trend has corresponded with the increased availability of computer software that provides 
the option to analyze data using logistic regression (Peng, Lee, & Ingersoll, 2002).   While there has been 
an increase in the use of this method, its use has been accompanied by “great variation in the presentation 
and interpretation of results in these publications, which can make it difficult for readers to understand 
and compare the results across articles” (Peng, So, Stage, & St. John, 2002, p. 259).   
 The popularity of logistic regression has grown, in part, due to proponents who have suggested that it 
is a more appropriate alternative to ordinary least square (OLS) linear regression or discriminant analysis 
for modeling categorical (dichotomous) dependent variables.  With a dichotomous dependent variable, all 
of the observed dependent data points will fall on one of two horizontal lines that are parallel, which is a 
difficult condition to model with the single straight line produced by an OLS linear model.   Peng, Lee, 
and Ingersoll (2002) suggested a potential solution to this problem via plotting the calculated means of 
the dependent variables for categories of the independent variable.  Such a plot takes a sigmoid shape, 
which Peng, Lee and Ingersoll rightly point out, has extremes that do not follow a linear trend.   
  Perhaps, it should be no surprise then that a linear fit to such data has obvious limitations.   In 
addition, the errors in this type of model are not normally distributed and are not constant across the range 
of the data.  Finally, OLS models produce values that are above (greater than 1) and below (less than 0) 
the range of the observed levels of the dependent variable.  This problem has been partially addressed by 
constraining the results of the predicted probabilities to a logical range, but this comes at the expense of 
treating values above and below the range as perfectly representative of the end points (i.e., 100% likely 
for points above 1 and 0% likely for points below 0). 
  The growth in the use of logistic methods is predicated on the reported “superiority of logistic 
regression over OLS models” (Peng, So, Stage, & St. John, 2002, p. 260) as a means to overcome the 
"limitations of ordinary least squares (OLS) regression in handling dichotomous outcomes” (Peng & So, 
2002, p. 31).  The logistic model is as follows: 
 

          ln[p/(1-p)] =  α + βX +e  ,  
 

where:  p =  probability that the event Y occurs, α = the Y intercept, β = the regression coefficient, and e 
=error. The natural log transformation of the odds ratio is necessary to make this relationship linear.  The 
most obvious advantage of this model is that it constrains the predicted values of probability to the logical 
range of 0 to 1, which overcomes an obvious limitation of the OLS model.  Additionally, the model does 
not require "data that are drawn from a multivariate normal distribution with equal variances and 
covariances for all the variables" (Peng & So, 2002); and, therefore, it has less restrictive assumptions 
than either OLS or linear discriminant function analysis. 
  Brown and Newman (2002) examined methods for modeling data that conformed to a known 
function or shape and found that, in some instances, polynomial modeling could be superior to modeling 
based upon the known function (e.g., cosine).  A sigmoid curve could be modeled using a polynomial 
function that accounted for the two inflection points in the curve:  
         Y = a0U + a1X + a2X2 + a3X3 + e   

L



Newman, Brown, & Fraas 

Multiple Linear Regression Viewpoints, 2004, Vol. 30(1) 
 

2

A polynomial model of this nature would potentially better fit the shape of the distribution at its extremes; 
and, if consistent with the research of Brown and Newman, it would be better able to fit the data if the 
data deviated from the sigmoid shape.   
 While many have expressed concerns about the limitations of OLS when predicting dichotomous 
outcomes, Pohlmann and Leitner (2000) found very similar results when they compared OLS and logistic 
regression methods.   Indeed, they found identical conclusions in regard to significance testing, and they 
found the predicted values for both modeling methods to be quite similar.  Pohlmann and Leitner did, 
however, find a slight advantage in accuracy of the predicted values.   The similarity in results is striking 
given that Pohlmann and Leitner used a linear model (OLS) as the basis of the comparison.   
 

Method 
 The method for the present study was an extension of the method described by Pohlmann and Leitner 
(2000).  Common artificial data sets were used to compare the three methods (i.e., linear, polynomial, and 
logistic regression) in terms of the effects of known changes in the distribution of the scores on the results 
of the analysis.   
 Each of the distributions of the independent variable was created to appear like a group of 200 
intelligence test scores.  In the first case, which is shown in Figure 2, the scores, which reflected a 
bimodal distribution (Modes = 94 and 103, M = 98.5, s = 3.154, Range = 15), were highly correlated with 
the dependent variable (r = .837).  In the second case, which is shown in Figure 3, the scores were more 
normally distributed (M = 97.9, s = 5.636, Range = 26) and moderately correlated (r = .445) with the 
dependent variable.  In scores in the third case (which is shown in Figure 4), were normally distributed 
(M = 97.2, s = 5.148, Range = 31) and slightly correlated with the dependent variable (r = .150).   
 Linear, polynomial, and logistic regression analyses were performed on each of the three data sets, 
and the three methods were compared in terms of (a) the goodness-of-fit values and the statistical tests of 
those values, (b) the correlations of the predicted probabilities, (c) the mean square error values, and (d) 
the accuracy of the classifications of group membership. 
 

Results 
  The three sets of data were analyzed by using a linear OLS model, a polynomial OLS model, and a 
logistic model.  In order to facilitate the retention of all the variables in the polynomial model (i.e., linear, 
squared, and cubic variables), the scores were centered before these variables were generated. The results 
of these analyses are contained in Table 1. 
 
Goodness-of-Fit Values  
  The first comparison of the result of the three models involved the amount of variation in the 
dependent variable accounted for by each model.  One issue that had to be addressed before such a 
comparison could be made is: What value from the logistic regression analysis would be appropriate to 
compare to the coefficient of determination (R2) values obtained for the linear and polynomial OLS 
models.  Menard (2000, p. 24) indicated “[the] R2

L [Cox-Snell R2 value] has the most intuitively 
reasonable interpretation as a proportional reduction in error measure, parallel to R2

O [coefficient of 
determination value used in OLS] analogs.”  Thus, to assess the degree of model fit we compared the 
Cox-Snell values produced for the logistic regression models and the R2 values produced for the linear 
and polynomial OLS models.      
 As can be seen in Table 1, the results of the analyses are very similar.  Under the high correlation 
condition, the goodness-of-fit values of the linear model (.701), the polynomial model (.764), and the 
logistic model (.660) are similar.  The goodness-of-fit values were also similar for the three models under 
the medium correlation condition.  Specifically the goodness-of-fit values for the linear, polynomial, and 
logistic models were .198, .199, and .196, respectively.  The statistical test for each of these goodness-of-
fit values was statistically significant at the .001 level, as was the case under the high correlation 
condition.   
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Figure 3.  Normal distribution with low correlation  
(r = .150). 
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Figure 4.  Predicted values of the polynomial model under the low 
correlation condition.

 
 
Figure 1.  Bimodal distribution with high correlation 
(r = .837) 

Figure 2.  Normal distribution with moderate correlation  
(r = .445). 
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Table 1.  Results of the Comparisons of the Tests of Significance 

Model and Condition     

Bimodal Distribution (High Correlation) F p R2 Adj. R2 
Linear Model 464.96 <.001 .701 .700 
Polynomial (cubic) Model 211.05 <.001 .764 .760 
 
Logistic Model 

 
χ2 

 
p 

 
Cox-Snell 

 
 

 15.932 <.001 .660  
Normal Distribution (Med. Correlation) F p R2 Adj. R2 
Linear Model 48.80 <.001 .198 .194 
Polynomial (cubic) Model 16.27 <.001 .199 .187 
 
Logistic Model 

 
χ2 

 
p 

 
Cox-Snell 

 
 

 43.649 <.001 .196  
Normal Distribution (Low Correlation) F p R2 Adj. R2 
Linear Model 4.55 .034 .023 .018 
Polynomial (cubic) 2.30 .079 .034 .019 
 
Logistic Model 

 
χ2 

 
p 

 
Cox -Snell 

 
 

 4.548 .030 .022  
 

 Under the low correlation condition similar goodness-of-fit values were obtained for the linear model 
(.023), polynomial model (.034), and the logistic model (.030).  The statistical tests of the goodness-of-fit 
values for the linear and logistic models were significant at the .05 level.  The statistical test of the R2 
value for the polynomial model was not significant, however, at the .05 level (p = .079).   
 Although these estimates are similar, this is perhaps the least desirable manner to compare the 
modeling methods as the estimates of relationship have different meanings under the OLS and logistic 
methods.  Estimates of probability and errors in estimation of probability may be more adequate methods 
of comparison for these methods.   
 
Correlations of the Predicted Probabilities 
 In order to compare predictions of probabilities, the dependent variable was transformed to reflect the 
observed probability under each of the independent variable conditions. These values formed the 
dependent variables used with the linear and polynomial models. If the three models were equally 
effective, they should produce similar estimates of probability, and the correlations between the estimates 
of probability under each of the conditions should be high.  The correlation coefficient values for the 
three sets of predicted probability values are listed in Table 2. As expected, the correlation between the 
estimated probabilities generated by the logistic and polynomial models was higher (r = .968, p < .01) 
than the correlation between the estimated probabilities generated by the linear and logistic models (r = 
.929, p < .01).   
 
Mean Square Error Values 
 Although it is clear from these correlations that there is a great deal of similarity in estimates of 
probability under each of these conditions, some differences emerge when one compares the mean square 
error values of the three models (see Table 3).  As can be seen in Table 3, the models produce similar 
mean square error values when there is a normal distribution with a medium or low degree of relationship 
between the independent and dependent variables.  Differences existed, however, in the mean square error 
terms when a larger relationship existed between the independent and dependent variables and the 
independent variable had a bimodal distribution. 
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Table 2. Correlations of Predicted Probabilities  
Regression Model and 
Condition 

 
Linear 

 
Cubic 

 
Logistic 

High Correlation    
Linear - .941a .929a 

Cubic  - .968a 

Medium Correlation    
Linear - .988a .993a 

Cubic  - .993a 

Low Correlation    
Linear - .814a 1.00a 

Cubic  - .804a 

a p < .001.   
 
 
Table 3. Mean Square Error Values for Each Condition 

Model and Condition   

Bimodal Distribution (High Correlation) 
Sum of Squared Error Mean Square Error 

Linear Model 6.17 .0386 
Polynomial (cubic) Model 1.82 .0091 
Logistic Model .75 .0038 
Normal Distribution (Medium Correlation)   
Linear Model 4.74 .0237 
Polynomial (cubic) Model 4.51 .0226 
Logistic Model 4.74 .0237 
Normal Distribution (Low Correlation)   
Linear Model 5.09 .0255 
Polynomial (cubic) Model 4.52 .0226 
Logistic Model 5.12 .0256 

 
 
Table 4. Group Membership Classifications and Errors 

Model and Condition 
 

Correct 
Classification 

False 
Positives 

False 
Negatives 

Bimodal Distribution (High Correlation)    
Linear Model 185 7 8 
Polynomial (cubic) Model 185 7 8 
Logistic Model 185 7 8 
Normal Distribution (Medium Correlation)    
Linear Model 135 34 31 
Polynomial (cubic) Model 135 34 31 
Logistic Model 135 34 31 
Normal Distribution (Low Correlation)    
Linear Model 114 39 47 
Polynomial (cubic) Model 111 27 62 
Logistic Model 114 39 47 
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Accuracy of the Classifications of Group Membership 
 Accuracy of the group membership classifications was the last method used to compare the three 
types of models. The results of the group classifications for each model under each condition are listed in 
Table 4.  Although the predicted probabilities produced by the various models were not exactly the same, 
each of the models produced the exact same group membership classifications under the high and medium 
correlation conditions.  In the low correlation condition, however, an interesting difference in the 
classification patterns emerged.  Under this condition, the polynomial model had the lowest mean square 
error value but it had three more classification errors than either the linear model or the logistic model.  In 
addition, the types of errors (false-positive errors and false-negative errors) made by the polynomial 
model were different from either the linear or logistic model.  The polynomial model, under the low 
correlation condition, made the fewest false positive classifications, but it made substantially more false 
negative identifications than did either the linear model or the logistic model.  
 The differences in classification of the sample subjects could be taken as an argument against the 
polynomial function.  This would be a valid conclusion if the sample parameters of false-positive and 
false-negative identifications were representative of the Type I and Type II error rates in the population as 
a whole. The probabilities of the subjects, who were classified differently, were located around the cut-
value of .50. In the case of the polynomial model, the regression line is virtually horizontal at the mid-
point and, therefore, has little predictive (discriminant) power (see Figure 4). 
 

Discussion 
  The following three main issues regarding the method and results of the study need to be addressed: 
(a) the distributions chosen for the study, (b) the comparisons made, and (c) implications of the results 
regarding group membership classifications. One could argue that the distributions chosen for the present 
study were more alike than different.  Certainly, more dramatic differences in distribution shape could 
have been generated. The distributions were generated with the intent of varying the degree of 
relationship between the independent and dependent variable (r = .837 to .150) and the shape of the 
independent variable distribution in terms of the number of modes (one or two) and variability around the 
mean (s = 3.154 to 5.636). Given the similarities in the distribution, one might have expected very similar 
patterns of outcomes in the comparison of the different modeling techniques. Yet, this was not the case. 
 An examination of the results produced by the three types of models revealed some interesting 
similarities and differences. Initially, we had posited that the third-degree polynomial and logistic 
methods would produce more comparable results because the third-degree polynomial modeling would 
allow the regression line to take a sigmoid shape analogous to that of the logistic model. Brown and 
Newman (2002) had found that polynomial modeling could, in some instances, be superior to modeling 
with a known (e.g., cosine) function, and it was expected this could be the case with the logistic model as 
well.  In this study the linear, logistic, and third-degree polynomial modeling methods produced similar 
goodness-of-fit values. This is not, however, the only means by which the effectiveness of the models can 
be gauged.   
  Further comparisons can be made by examining the predicted probabilities and the errors in the 
predicted probabilities. In this regard, the third-degree polynomial and logistic models produced, as 
expected, more similar results than did the logistic and linear models across each of the three comparison 
distributions.  However, the group classifications produced by these methods did not follow this pattern.  
Surprisingly, the logistic and linear models produced identical classifications for each of the distribution 
conditions despite differences in predicted probabilities. The linear, logistic and third-degree polynomial 
models produced identical classifications in two of the three conditions (high and medium correlations), 
but in the low correlation condition, the third-degree polynomial model produced three (3.5%) more 
errors and produced a different pattern of errors (false-positive and false-negative errors) than did the 
logistic and linear models.   
 This last comparison, the pattern of classifications, resulted in the most interesting contrast.  Not 
surprisingly, the cases that were classified differently occurred near the cut-value of the predicted 
probabilities. This finding points to a concern regarding the stability of the predicted classifications for 
these modeling techniques. Cases that have predicted probabilities that are above the cut-value 
(irrespective of differences in the predicted probability) are grouped together as are cases below the cut-
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value.  This aggregation of cases into categories does not take into consideration the error in the predicted 
probability and, in turn, the stability of the model.  The differences in classification produced by the 
models in the low correlation condition points to the need to develop a method to estimate the stability of 
these models when using them for classification purposes.  Studies that fail to take this into consideration 
may unintentionally convey a greater sense of stability in the classifications provided by the models in the 
study.  We would suggest replication as one possible means to estimate the stability of the model 
(Newman, McNeil, & Fraas, 2003). We strongly believe the argument between statistical significance and 
practical significance is not as salient as this issue of replicability; therefore, we suggest future research 
may wish to develop methods of estimating the stability (i.e. replicability) of the classifications produced 
by logistic models. To this end, the authors are presently working on a method of estimating the stability 
of the predicted probabilities using confidence intervals around the predicted scores and comparing the 
stability estimates across the three methods described in this paper. 
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Comparison of the Usefulness of Within-Group and Total-
Group Structure Coefficients for Identifying Variable 

Importance in Descriptive Discriminant Analysis Following a 
Significant MANOVA: Examination of the Two-Group Case 

Mercedes K. Schneider 
Ball State University 

This simulation study compared proportions of two types of structure coefficients in descriptive 
discriminant analysis, those based upon the error matrix, and those based upon the total matrix, for two 
groups from different populations with identical covariance matrices.  The expected finding that the 
structure coefficients based upon the error matrix might be more appropriate than those based upon the 
total matrix was not supported.  

escriptive discriminant analysis (DDA) is a post hoc procedure useful for understanding the 
relationships among continuous variables following a significant MANOVA (Stevens, 2002; 
Tabachnick & Fidell, 2001).  In DDA, linear discriminant functions (LDFs) are formed by 
weighting the p continuous variables such that separation of the k groups on the grouping variable 

is maximized.  The number of LDFs possible is the smaller of p and k – 1.  Thus, where there is one 
grouping variable with two levels, as is the case with the current study, only one LDF is possible. 
  Initially, a vector of raw weights (v) is calculated for a given LDF (Tatsuoka, 1988a, 1988b).  
However, these raw weights are not useful for interpretation.  Instead, one commonly used coefficient for 
interpretation of LDF variable importance is the structure coefficient (SC), a measure of correlation 
between a given p and the associated LDF.  The SC can be calculated using either the total group 
intercorrelation matrix (R) or the pooled within-group intercorrelation matrix (W) (Cooley & Lohnes, 
1971; Huberty, 1975).  These will be referred to as total SCs and within SCs, respectively.  As part of the 
DDA output, SAS provides both the total and within SCs, and SPSS, only the within SCs.  The p x 1 
vector of total SCs (sT) for the only LDF in the two-group case may be calculated as follows: 
 

               sT  =  RD.5vθ-.5            (1) 
 

where D is the diagonal matrix formed from the diagonal elements of (1/N-1)T (i.e., by multiplying the 
total SSCP matrix T by the reciprocal of the total sample size minus one); θ is the grand variance, and R 
and v are as defined previously (Cooley & Lohnes, 1971).  The calculation of the p x 1 vector of within 
SCs (sW) follows the same formula, with the exception that the W matrix correspondingly replaces the T 
matrix. 
 

Purpose of the Study 
 In his study of the ranking of LDF variable importance in DDA, Huberty (1975) notes that total SCs 
are appropriate if data “are considered representative of a single population” (p. 60) and within SCs, “if 
the underlying model is one of k populations with identical covariance matrices” (p. 60).  As it appears no 
study has tested these stipulations, such was the primary goal of the current work.  Specifically, the 
condition of k = 2 populations with identical covariance matrices was simulated, and the total and within 
SCs examined based upon criteria outlined in the procedures section to determine under what conditions 
within SCs might be better suited to total SCs in interpreting relative variable importance in DDA. 
 

Procedures 
 This Monte Carlo simulation was executed using PROC IML in SAS.  Two p-dimensional, 
multivariate population matrices were generated, with each being N(µ, Σ) (SAS Institute, 1999).  The 
general procedure was as follows:  In all cells, µ1 was a p x 1 null vector, and µ2, a p x 1 vector of effects 
of some combination such that µ1≠ µ2. A sample of dimension n x p was then drawn from each population 
(n1 = n2; p1 = p2) and analyzed as a two-way MANOVA using Wilks’ Λ and a special case of Bartlett’s V 
as a test of significance: 
          V  =  -[N – 1 – (p + 2 ) / 2] ln  Λ        (2) 

D
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  where Λ is also calculated using a modified formula 
 

          Λ  =  1 / (1 + λ)            (3) 
 

since in the two-group analysis, λ is the only characteristic root.  The special case of Bartlett’s V 
is approximately a χ2 distribution with p degrees of freedom (Tatsuoka, 1988a, 1988b).      
  Specifically, the variables and corresponding levels manipulated in this study were as 
follows:  
  1.  p = 2, 3, and 4. 
 2. n = 10, 50, 100, and 500.  
 3. The population correlation matrices, Ρ1 and Ρ2.  Five levels were used, reflecting five possible 
ranges of p intercorrelation:  0 - .20; .21 - .40; .41 - .60; .61 - .80, and .81 – 1.00.  For any given 
experiment, the exact correlation for the two groups between continuous variables p and p’ (where p ≠ p’) 
was randomly generated within any one of these five ranges.  The two most highly correlated ranges were 
included to investigate the effects of collinearity upon sT and sW. 
 4. Population mean vector, µ2.  As previously mentioned, µ1 was held constant as a null vector.  
Thus, µ2 was manipulated as the vector of effects.  The p elements of a given µ2 were some combination 
of effects in standard deviations, with three possible levels of standard deviation used: 0, .5 and 1.  These 
levels were arbitrarily selected to represent a three-tiered conceptualization of relative variable influence: 
negligible; moderately influential, and highly influential respectively.  This manner of ranking variables 
will be discussed in the following section. In addition to its usefulness in defining a variable with a 
negligible contribution, the difference of 0 SD was included to investigate the influence of 
noncontributing variables upon sT and sW.  In sum, 20 p x 1 mean vector pairs were analyzed:  5 for p = 2; 
7 for p = 3, and 8 for p = 4.  (See Tables 1 thru 20 for the specific µ2 investigated for a given cell.) 
 Each n x p cell was replicated 5,000 times.  For the replications where the MANOVA null hypothesis 
H0: µ1 = µ2 was correctly rejected within each cell, the p x 1 vectors of total and within SCs, sT  and sW, 
were calculated.  An expected pattern across sT  and sW was identified for each mean effect vector µ2 and 
the proportions of sT  and sW vectors conforming to the identified pattern calculated.  These proportions of 
sT  and sW, vectors were then compared across all levels of n, p, and Ρ.  The use of identified SC patterns 
will be discussed shortly. 
 
Three-tiered Ranking of Relative Variable Importance 
 It may be tempting to apply some absolute criterion to SCs in order to make the determination of a 
corresponding continuous variable’s contribution to group separation in DDA.  Pedhazur (1997) cites the 
general guideline that an SC value of .3 is “meaningful” (p. 934).  However, this guideline is too general 
to frame even a three-tiered ranking of relative variable importance upon separation of the groups.  At the 
opposite end of the ranking spectrum are studies in which the SC values of a large number of variables 
are ranked in order of size without consideration of a more relaxed ranking system, such as the three-
tiered system proposed above. For example, Huberty (1975) compared the utility of three types of 
weights/coefficients (total SCs, within SCs, and standardized weights) for variable ranking where the 
number of groups k = 3, 4, and 5, and the number of variables was held constant at p = 10.  In essence, 
such rankings amounted to a ten-tiered ranking system.  Generally, all coefficients/weights fared poorly 
regarding the correct ranking of the 10 variables.  These results agreed with the findings of Barcikowski 
and Stevens (1975), who also investigated the utility of standardized weights and structure coefficients for 
ranking variable importance in canonical correlation.  In this latter study, the simplest canonical 
dimension examined involved two variables in one variate and five, in the other variate.  Thus, the 
smallest number of continuous variables investigated in the Barcikowski and Stevens work was p = 7, and 
in a more complex analysis than DDA, the canonical correlation (Tabachnick & Fidell, 2001). Both 
Huberty, and Barcikowski and Stevens note that a large sample size would be necessary for positive 
results for a 1-to-p ranking system (e.g., a 42:1 to 68:1 n:p ratio in Barcikowski & Stevens).  Thus, with 
the minimum number of variables p = 7, the total sample size needed for utilizing SCs in DDA would be 
N = 294 (42:1) or N = 476 (68:1).  As an additional objective of this study, the group sample size n will 
be investigated in conjunction with using a more relaxed ranking system. 
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Investigation of Levels of p = 2, 3, and 4 
  Rather than generally discounting SC usefulness for relative variable importance in DDA based upon 
studies employing large numbers of continuous variables (Barcikowski & Stevens, 1975; Huberty, 1975), 
it appears useful to investigate the more basic multivariate analyses, such as two-group DDA with p = 2, 
3, and 4 variables, for two reasons.  First, in educational research, a smaller number of p variables more 
realistically reflects that which is currently investigated in multivariate research (Schneider, 2002).  
Second, given the necessity of extremely large sample sizes in DDA where p is large (Stevens, 2002), 
limiting the number of continuous variables appears logical when resources, such as the number of 
participants in a study, are limited. 
 
Identified SC Patterns 
 The identified pattern for a given mean vector effect µ2 was chosen by examining the range of SC 
values corresponding to each element of µ2 when n = 1000 across both types of SCs and all levels of Ρ.  A 
vector of least restrictive ranges for each of the p elements was then constructed to represent the identified 
pattern of ranges of SCs for the corresponding mean effect vector µ2.  The decision to use n = 1000 for 
identifying SC ranges is based upon the author’s prior experience.  When the group size is n = 1000 in 
two-group DDA, the SCs are sufficiently stabilized for interpretation of relative variable importance 
given the three-tiered ranking.  Specifically, the ranges of SCs reflecting the effects of 0, .5, and 1 SD, 
respectively, are mutually exclusive.  Increasing the group size n to 5000, for example, would have 
produced narrower ranges; however, such adjustment was not deemed necessary to term a coefficient 
value as indicating a ranking so general as moderately influential, for example. 
 A second reason for identifying SC vector patterns in the form of ranges has to do with the nature of 
the SCs in general.  The description of the SC as a measure of correlation between a variable and the 
associated LDF might lead one to believe that the value of a given element is not influenced by the values 
of other elements in the vector.  This is not the case.  In DDA where the number of groups k = 2, the 
squared elements (e2

i ’s) of an SC vector, whether sT or sW, must sum to one: 
 
          e2

1  +  e2
2  +  …  +  e2

p  =  1 ,          (4) 
 
where there are p elements.  (Note:  If (k – 1) > p, the proportions of trace of the correlation matrix, either 
R or W, as defined previously, accounted for by the p SC vectors would sum to one [Cooley and Lohnes, 
1971]).  This condition has implications for assigning unchanging SC values to indicate an effect of, say, 
1 SD in the effect vector, µ2.  A variable on which the two groups differ by 1 SD will have a higher SC 
value in a vector of dimension p x 1 if the remaining p – 1 variables differ by .5 SD than if the remaining 
p – 1 variables also reflect a difference between groups of 1 SD.  For example, compare the elements of 
the two 4 x 1 total SC (sT) vectors in Illustration 1 below.  These two vectors have been written in the 
form of the condition outlined in Equation 4 above.  In each, the last, bolded element is the referent kept 
constant at an effect of 1 SD.  The remaining 3 elements represent an effect of .5 SD in the first vector 
and 1 SD in the second vector. 
 

     .38806982  +  .42319132  +  .40835662  +  .70961672  =  1.0000000      (5) 
 

    .50217452  +  .50760892  +  .49237562  +  .49771512  =  1.0000001 
 

Though both bolded coefficient values above represent a population effect of 1 SD between groups on the 
last variable in a set of 4, one can readily see the problem with applying some absolute, unchanging 
criteria value to indicate an effect of 1 SD.  Instead, it is useful to note that the coefficient values in the 
first LDF above may indicate a present-but-lesser influence for the first three variables on group 
separation (coefficients in some expected range of .25 to .47, for example) and a prevalent influence for 
the last coefficient (which might be considered to be within some expected range of .68 to .82). 
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Table 1. Proportion of Total and Within SCs Fitting the Identified Pattern     
 

                     Population Mean Vector: µ2=  
0
.5
 

 
 
 

 
    

  
                   Identified SC Range:  

                   Absolute value of   
0 − .25
.96 −1.0
 

 
 

 

 
  

 
 
 
 
 
Table 2. Proportion of Total and Within SCs Fitting the Identified Pattern     
 

                     Population Mean Vector: µ2=  
0
1
 

 
 
 

 
    

  
                   Identified SC Range:  

                   Absolute value of   
0 − .14
.99 −1.0
 

 
 

 

 
  

 
 
 
 
 Interpretation of the LDFs in Illustration 1 introduces another important point.  Because of the 
condition imposed upon SCs as shown in Equation 4, it is important to note that the three-tiered ranking 
is only completely evident when all three of the SD effects are represented in the effect vector µ2.  For 
effect vectors with only two of the three SD levels present (e.g., .5 SD and 1 SD, as is the case in the first 
LDF in Illustration 1), only a two-level means of relative comparison is possible (i.e., less 
influential/negligible, or more influential, respectively).  Finally, when all elements of a given effect 
vector µ2 are the same (e.g., all are 1 SD, as is shown in the second LDF in Illustration 1), one “ranking” 
is possible (i.e., all variables are contributing equally).  Thus, these two lower levels of variable ranking 
are subsumed in the three-tiered ranking system.  Only if the SC values were unchanging could the three-
tiered ranking system remain unaffected by the absence of one (or two) of the three SD levels from a 
given effect vector µ2. 
 

Results 
 Tables 1 through 20 present the results of the 20 mean effect vectors (µ2i, where i = 1 - 20) examined 
in this study.  For each µ2, a vector of corresponding SC ranges was identified.  This identified pattern is 
included in each table.  Also included are the proportions of total- and within-SCs  (sT and sW, 
respectively) conforming to the identified pattern for each n x Ρ cell.  The sT and sW proportions were 
compared within each n x Ρ cell, with the larger proportion interpreted as indicating greater usefulness of  
the referent SC (either sT or sW). 
 Tables 1 through 5 include the results for the five mean effect vectors where the number of 
continuous variables p = 2.  In general, sW proportions were higher for vectors including elements with no 
effect (0 SD) (Tables 1 and 2) and vectors where both variables contributed differently (Table 3).  In 
contrast, for 2 x 1 effect vectors where both variables contributed equally (Tables 4 and 5), sT proportions 
were generally higher than those of sW (the exception being the cell with n = 500 and Ρ > .8, where both 
proportions were 1.0). 

 

Level   Level of Ρ   
of n 0 - .20 .21-.40 .41-.60 .61-.80 .81-1.0 
  10 .3188 .2825 .2881 .2475 .2289 

 .3710 .3441 .3438 .2913 .2473 
  50 .5007 .4991 .4955 .4833 .4925 

 .5209 .5182 .5165 .5020 .5083 
100 .6248 .6284 .6377 .6251 .6326 

 .6372 .6450 .6505 .6418 .6484 
500 .9486 .9472 .9442 .9430 .9398 

 .9530 .9542 .9510 .9476 .9438 
Note: (SST SCs are in Roman print; SSW SCs, in bold print.) 

 

Level   Level of Ρ   
of n 0 - .20 .21-.40 .41-.60 .61-.80 .81-1.0 
  10 .2565 .2397 .2356 .2127 .2111 

 .3147 .3035 .2909 .2560 .2447 
  50 .4672 .4662 .4810 .4738 .4618 

 .5178 .5140 .5334 .5214 .5154 
100 .6146 .6250 .6232 .6306 .6238 

 .6694 .6756 .6814 .6830 .6818 
500 .9516 .9516 .9514 .9518 .9504 

 .9702 .9706 .9676 .9696 .9698 
Note: (SST SCs are in Roman print; SSW SCs, in bold print.) 
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Table 3. Proportion of Total and Within SCs Fitting the Identified Pattern     
 

                     Population Mean Vector: µ2=  
.5
1
 

 
 
 

 
    

  
                   Identified SC Range:  

                         
.34 − .54
.84 − .94
 

 
 

 

 
  

 
 
 
 
 
Table 4. Proportion of Total and Within SCs Fitting the Identified Pattern     
 

                     Population Mean Vector: µ2=  
.5
.5
 

 
 
 

 
    

  
                   Identified SC Range:  

                         
.58 − .81
.58 − .81
 

 
 

 

 
  

 
 
 
 
 
Table 5. Proportion of Total and Within SCs Fitting the Identified Pattern     
 

                     Population Mean Vector: µ2=  
1
1
 

 
 
 

 
    

  
                   Identified SC Range:  

                         
.63− .78
.63− .78
 

 
 

 

 
  

 
 
 
 
 
 Tables 6 through 12 include results for the seven mean effect vectors where the number of continuous 
variables p=3. At this juncture, interpretation of the proportions becomes more complicated. For the effect 
vector with two of three variables not contributing (Table 6), sW proportions were higher.  When the 
condition was changed to one variable not contributing instead of two (Table 7), the sT proportions were 
higher for cells of smaller size and lesser intercorrelation (i.e., n < 100 and Ρ < .8), and the sW proportions 
higher for the largest cells (n = 500) and the highest intercorrelation (Ρ>.8). Finally, when the condition 
was changed to all variables contributing, and all equally (.5 SD) (Table 8), sT proportions were higher 
for all cells except the n = 500 x Ρ>.8 cell, where both proportions equaled 1.0).  

 

Level   Level of Ρ   
of n 0 - .20 .21-.40 .41-.60 .61-.80 .81-1.0 
  10 .2789 .2917 .3058 .3222 .3371 

 .2711 .2958 .3276 .3592 .4001 
  50 .4564 .4857 .5275 .6004 .7036 

 .4604 .4965 .5406 .6504 .8178 
100 .6286 .6516 .6766 .7564 .8474 

 .6414 .6744 .7106 .8220 .9170 
500 .9060 .9362 .9620 .9722 .9924 

 .9542 .9696 .9876 .9908 .9984 
Note: (SST SCs are in Roman print; SSW SCs, in bold print.) 

 

Level   Level of Ρ   
of n 0 - .20 .21-.40 .41-.60 .61-.80 .81-1.0 
  10 .3258 .3674 .3744 .5899 .6177 

 .2502 .2808 .2747 .4396 .4667 
  50 .5023 .5341 .6119 .7041 .9370 

 .4678 .5028 .5709 .6701 .9216 
100 .6365 .6957 .7713 .8749 .9230 

 .6066 .6608 .7483 .8535 .9125 
500 .9458 .9844 .9842 .9974 1.000 

 .9324 .9772 .9778 .9966 1.000 
Note: (SST SCs are in Roman print; SSW SCs, in bold print.) 

 

Level   Level of Ρ   
of n 0 - .20 .21-.40 .41-.60 .61-.80 .81-1.0 
  10 .3699 .4042 .4845 .5154 .7010 

 .2614 .2779 .3438 .3491 .5013 
  50 .6328 .6584 .7321 .8666 .9533 

 .5300 .5514 .6268 .7752 .8961 
100 .7856 .8736 .9238 .9748 .9976 

 .6878 .7822 .8452 .9430 .9876 
500 .9946 .9998 .9992 1.000 1.000 

 .9750 .9924 .9942 1.000 1.000 
Note: (SST SCs are in Roman print; SSW SCs, in bold print.) 
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Table 6. Patterns for both Total and Within SCs where p = 3 and k = 2  
 

                     Population Mean Vector: µ2=  
0
0
.5

 
 
 
  

   

                   Identified SC Range:  

                   Absolute value of *  
.00 .26
.00 .26
.94 1.0

−

−

−

 
 
 
  

 

                     * Vectors were either all positive or all negative 
 
Table 7. Patterns for both Total and Within SCs where p = 3 and k = 2  
 

                     Population Mean Vector: µ2=  
0
.5
.5

 
 
 
  

   

                  Identified SC Range:  

                   Absolute value of *  
.00 .22
.58 .81
.58 .81

−

−

−

 
 
 
  

 

                    * Vectors were either all positive or all negative 
 
 
Table 8. Patterns for both Total and Within SCs where p = 3 and k = 2 
 

                     Population Mean Vector: µ2=  
.5
.5
.5

 
 
 
  

   

                   Identified SC Range:  

                         
.46 .67
.46 .67
.46 .67

−

−

−

 
 
 
  

 

 
 
Table 9. Patterns for both Total and Within SCs where p = 3 and k = 2 
 

                     Population Mean Vector: µ2=  
.5
.5
1

 
 
 
  

   

                   Identified SC Range:  

                         
.28 .59
.28 .59
.74 .86

−

−

−

 
 
 
  

 

 

 

Level   Level of Ρ   
of n 0 - .20 .21-.40 .41-.60 .61-.80 .81-1.0 
  10 .0811 .0676 .0841 .0646 .0750 

 .1146 .1152 .1164 .0886 .0847 
  50 .2249 .2146 .2230 .2660 .3202 

 .2466 .2307 .2413 .2844 .3346 
100 .3313 .3158 .3366 .3528 .4470 

 .3502 .3337 .3581 .3744 .4660 
500 .8306 .8356 .8372 .8392 .8376 

 .8456 .8504 .8546 .8528 .8520 
Note: (SST SCs are in Roman print; SSW SCs, in bold print.) 
 

Level   Level of Ρ   
of n 0 - .20 .21-.40 .41-.60 .61-.80 .81-1.0 
  10 .1322 .1616 .1723 .2011 .2676 

 .1115 .1356 .1581 .1992 .2804 
  50 .2834 .3125 .3675 .4757 .5226 

 .2719 .3034 .3555 .4744 .5300 
100 .4375 .5017 .5695 .6442 .7146 

 .4264 .4889 .5609 .6400 .7228 
500 .9352 .9654 .9748 .9768 .9712 

 .9220 .9598 .9748 .9778 .9728 
Note: (SST SCs are in Roman print; SSW SCs, in bold print.) 

 

Level   Level of Ρ   
of n 0 - .20 .21-.40 .41-.60 .61-.80 .81-1.0 
  10 .0933 .1282 .1941 .2637 .5446 

 .0640 .0531 .0990 .1348 .3822 
  50 .2085 .2821 .4045 .5480 .8761 

 .1805 .2386 .3562 .4907 .8559 
100 .3614 .4253 .4790 .7315 .9388 

 .3235 .3781 .4390 .6952 .9291 
500 .8722 .8974 .9626 .9884 1.000 

 .8422 .8662 .9492 .9852 1.000 
Note: (SST SCs are in Roman print; SSW SCs, in bold print.) 
 

Level   Level of Ρ   
of n 0 - .20 .21-.40 .41-.60 .61-.80 .81-1.0 
  10 .1221 .1587 .1575 .2216 .2988 

 .1022 .1377 .1569 .2382 .3713 
  50 .3497 .4043 .4697 .5151 .6368 

 .3283 .3914 .4657 .5282 .7016 
100 .5642 .6226 .6932 .7684 .7642 

 .5266 .5950 .6916 .7798 .7920 
500 .9506 .9660 .9782 .9866 .9934 

 .9274 .9454 .9582 .9704 .9810 
Note: (SST SCs are in Roman print; SSW SCs, in bold print.) 
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Table 10. Patterns for both Total and Within SCs where p = 3 and k = 2 
 

                     Population Mean Vector: µ2=  

.5
1
1

 

 

 
 
 

 

 

 
 
 
   

                   Identified SC Range:  

                   Absolute value of *  

.25 − .46

.61− .73

.61− .73

 

 

 
 
 

 

 

 
 
 
 

                    * Vectors were either all positive or all negative 
 
Table 11. Patterns for both Total and Within SCs where p = 3 and k = 2  
 

                     Population Mean Vector: µ2=  

1
1
1

 

 

 
 
 

 

 

 
 
 
    

                  Identified SC Range:  

                         

.52 − .63

.52 − .63

.52 − .63

 

 

 
 
 

 

 

 
 
 
 

 
Table 12. Patterns for both Total and Within SCs where p = 3 and k = 2  
 

                     Population Mean Vector: µ2=  

0
.5
1

 

 

 
 
 

 

 

 
 
 
    

                 Identified SC Range:  

                   Absolute value of   

.00 − .13

.35 − .54

.84 − .94

 

 

 
 
 

 

 

 
 
 
 

 
In short, the dominant coefficient apparently shifted from sW to sT as the number of contributing variables 
was increased to the point that a vector of equally contributing variables was reached. 
  When the condition of all variables contributing equally at .5 SD (Table 8) was altered such that one 
variable contributed 1 SD toward group separation (Table 9), the dominant coefficient again shifted, this 
time with sT proportions higher for Ρ < .61 excepting cells where n = 500.  When a second element in the 
effect vector was changed from .5 SD to 1 SD (Table 10), sT proportions were consistently higher than 
sW; such remained true as the last of the three effects was increased from .5 SD to 1 SD (Table 11).  Note 
that the condition in Table 11 was similar condition to that in Table 8, this time with all effect variables 
again contributed equally but with the greater effect of 1 SD.  Thus, for the condition of all variables 
contributing, and contributing equally, sT proportions were higher than sW. 
  One additional condition was examined where p = 3, that of all three variables contributing at the 
three different levels of effects (0, .5, and 1 SD) (Table 12).  For this condition, sW proportions were 

 

Level   Level of Ρ   
of n 0 - .20 .21-.40 .41-.60 .61-.80 .81-1.0 
  10 .0812 .1117 .1312 .1811 .2871 

 .0529 .0754 .0848 .1524 .2702 
  50 .2590 .3177 .3948 .5196 .6762 

 .2004 .2639 .3319 .4621 .6222 
100 .4812 .5308 .6118 .7812 .8962 

 .3960 .4532 .5356 .7148 .8504 
500 .9150 .9506 .9840 .9966 .9996 

 .8688 .9168 .9658 .9902 .9976 
Note: (SST SCs are in Roman print; SSW SCs, in bold print.) 

 

Level   Level of Ρ   
of n 0 - .20 .21-.40 .41-.60 .61-.80 .81-1.0 
  10 .0728 .1012 .1338 .1946 .6803 

 .0340 .0437 .0520 .0698 .4621 
  50 .2472 .3072 .4096 .5485 .7849 

 .1606 .2024 .2776 .3995 .6484 
100 .4262 .5068 .6284 .7968 .9808 

 .2952 .3608 .4628 .6552 .9472 
500 .9458 .9662 .9890 .9996 1.000 

 .8494 .8884 .9502 .9930 .9998 
Note: (SST SCs are in Roman print; SSW SCs, in bold print.) 

 

Level   Level of Ρ   
of n 0 - .20 .21-.40 .41-.60 .61-.80 .81-1.0 
  10 .0751 .0736 .0691 .0817 .0993 

 .0861 .0861 .0896 .1019 .1184 
  50 .2275 .2436 .2568 .3372 .3918 

 .2467 .2597 .2862 .3942 .4618 
100 .3746 .3984 .4310 .4868 .5914 

 .4014 .4338 .4828 .5556 .6676 
500 .8822 .9010 .9204 .9460 .9462 

 .9158 .9420 .9586 .9702 .9716 
Note: (SST SCs are in Roman print; SSW SCs, in bold print.) 
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consistently higher than sT. It is interesting to note that sW proportions are consistently higher for all three 
conditions where at least half of the p variables did not contribute to group separation (i.e., the effect 
equals 0 SD; see Tables 1, 2, and 11). 
  Tables 13 through 20 include the results of the eight conditions in this study involving as mean effect 
vectors µ2 with p = 4 continuous variables. Unlike the somewhat systematic shifting of the predominance 
of one coefficient over another where the number of continuous variables p = 3, the vectors involving p = 
4 are not so easily interpreted, generally speaking.  Whereas for the two conditions with all mean effect 
vector elements contributing and contributing equally (Tables 14 and 18), the sT proportions were 
consistently higher, for no condition examined were the sW proportions consistently higher than sT.  It 
should be noted that the number of conditions was limited and numerous possibilities omitted, including 
conditions where 2 or 3 elements in the 4 x 1 effect vector represented p variables contributing nothing 
toward group separation (that is, 2 or 3 elements in the effect vector µ2 at 0 SD).  Thus, the idea that sW 
proportions might be consistently higher than sT proportions where the number of noncontributing p 
variables equaled or exceeded half was not examined where p = 4.   
  The sW proportions were higher than the sT proportions for all but 4 of the 20 n x Ρ cells for the 
condition where three effects were all set at .5 SD and one, at 1 SD (Table 15).  These four cells having 
higher or equal proportions of sT were four extreme cells (i.e., n = 10 and 500; Ρ < .4 and Ρ > .6). The sW 
proportions were also higher for most of the cells where the mean effect vector µ2 included one 
noncontributing variable (0 SD), two moderately contributing variables (.5 SD), and one predominantly 
contributing variable (1 SD) (Table 19). In Table 19, cells having higher sT proportions tended to be those 
where the group size was very large (n = 500).   
  For three conditions, neither sW nor sT proportions were consistently higher, but sT proportions were 
prevalent in the 20 n x Ρ cells. The first such condition involved three of the four variables contributing 
equally at .5 SD and one, not contributing (0 SD) (Table 13). Here, sT proportions were higher where Ρ < 
.40. As the level of intercorrelation among p increased, sW was higher, initially for the largest group size n 
= 500 (Ρ range: .41 to .60), then for the two largest group sizes n = 100 and 500 as the intercorrelation 
increased to the second highest range  (Ρ range: .61 to .80).  Finally, where intercorrelation was at the 
highest level (Ρ > .81), sW proportions were higher for the three largest levels of n (n = 50, 100 and 500).  
These findings are similar to those in the p = 3 condition with two variables contributing equally at .5 SD 
and one, not contributing (0 SD) (Table 7). 
   In the remaining two conditions, where two variables are contributing equally at .5 SD and two, 
contributing equally at 1 SD (Table 16) and one variable not contributing (0 SD), one contributing 
somewhat (.5 SD), and the remaining two, contributing equally at 1 SD (Table 20), sT proportions were 
higher generally, with sW proportions tending to be higher for greatest continuous variable 
intercorrelation (Ρ > .81) but not for any given group size n. 
 

Discussion 
 Though the results for this study are sometimes complex to interpret, what is clear is that sW 
proportions were not consistently higher than sT proportions in this study where the two groups were 
generated from two populations with identical covariance matrices.  From the cells investigated, one 
might expect sW proportions to be higher when half of the p continuous variables are not contributing to 
group separation.  It seems that this situation might likely occur when a researcher does what Stevens 
(2002) advises against in the context of MANOVA:  including variables in an analysis without theoretical 
justification, or simply because the data were available.  Too, when all variables are contributing equally, 
sT proportions are consistently higher than sW.  Finally, generally speaking, for conditions with mixed 
results (i.e., some cells with sT proportions higher and some cells with higher sW proportions), sW 
proportions tended to be higher for greater p-variable intercorrelation (Ρ > .81) or larger group sizes n 
(i.e., n = 500). 
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Table 13. Patterns for both Total and Within SCs where p = 4 and k = 2  

                     Population Mean Vector: µ2=  

0
.5
.5
.5

 
 
 
 
 
 

    

                   Absolute value of *  

.00 .17

.42 .70

.42 .70

.42 .70

−

−

−

−

 
 
 
 
 
 

 

                    * Vectors were either all positive or all negative 
 

Table 14. Patterns for both Total and Within SCs where p = 4 and k = 2  

                     Population Mean Vector: µ2=  

.5

.5

.5

.5

 
 
 
 
 
 

     

                         

.41 .59

.41 .59

.41 .59

.41 .59

−

−

−

−

 
 
 
 
 
 

 

 
Table 15. Patterns for both Total and Within SCs where p = 4 and k = 2  

                     Population Mean Vector: µ2=  

.5

.5

.5
1

 
 
 
 
 
 

     

                   Absolute value of *  

.25 .47

.25 .47

.25 .47

.67 .82

−

−

−

−

 
 
 
 
 
 

 

                    * Vectors were either all positive or all negative 
Table 16. Patterns for both Total and Within SCs where p = 4 and k = 2  
 

                     Population Mean Vector: µ2=  

.5

.5
1
1

 
 
 
 
 
 

     

                         

.25 .41

.25 .41

.57 .71

.57 .71

−

−

−

−

 
 
 
 
 
 

 

 

Level   Level of Ρ   
of n 0 - .20 .21-.40 .41-.60 .61-.80 .81-1.0 
  10 .0621 .0723 .0872 .1120 .1576 

 .0378 .0513 .0605 .0913 .1507 
  50 .1847 .2719 .2918 .3844 .5253 

 .1682 .2477 .2752 .3712 .5394 
100 .3704 .4144 .5179 .5998 .6992 

 .3451 .3911 .5033 .5998 .7150 
500 .9522 .9646 .9634 .9682 .9694 

 .9450 .9612 .9646 .9714 .9710 
Note: (SST SCs are in Roman print; SSW SCs, in bold print.) 

 

Level   Level of Ρ   
of n 0 - .20 .21-.40 .41-.60 .61-.80 .81-1.0 
  10 .0254 .0524 .0814 .1424 .3699 

 .0113 .0143 .0287 .0528 .1781 
  50 .0809 .1234 .1943 .3386 .6008 

 .0663 .0972 .1552 .2744 .5293 
100 .1956 .2590 .3688 .5595 .8771 

 .1712 .2199 .3266 .5099 .8572 
500 .7810 .8492 .9334 .9832 .9990 

 .7336 .8110 .9104 .9766 .9980 
Note: (SST SCs are in Roman print; SSW SCs, in bold print.) 
 

Level   Level of Ρ   
of n 0 - .20 .21-.40 .41-.60 .61-.80 .81-1.0 
  10 .0439 .0555 .0577 .0902 .1238 

 .0368 .0510 .0630 .1287 .2098 
  50 .1652 .2200 .2648 .3991 .5766 

 .1654 .2274 .2831 .4383 .6912 
100 .3610 .4220 .5060 .6212 .7708 

 .3772 .4534 .5392 .6808 .8226 
500 .8972 .9396 .9670 .9902 .9992 

 .9364 .9684 .9800 .9902 .9974 
Note: (SST SCs are in Roman print; SSW SCs, in bold print.) 
 

Level   Level of Ρ   
of n 0 - .20 .21-.40 .41-.60 .61-.80 .81-1.0 
  10 .0244 .0413 .0500 .0621 .1036 

 .0159 .0266 .0275 .0636 .1173 
  50 .1346 .1656 .2147 .3074 .5988 

 .1074 .1391 .1920 .3004 .6334 
100 .3076 .3684 .4840 .5784 .7664 

 .2574 .3348 .4422 .5554 .7534 
500 .9022 .9378 .9794 .9932 .9998 

 .8694 .9136 .9552 .9824 .9960 
Note: (SST SCs are in Roman print; SSW SCs, in bold print.) 

Identified SC Range: 

Identified SC Range: 

Identified SC Range: 

Identified SC Range: 
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Table 17. Patterns for both Total and Within SCs where p = 4 and k = 2  

                     Population Mean Vector: µ2=  

.5
1
1
1

 
 
 
 
 
 

    

                         

.20 .35

.49 .62

.49 .62

.49 .62

−

−

−

−

 
 
 
 
 
 

 

 
Table 18. Patterns for both Total and Within SCs where p = 4 and k = 2  

                     Population Mean Vector: µ2=  

1
1
1
1

 
 
 
 
 
 

     

                         

.44 .56

.44 .56

.44 .56

.44 .56

−

−

−

−

 
 
 
 
 
 

 

 

Table 19. Patterns for both Total and Within SCs where p = 4 and k = 2  

                     Population Mean Vector: µ2=  

0
.5
.5
1

 
 
 
 
 
 

     

                   Absolute value of *  

.00 .15

.34 .50

.34 .50

.74 .86

−

−

−

−

 
 
 
 
 
 

 

                    * Vectors were either all positive or all negative 
Table 20. Patterns for both Total and Within SCs where p = 4 and k = 2  

                     Population Mean Vector: µ2=  

0
.5
1
1

 
 
 
 
 
 

     

                   Absolute value of   

.00 .11

.27 .43

.60 .72

.60 .72

−

−

−

−

 
 
 
 
 
 

 

                    * Vectors were either all positive or all negative 

 

Level   Level of Ρ   
of n 0 - .20 .21-.40 .41-.60 .61-.80 .81-1.0 
  10 .0353 .0534 .0734 .1335 .2462 

 .0184 .0269 .0408 .0735 .2267 
  50 .1764 .2290 .3037 .3982 .6531 

 .1234 .1626 .2382 .3464 .6979 
100 .3690 .4492 .5732 .7252 .8248 

 .2816 .3566 .5038 .6952 .8658 
500 .9254 .9464 .9714 .9856 .9960 

 .9056 .9486 .9846 .9950 .9996 
Note: (SST SCs are in Roman print; SSW SCs, in bold print.) 

 

Level   Level of Ρ   
of n 0 - .20 .21-.40 .41-.60 .61-.80 .81-1.0 
  10 .0371 .0582 .1013 .1984 .4455 

 .0131 .0175 .0277 .0496 .1497 
  50 .2132 .2842 .3558 .5222 .8764 

 .1138 .1600 .2126 .3397 .7762 
100 .4230 .5186 .6484 .8380 .9772 

 .2628 .3392 .4566 .6850 .9314 
500 .9732 .9834 .9982 .9998 1.000 

 .8990 .9304 .9842 .9986 1.000 
Note: (SST SCs are in Roman print; SSW SCs, in bold print.) 
 

Level   Level of Ρ   
of n 0 - .20 .21-.40 .41-.60 .61-.80 .81-1.0 
  10 .0191 .0273 .0335 .0436 .0819 

 .0235 .0267 .0387 .0459 .1170 
  50 .1095 .1431 .1660 .2134 .3582 

 .1055 .1583 .1770 .2236 .4078 
100 .2456 .2886 .3664 .4632 .6256 

 .2430 .2936 .3870 .5054 .6684 
500 .8494 .8828 .9244 .9634 .9812 

 .8180 .8574 .8992 .9496 .9794 
Note: (SST SCs are in Roman print; SSW SCs, in bold print.) 
 

Level   Level of Ρ   
of n 0 - .20 .21-.40 .41-.60 .61-.80 .81-1.0 
  10 .0224 .0213 .0348 .0428 .0776 

 .0178 .0213 .0262 .0343 .0746 
  50 .1486 .1642 .2118 .2726 .4964 

 .1364 .1434 .1920 .2712 .5284 
100 .2934 .3456 .4458 .4816 .6938 

 .2528 .2994 .4126 .4558 .7112 
500 .9152 .9466 .9586 .9736 .9800 

 .8596 .9020 .9272 .9690 .9828 
Note: (SST SCs are in Roman print; SSW SCs, in bold print.) 

Identified SC Range: 

Identified SC Range: 

Identified SC Range: 

Identified SC Range: 
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Issues of Practical Significance 
 Even though no significance tests were conducted regarding which of the two SC proportions were 
prevalent, the practical usefulness of the information available in the tables is worth comment.  First, for a 
number of the conditions, the difference between proportions was minimal from a practical standpoint  
(i.e., ≈ .03 or less in many cells); thus, either sT or sW coefficients might be used for interpretation (see 
Tables 6, 7, 13, 16, 19, and 20). The primary goal of this study was to compare sT and sW coefficients to 
determine if sW coefficients might be more useful where the two groups were from two populations with 
identical covariance matrices. Nevertheless, it may be useful to speak of three additional issues of 
practical significance though such issues are not directly related to the research goal. First, the SC values 
for variables not contributing to group separation (0 SD in the effect vector) tended to exhibit a range of 
approximately .00 to .26, and the signs of the elements in the resulting SC vectors could not be predicted 
(see Tables 1, 2, 6, 7, 12, 13, 19, and 20). As for the values of the coefficients of the noncontributing 
variables, such generally fits the rule cited in Pedhazur (1997) that coefficient values of .3 of above are 
useful. 
 Second, regarding use of the identified ranges to guide researcher interpretation, one can see that 
other factors must be considered when determining the group size necessary to achieve a given proportion 
in DDA, such as the effect between groups on each continuous variable and the degree of continuous 
variable intercorrelation.  Moreover, given the jump in proportions between n = 100 and 500, in order for 
the tables of proportions to be useful, proportions associated with additional sample sizes between n = 
100 and 500 must be examined.  The inclusion of more mean effect values (e.g., .3 SD; .7 SD) might also 
further clarify the dynamic between higher sT and sW for conditions where neither coefficient consistently 
had a higher proportion. 
 Finally, whereas unusual, the use of identified SC patterns does offer the beginnings of a practical 
means of interpreting relative variable importance in DDA. As one compares the identified patterns with 
their respective effect vectors, one can see a relationship between the population effect vectors and 
sample SCs. How a researcher might utilize these identified patterns provides a focus for future DDA 
studies. 
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Accessing a Model's Ability to Classify Subjects: The 
Importance of Considering Marginally Accurate Classifications 

Russell Brown      Isadore Newman      John W. Fraas 
Cleveland State University       University of Akron      Ashland University 
The purpose of this paper is fourfold: (a) discuss the importance of considering “marginally accurate” 
classifications, which are predicted probability values whose confidence limits contain the cut-value used 
to classifying subjects, (b) present a six-step calculation procedure used to identify the "marginally 
accurate" classification values, (c) illustrate how the identification of these “marginally accurate” values 
are important in the evaluation of the model, and (d) discuss how a review of the “marginally accurate” 
values can used to access the differential effectiveness of various modeling procedures with respect to 
their replicability and stability. 

raas and Drushal (2004) suggested that program evaluators and educational researchers frequently 
encounter situations in which the dependent variable of interest is dichotomous (i.e., a variable that 
consists of two categories).  One goal of analyzing a dichotomous dependent variable is to obtain a 
model that can be used to classify subjects into either of the two categories of the dependent 

variable.  It is not uncommon for researchers and program evaluators to use a logistic regression model 
for this purpose. Fraas and Newman (2003) noted such classifications can be obtained from a linear 
probability regression model as well as a logistic regression model. In addition, Brown, Newman, and 
Fraas (2004), explain how a third-degree polynomial regression could be used to classify each subject 
into one of the two categories of the dependent variable.   
  Regardless of which analytic method is used, program evaluators and researchers need to consider an 
issue that is often overlooked.  That is, how confident are they in the classification of the subjects?  The 
purpose of this paper is fourfold: (a) discuss the importance of considering “marginally accurate” 
classifications, which are predicted probability values whose confidence limits contain the cut-value used 
to classifying subjects, (b) present a six-step calculation procedure used to identify the “marginally 
accurate” classification values, (c) illustrate how the identification of these “marginally accurate” values 
are important in the evaluation of the model, and (d) discuss how a review of the “marginally accurate” 
values can used to access the differential effectiveness of various modeling procedures with respect to 
their replicability and stability.  
 

Need for Additional Classification Table Information 
  The need for providing information that can be used to supplement the classification table produced 
by analytic methods used in conjunction with a dichotomous dependent variable occurred to us when we 
attempted to compare the results of the three analytic techniques (Newman, Brown, & Fraas, 2004).   We 
found that misclassifications became problematic in trying to explain the comparative results of three 
methods.   Although similar results were obtained by the three different models when comparing the 
methods in terms of tests of significance and predicted probabilities, some differences existed in the group 
classifications produced by them.  Under a condition in which there was a modest correlation between the 
independent variable, the third-degree polynomial model produced 3.5% more errors than did the logistic 
or linear models, which produced identical classification patterns.  A closer examination of these 
differences in classification showed the cases that were classified differently had predicted probabilities 
that were all close to the cut-line probability level of .50.   
  We believe the degree of confidence we have in two models that assign the same classification to 
each subject may or may not be the same.  If the first model produces predicted probabilities for the 
subjects that have greater variation than those of a second model and a number of those probabilities are 
located near the cut-line of .50, our confidence in the first model will not be as strong as it is in the second 
model even though both models classified the subjects the same.   
  To address this issue, we believe information conveyed by the classification table, which lists the 
number of subjects correctly classified and incorrectly classified, should be supplemented by reporting 
the number and percentage of classifications that are "marginally accurate."  If the number or percentage 
of such classifications for a model is small, program evaluators and researchers would have greater 
confidence in using the model to classify future subjects.  The discussion presented in the next section 
provides the steps researchers need to complete in order to access a model in such a fashion.     

F
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Method 

 A method is presented through an illustration that can be used to identify the number and percent of 
"marginally accurate" values (i.e., predicted student probability values whose confidence limits contain 
the cut-value used to classifying subjects).  The illustration used is taken from Fraas and Drushal (2004) 
in their discussion of the use of delta-p values as a means to understand the effect of incremental changes 
in the independent variables on the predicted probability in a logistic model.   
 The data from the Fraas and Drushal (2004) study contained information on 525 college students.  
They were “interested in assessing the relationship between various student and financial factors recorded 
for students who have applied to a university and whether the students actually did or did not matriculate” 
(p. 5).  The dependent variable indicated in which of two categories each student belonged.  Each student 
who did not matriculate was assigned a value of one, while each student who did matriculate was 
assigned a value of zero. The independent variables used to predict whether or not an individual student 
did or did not matriculate were as follows: 
  1. The students' high school grade point averages (HSGPA)  
  2. The students' ACT composite scores (ACT)   
  3. The sex of each student (SEX) [0 = female student; 1 = male student]  
  4. The amount of financial aid offered each student (AID)      
  5. The amount of financial need established for each student (NEED).   
 
  A linear probability model, a third-degree polynomial model, and a logistic regression model were 
used to analyze the relationships between the independent variables and the dependent variable.   In order 
to be able to produce the terms for the third-degree polynomial model, a multiple linear regression was 
used to produce a single standardized weighted predicted composite score for each subject.  This score 
was then squared and cubed to produce the terms for the third-degree polynomial model.   
  Each regression method was subsequently used to establish predicted probabilities and predicted 
classifications for each of the subjects in terms of the dependent variable (i.e., was the subject predicted to 
matriculate or not matriculate).  Subjects whose predicted probability values were greater than or equal to 
.5 were classified as having matriculated; while subjects whose predicted probability values were less 
than .5 were classified as not having matriculated.  The classification results of these analyses can be seen 
in Table 1.   
 As one can see from the results listed in Table 1, the percent correctly classified by the three methods 
are quite similar.  The polynomial model produced the greatest number of correct classifications (58.1%).  
The linear and logistic models produced an equal percentage of correct classifications (57.3%), but 
produced a different pattern of false positive and false negative identifications.   
 The specific issue we are attempting to address is: What number and percent of the classifications are 
"marginally accurate" (i.e., "unstable")?  The calculation of the number and percent of correctly classified 
subjects whose classifications are "marginally accurate" can be calculated in six steps regardless of which 
model is used.   
 The calculations used in our illustration are for the logistic regression model.  The required steps are 
as follows: 
  1. The two standard deviation values for the predicted probability values--one for the group of 
students who were classified by the model as not matriculating and the other for the group of students 
who were classified by the model as matriculating--are calculated.  The standard deviation values for the 
groups of students who did not and did matriculate were .053 and .048, respectively.   
  2. Since we are interested in a one-tailed limit value for each group, the standard deviation value for 
each group is multiplied by 1.65 (the t value for the one-tailed 95% confidence level).  Thus the value for 
the students who were classified by the model as not matriculating was .088 (.053 X 1.65), while the 
value for the students who were classified by the model as matriculating was .079 (.048 X 1.65).   
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Table 1. Original Group Membership Classifications and Errors 
Correct 

Classification 
 

 
Model 1 0 

 
False 

Positives 

 
False 

Negatives 

 
Percent 
Correct 

Linear Model 194 107 145 79 57.3% 
Polynomial Model 185 120 132 88 58.1% 
Logistic Model 195 106 146 78 57.3% 
 
  3. The value of .088 was added to each predicted probability for the students classified by the model 
as not matriculating; while .079 was subtracted to each predicted probability for the students classified by 
the model as matriculating. 
  4. The number of students who were classified by the model as not matriculating but whose upper 
predicted probability limit values equaled or exceeded .50 was recorded.  A total of 35 students had upper 
limits that equaled or exceeded .50.  Thus of the original 106 who were correctly classified as not 
matriculating, 33.0% had upper predicted probability limits that equaled or exceeded .50.  We labeled 
these classifications as "marginally accurate."   
  5. The number of students who were classified by the model as matriculating but whose lower 
predicted probability limit values fell below .50 was recorded.  A total of 71 students had lower limits that 
fell below .50.  Thus of the original 195 who were correctly classified as not matriculating, 36.4% had 
lower predicted probability limits that fell below .50.  Again, we labeled these classifications as 
"marginally accurate."   
  6. The total number and total percent of correctly classified students who were labeled as 
"marginally accurate" were noted.  The total number was 106 (35 + 71) and the total percent was 35.2% 
[((35 + 71)/ 301) X 100].      
 The number and percent of students labeled "marginally accurate" or "unstable" were calculated in 
the same manner for the linear probability and the third-degree polynomial models.  See Table 2 for the 
results of those calculations.   
 Regardless of which model is used, we suggest that the percent of "marginally accurate" figures (e.g., 
33.0% of the students correctly classified as not matriculating; 36.4% of the students correctly classified 
as matriculating; and 35.2% of the students overall correctly classified for the logistic regression model) 
should be reported along with the classification table that is normal provided by an analysis of a 
dichotomized dependent variable.   
 An examination of the number of subjects "marginally accurate" for each of the three types of models 
may lead researchers to reach a different conclusion regarding the desirability of using a given model than 
would a review of the number of subjects correctly classified by each model is reviewed.  The number of 
subjects correctly classified by each model (see Table 1) would suggest that the models are approximately 
equally effect in classifying students.  A review of the number of subjects identified as "marginally 
accurate" would indicate that the polynomial model, which had the lowest number of "marginally 
classified" subjects (see Table 2) may be the preferred model.  Thus it may be important, both in a relative 
and an absolute sense, for researchers to access both criteria (i.e., the number and percent "marginally 
accurate" as well as the number and percent correctly classified) when accessing a models ability to 
classify students. 
 

Discussion 
 When attempting to evaluate the effectiveness of a model designed to classify subjects into one of 
two groups with a linear probability model, a third-degree polynomial model, or a logistic regression 
model researchers may find the information provided by the classification table insufficient.  The 
application of the technique for identifying the number and percent of "marginally accurate" 
classifications, as presented in this paper, may be used to supplement the information presented in the 
standard classification table.  The fewer the number of identified "marginally accurate" classifications the 
more confident the researchers will be in their model's ability to classify future subjects.   
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Table 2. Changes in Group Membership Classifications for Students Correctly Classified by the Model 
Model and Original 
Correct Classification 

Marginally 
Accurate 

 
Stable 

 
Total 

% Marginally 
Accurate 

Linear Model     
Matriculated 75 119 194 38.7% 
Did not Matriculate 44  63 107 41.1% 

Total 119 182 301 39.5% 
Polynomial Model     

Matriculated 66 119 185 35.6% 
Did not Matriculate 23 97 120 19.2% 

Total 89 216 305 29.2% 
Logistic Model     

Matriculated 71 125 195 36.4% 
Did not Matriculate 35  70 106 33.0% 

 

 We believe that researchers often judge a model's ability to predict group membership or an 
occurrence of an event primarily through the use of the classification table.  The values reported in the 
standard classification table, however, do not take into consideration the number of probability values 
(i.e., the values on which the classifications are based) that are close to the cut-value used to classify the 
subjects.  If a large number of these probability values are located near the cut-value, researchers may 
find the accuracy of the classifications of future subjects unacceptable.  That is, the model did not provide 
sufficient stability from sample to sample.   
 Researchers may find it important to identify in which classification most of the "marginally 
accurate" values are located (i.e., in the classification assigned the value of 0 versus the classification 
assigned the value of 1).  If the marginal values are predominately in the classification assigned the value 
of 1 (the event did occur) and few or no marginal values are located in the classification assigned the 
value of 0 (the event did not occur), the researchers may be more confident in their classifications of the 
event not occurring than not occurring.   
 We realize there are other methods that researchers can use to access a model's ability to classify 
subjects (e.g., the use of a holdout group).  The key issue, however, is that regardless of how researchers 
evaluate a model's ability to classify subjects, consideration should be given to the confidence they have 
in their classifications.  We believe is an analytic technique that will improve data-based decision making 
by forcing researchers to reflect on how their models will be used and the degree of confidence they have 
in the use of those models.  If a model is to be used to classify future subjects, the concept of "marginally 
accurate" values may be a key concept for researchers to consider. 
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Bootstrapping within the Multilevel/Hierarchical Linear 
Modeling Framework: A Primer for Use with SAS and SPLUS 

J. Kyle Roberts          Xitao Fan 
University of North Texas        University of Virginia 

Nested data structure obtained from a cluster sampling design often calls for hierarchical linear modeling 
(HLM) analysis.  Such data structure warrants some special considerations when the bootstrap technique 
is applied. This paper presents some discussions and examples for applying the bootstrap method within 
the framework of hierarchical linear modeling.  A two-level dataset (about 900 students nested under 20 
schools) extracted from the High School and Beyond (HSB) was used for illustration. Bootstrap 
resampling was implemented in both SAS and S-PLUS, and a hierarchical linear model with one Level-1 
predictor (student SES), and one Level-2 predictor (type of schools, Catholic or public) was applied.  

n quantitative research in education and psychology, over-reliance on statistical significance testing 
has been called into question.  Several issues have been raised concerning the use of statistical 
significance testing in research practice including sample size, the meaningfulness of the traditional 
null hypothesis, and questions involving the validity of theoretical assumptions underlying parametric 

statistical inferences (e.g., Carver, 1978; Shaver, 1993; Thompson, 1993).  As a result of these and other 
concerns, researchers are increasingly turning to empirically-grounded resampling procedures in 
quantitative analyses. 
 Applauded as one of the newest breakthroughs in statistics (Kotz & Johnson, 1992), the bootstrap is 
often considered the best-known resampling method.  The importance of bootstrapping as a versatile 
analytic approach with which to conduct data analysis has been widely recognized not only by those in 
the area of statistics, but also by quantitative researchers in education, psychology, and social and 
behavioral sciences in general. 
  Statistical inference (e.g., in a t test, rejection of the null hypothesis that two populations have equal 
means) is usually made based on the sampling distributions of a statistical estimator.  For parametric 
statistics, the derivation of such sampling distributions is typically based on a set of theoretical 
assumptions.  The bootstrap method attempts to estimate these sampling distributions empirically, using 
information drawn from the sample of observations used to estimate the statistical model in the first place 
(Diaconis & Efron, 1983; Efron, 1979).  In doing so, the bootstrap approach avoids some of the pitfalls of 
traditional statistical significance testing.  As discussed by Lunneborg (2000): 
 

Until inexpensive computing power made replicate data analysis practical, the drawing of 
statistical inferences from a set of data almost always required that we accept an idealized 
model for the origin of those data.  Such models can be either inappropriate or inadequate for 
the data in our study.  Resampling techniques allow us to base the analysis of a study solely on 
the design of that study, rather than on a poorly-fitting model. (p. xi) 

 

  The bootstrap method has found a variety of research applications in social and behavioral sciences.  
For example, the bootstrap method has been applied in sociological research (e.g., Stine, 1989), and in 
research for psychological measurement issues such as differential test predictive validity (e.g., Fan & 
Mathews, 1994) and item bias (e.g., Harris & Kolen, 1989).  Application of bootstrapping has also 
involved many different statistical techniques, including correlation analysis (e.g., Mendoza, Hart, & 
Powell, 1991; Rasmussen, 1987), regression analysis (e.g., Fan & Jacoby, 1995), descriptive discriminant 
analysis (e.g., Dalgleish, 1994; Thompson, 1992), canonical correlation analysis (e.g., Fan & Wang, 
1996; Thompson, 1995), factor analysis (e.g., Lambert, Wildt, & Durand, 1991; Thompson, 1988), and 
structural equation modeling (e.g., Bollen & Stine, 1990; Yung & Bentler, 1996). 
  Although bootstrap was proposed as a versatile tool for non-parametric statistical inference (Efron, 
1985), Thompson (1993) has also advocated the use of bootstrapping as a descriptive tool and an internal 
replication mechanism for assessing the stability and replicability of sample results of an individual study.  
This descriptive use of bootstrap is meaningful when our interest is not about statistical inference, but 
rather, about understanding how stable the results may be across repeated sampling. 
 Bootstrapping is a computing-intensive data resampling strategy, and easy access to powerful 
computing facilities makes bootstrapping an attractive and viable procedure for research practitioners.  
Unfortunately, although the logic of bootstrapping is conceptually straightforward, bootstrapping has yet 
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to enjoy widespread application in many areas of research and for some statistical techniques.  Because 
bootstrapping is not typically implemented as an automated option in the major commercial statistical 
software packages (e.g., SAS, SPSS), researchers who desire to use this approach usually have to deal 
with programming for performing bootstrap resampling.  This can be a daunting endeavor for many who 
do not have the skills, knowledge, or interest required to carry out such a task. Consequently, this appears 
to be a major obstacle for implementing bootstrapping in substantive research.  Some methodologists 
have sensed the need for programs to perform bootstrapping; as a result, some special programs have been 
published for bootstrap application in different analytic techniques, such as regression analysis (Fan & 
Jacoby, 1995) and factor analysis (Thompson, 1988).  But overall, bootstrapping remains procedurally 
difficult for most research practitioners. 
 Multilevel modeling is an area where bootstrapping has not yet enjoyed much application.  As is the 
case for other statistical techniques, bootstrapping within multilevel modeling may serve two main 
purposes: making non-parametric inferences about parameter estimates and correcting potential bias in 
parameter estimation.  This non-parametric approach can be especially helpful in samples where 
assumptions about data may have been violated (e.g., data non-normality, Bryk & Raudenbush, 1992), or 
in samples where the number of Level 1 observations (e.g., individuals) may be small within each Level 2 
unit (e.g., schools).  
 This paper provides some heuristic examples of implementing bootstrap analysis for hierarchical 
linear modeling (HLM).  Although there has been little application of bootstrapping in hierarchical linear 
modeling, it is hoped that the demonstration of the use of these methods will encourage future researchers 
to utilize these techniques.  Procedures for conducting bootstrapping analyses with both SAS and S-PLUS 
are presented with heuristic datasets. 
 

Bootstrap Approach 
  Bootstrap as the most popular resampling method is mainly used for estimating the sampling 
distribution of a statistic of interest for which parametric alternatives either do not exist, or the validity of 
the parametric alternatives are in question (e.g., violated assumptions).  The basic bootstrap method 
typically has three straightforward steps: 
 

  1. select B independent bootstrap samples, each consisting of n observations drawn with replacement 
from the original sample, 
  2. obtain the statistic of interest from each bootstrap sample, and 
  3. evaluate the sampling distribution of the bootstrapped statistic of interest by 
     a) estimating the standard error of the statistic of interest by the sample standard deviation  
    of the B bootstrap replications, or 
    b)  using exact percentiles (e.g., 97.5%; 2.5%) for constructing empirical confidence intervals. 
 

  Approach a) above assumes distribution normality of the bootstrapped statistic, and parametric 
confidence intervals can be constructed through the use of the estimated standard error.  Approach b), 
however, does not assume distribution normality of the bootstrapped statistic, and the resultant confidence 
intervals are non-parametric in nature. 
 Although the bootstrapping method as described above is procedurally straightforward, its application 
in hierarchically nested data structure such as those used in hierarchical linear modeling may warrant 
some special considerations.  Typical bootstrapping involves sampling individual observations with 
replacement, and there is no consideration for the nested data structure in HLM, (e.g., individual students 
(Level 1 units) are nested under schools (Level 2 units)).  Because of this nested data structure, 
potentially, there can be different resampling approaches for hierarchically nested data.  From a sample 
data with two levels (e.g., Level 1: students, and Level 2: schools), with k schools, and each with ni 
students, and the total sample size of N [N = Σni, i = 1, 2, 3 . . j, k], the following bootstrap sampling 
approaches may potentially be applied: 
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  1. draw a bootstrap sample of N students with replacement, and totally ignore the nested data  
   structure; 
  2. draw a bootstrap sample of ni students with replacement from each and every school in the sample  
   data, and the bootstrap sample has sample size of N; 
  3. bootstrap k schools with replacement while selecting all ni students in each bootstrapped k school; 
  4. first, drawn a bootstrap sample of k schools with replacement; from each sampled school, draw a  
   bootstrap sample of ni students with replacement. 
 

 The first two approaches will provide a consistent sample size of N for each bootstrap iteration.  But 
the third and fourth approach will not provide a consistent sample size of N for each bootstrap iteration, 
unless ni = n for each Level 2 unit (i.e., each school contains the same number of students in the original 
sample). 
 Theoretically, both Level 2 and Level 1 units should be considered as randomly drawn from the 
population. In other words, in clustered sampling design, Level 2 units (schools) are randomly drawn 
first. Level 1 units (students) are then randomly drawn from the school. In this sense, the fourth approach 
of bootstrap sampling for hierarchically nested data described above makes good sense. In practice, 
however, the fourth approach will typically not provide a consistent bootstrap sample size of N, because 
hierarchically nested sample data typically do not have equal sample size within each Level 2 unit. 
Without a consistent sample size of N, it would not be possible to construct an empirical sampling 
distribution for a statistical estimator of interest because the sampling distribution is always associated 
with a specific sample size.  For this reason, we only used the first two bootstrap sampling approaches in 
our examples. 
 

Data Source 
 Bryk and Raudenbush (1992) used a dataset from the national High School and Beyond (HSB) 
database to illustrate the application of HLM.  The same dataset is also used by Singer (1998) in her 
illustration of using SAS for fitting HLM models.  For bootstrapping illustrations in this paper, we used a 
dataset of 20 schools randomly selected from the dataset of 160 schools as used in Bryk and Raudenbush 
(1992) and Singer (1998). 
 Table 1 presents the basic descriptive information for the variables used in our HLM bootstrapping 
example. The student level predictor SES is centered with mean of zero.  The variable SECTOR is 
dummy coded, with Catholic schools coded as 1 and public schools coded as 0.  So the mean of SECTOR 
(0.35) indicates that, of the 20 schools in this dataset, seven (35%) are Catholic schools, and the 
remaining 13 are public schools. 
 Table 2 presents the descriptive information for math achievement scores for the 20 schools, and the 
sample sizes of the 20 schools.  The total sample size for this data is 914, with sample size for individual 
schools ranging from 25 to 66, and the average sample size across the 20 schools of 45.7.  It is noticed 
that there appears to be some noticeable variation among the school averages of math achievement score.  
This suggests that some school-level variable may potentially be useful in accounting for the variation 
among the school means of the math achievement score. 
 A conditional two-level model, with SES as the Level 1 (student level) predictor, and SECTOR as the 
Level 2 (school level) predictor, was fitted to the data, as shown below (Y: math achievement score; 
notations as used in Bryk and Raudenbash, 1992): 
 

        Level 1: Yij = β0j + β1j (SES) + rij ,   and 
 

        Level 2: β0j = γ00 + γ01 (SECTOR) + u0j 
                       β1j = γ10 + γ11 (SECTOR) + u1j  . 
 

 To provide information about how much variation in the math achievement score is within and 
between schools in this dataset, a one-way ANOVA model with random effects was fitted the data.  The 
one-way ANOVA model with random effect takes the following form: 
 
       Level 1: Yij = β0j + rij ,   and 
 
       Level 2: β0j = γ00 + u0j 
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Table 1. Descriptive Statistics for the Dataset Used 
Variable   
Student-Level (1) Mean SD 
   Math Achievement (Y)  13.00 7.20 
   SES 0.00 0.65 
School Level (2)   
   Sector 0.35 0.49 

 
  Table 3. Results of One-Way ANOVA Model and the HLM Model 

One-Way ANOVA  
Fixed Effects Coefficients Description 
γ00 12.76 overall mean math score 
Random Effect Variance 

Component 
 

School Mean, u0 11.09 variation of school means 
Level-1 Residual 41.86  
Intra-Class Correlation  ρ = 11.09/(11.09 + 41.86) = .21 
   
HLM Model:  (Level 1 Predictor: SES;  Level 2 Predictor: SECTOR) 
 Coefficients  
Fixed Effects SAS S-PLUS Description 
γ00 11.33 11.33 mean math score for public schools
γ01 4.02 4.02 SECTOR main effect 
γ10 3.35 3.34 SES main effect 
γ11 -1.77 -1.77 a SECTOR effect on SES slope 
 Variance 

Component 
 

Random Effects SAS S-PLUS  
School Mean, u0 7.64 6.78 variation of intercept (τ00) 
SES-Math Slope, u1 2.54 2.07 variation of slope (τ11) 
Covariance (u0,u1) 2.16 1.91 covariation of u0 and u1 (τ01) 
Level-1 Residual 37.72 37.72 Var (rij) 

 
  a In Catholic schools (coded as 1 on SECTOR), the student performance on Math is less related to SES 
(Catholic schools are more equitable).  See Chapter 4 in Bryk and Raudenbush (1992) for discussion 
related to this issue. 
 
  Table 3 presents the results of fitting the two different models to this dataset.  The first one is an 
unconditional model, or the one-way ANOVA model with random effect, and the second one is the HLM 
model we used for later bootstrapping illustration.  From the one-way ANOVA model with random 
effect, the intraclass correlation was obtained to be 0.21, suggesting that 21% of the variance in the math 
scores is between-school variation, while the remaining 79% variation is within schools.  This indicates 
that the HLM model is warranted for this dataset.  If it turned out that only a negligible proportion of the 
total variance is between-school variation, HLM would not be as useful. Since the nested bootstrap will 
be illustrated with two software packages, SAS and S-PLUS, results from each of these packages will be 
presented in the HLM model in the following tables. 
 Further comparisons between the two models show that a) for the between-school variation, 31% of 
the variance [(11.09 – 7.64)/11.09] is accounted for by the school-level predictor SECTOR, and b) 10% 
of within-school variation is accounted for by the student-level predictor SES [(41.86 – 37.72)/41.86].  
The results of the HLM model indicate that, within Catholic schools, the relationship between math 
achievement and SES is weaker than that within public schools (γ11 = -1.77).  More specifically, for 

      Table 2. Descriptive Statistics of 
      Math Achievement Scores for the  
       20 Schools 

School 
ID 

N Mean SD 

1317 48 13.18 5.46 
1374 28  9.73 8.36 
1461 33 16.84 6.95 
1477 62 14.23 7.15 
2458 57 13.99 5.85 
2629 57 14.91 5.17 
2768 25 10.89 7.29 
2771 55 11.84 6.80 
3427 49 19.72 3.54 
3716 41 10.37 8.48 
3838 54 16.06 5.10 
3967 52 12.04 6.89 
4383 25 11.47 7.45 
5619 66 15.42 7.28 
5762 37  4.32 4.99 
6291 35 10.11 6.59 
6897 49 15.10 6.65 
7697 32 15.72 6.62 
7890 51  8.34 6.25 
8946 58 10.38 6.52 
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public schools, the average regression slope between math score and SES is 3.35.  For Catholic schools, 
the average regression slope between math score and SES is 1.58 (3.35-1.77), suggesting that Catholic 
schools appeared to be more equitable with regard to student SES level (Bryk & Raudenbush, 1992, 
Chapter 4). 
 

Method 
 As has been noted previously, performing a nested bootstrap within the HLM framework is not just a 
“point and click” procedure in any software package.  Although some programs, such as MLwiN, provide 
a method of performing the bootstrap with hierarchically structured data, this method is based on 
residuals bootstrap, which redistributes the residuals at each appropriate level (see bootstrap #4 above) 
rather than nesting the bootstrap within Level 2 units. 
 The nested bootstrap utilizes a nested looping structure within both the SAS and S-PLUS 
architecture.  Inside the inner loop, a dataset is being created from the original dataset by extracting the 
data, one school (or Level 2 unit) at a time.  The programs will search through the data and find the first 
appearing school and then extract all other pieces of data that have the same value for the school variable.  
In the case of the HSB dataset, 20 total schools were selected.  The dataset, after being split into the 20 
schools, is bootstrapped across the data contained in each school such that the number of people in the 
original school equals the number of people in the now bootstrapped school.  The iterative process can be 
described as follows: 
 

   1. Select all data in school k. 
   2. Bootstrap data in school k such that ni = ni’. 
   3. Repeat process for next k school. 
   4. Append data from school k + 1 to school k. 
   5. Repeat steps 3 and 4 until all schools have been selected. 
 

 After this inner loop has created the bootstrapped dataset, the HLM analysis is conducted in an outer 
loop and the desired components are extracted. This outer loop then reverts back to the original dataset 
and the entire process is begun again. In the outer loop, the extracted components are appended to the 
previously extracted components across all bootstrapped samples. In the case of this paper, we chose 
2000 bootstrap samples. It should be noted that these two programs are computer intensive and require 
between 2 and 3 hours of processing time for 2000 iterations on a Pentium III 600 MHz with 128meg 
RAM. 
 For comparison purposes, we also chose to include in the analysis a typical (non-nested) bootstrap.  In 
this method, student scores were bootstrapped regardless of which school they appeared in (see bootstrap 
method #1 above).  It is conceivable that in this method, within a single bootstrap, one school may 
contain no student estimates for a given bootstrap sample.  This analysis was only conducted in SAS and 
as such, should be compared against the original SAS estimates. 
 

Results 
 Criteria were set for which pieces of information that should be extracted from the HLM analysis 
from the specified model.  Since this was a model with two levels and random effects at the second level, 
four fixed effects, two random effects, the covariance between the random effects, and the Level 1 
residual were extracted in each bootstrapped sample.  The results of these bootstrapped fixed and random 
effects can be seen in Tables 4 and 5. 
 In Tables 4 and 5, columns labeled “Original Data SAS” and “Original Data S-PLUS” correspond to 
the results from the original sample analysis in Table 3.  These were included for comparison purposes.  
Results from the SAS nested bootstrap program, the S-PLUS nested bootstrap program, and from the non-
nested bootstrap are also included in these tables. 
 In first looking at the results from Table 4, it can be seen that the γ00 and γ01 fixed effects had 
bootstrapped sample estimates that differ only slightly from the original estimate.  This was not the case, 
however, with the bootstrapped estimates for g10 in the S-PLUS bootstrapped estimate and for γ11 in both 
the SAS and S-PLUS bootstrapped estimate.  In these later estimates, it can be seen that the estimate 95%  
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Table 4   Results of the HLM Bootstrap of the HSB Data for the Fixed Effects 
 γ00 (mean math score for public schools) 
Estimate Original 

Data SAS 
SAS Nest 

Boot 
Original Data 

S-PLUS 
S-PLUS 

Nest Boot 
Bootstrap 

All 
Mean 11.33 11.33 11.33 11.33 11.33 
Minimum  10.11 10.23 10.37 
Maximum  12.24 12.29 12.23 
SD  0.29 0.29 0.29 
SEM  0.01 0.01 0.01 
LCL Mean  11.32 11.31 11.32 
UCL Mean  11.34 11.34 11.35 
Skewness  -0.03 -0.04 -0.12 
Kurtosis  0.04 0.09 -0.10 
 γ01 (SECTOR main effect) 
Estimate Original 

Data SAS 
SAS Nest 

Boot 
Original Data 

S-PLUS 
S-PLUS 

Nest Boot 
Bootstrap 

All 
Mean 4.02 4.01 4.02 4.03 4.01 
Minimum  2.66 2.79 2.78 
Maximum  5.25 5.44 5.34 
SD  0.40 0.40 0.41 
SEM  0.01 0.01 0.01 
LCL Mean  3.99 4.01 4.00 
UCL Mean  4.02 4.04 4.03 
Skewness  0.03 0.08 0.03 
Kurtosis  -0.14 0.01 -0.12 
 γ10 (CSES main effect) 
Estimate Original 

Data SAS 
SAS Nest 

Boot 
Original Data 

S-PLUS 
S-PLUS 

Nest Boot 
Bootstrap 

All 
Mean 3.35 3.36 3.34 3.37 3.37 
Minimum  2.08 2.08 1.78 
Maximum  4.80 4.91 4.72 
SD  0.42 0.42 0.42 
SEM  0.01 0.01 0.01 
LCL Mean  3.34 3.35 3.35 
UCL Mean  3.38 3.39 3.39 
Skewness  0.03 0.06 0.01 
Kurtosis  -0.07 0.04 -0.09 
 γ11 (SECTOR effect on CSES slope) 
Estimate Original 

Data SAS 
SAS Nest 

Boot 
Original Data 

S-PLUS 
S-PLUS 

Nest Boot 
Bootstrap 

All 
Mean -1.77 -1.80 -1.77 -1.83 -1.81 
Minimum  -3.75 -3.70 -3.72 
Maximum  0.55 -0.01 -0.03 
SD  0.58 0.59 0.60 
SEM  0.01 0.01 0.03 
LCL Mean  -1.83 -1.85 -1.84 
UCL Mean  -1.78 -1.80 -1.78 
Skewness  0.01 -0.02 -0.06 
Kurtosis  0.08 -0.16 -0.08 
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Table 5   Results of the HLM Bootstrap of the HSB Data for the Random Effects 
 Variation of Regression Intercept u0 (τ00) 
Estimate Original 

Data SAS 
SAS Nest 

Boot 
Original Data 

S-PLUS 
S-PLUS 

Nest Boot 
Bootstrap 

All 
Mean 7.64 8.61 6.78 7.61 8.55 
Minimum  4.56 3.82 5.43 
Maximum  13.30 12.66 12.68 
SD  1.26 1.12 1.23 
SEM  0.03 0.25 0.03 
LCL Mean  8.56 7.56 8.50 
UCL Mean  8.67 7.66 8.61 
Skewness  0.14 0.25 0.22 
Kurtosis  0.12 0.21 -0.11 
 Variation of Regression Slope u1 (τ11) 
Estimate Original 

Data SAS 
SAS Nest 

Boot 
Original Data 

S-PLUS 
S-PLUS 

Nest Boot 
Bootstrap 

All 
Mean 2.54 4.43 2.07 3.68 4.43 
Minimum  0.43 0.01 0.72 
Maximum  11.67 8.79 11.69 
SD  1.56 1.36 1.56 
SEM  0.04 0.03 0.04 
LCL Mean  4.36 3.63 4.37 
UCL Mean  4.50 3.74 4.50 
Skewness  0.56 0.37 0.45 
Kurtosis  0.66 0.11 0.27 
 Covariation Between u0 and u1 (τ00) 
Estimate Original 

Data SAS 
SAS Nest 

Boot 
Original Data 

S-PLUS 
S-PLUS 

Nest Boot 
Bootstrap 

All 
Mean 2.16 2.33 1.91 2.07 2.34 
Minimum  -1.74 -1.75 -1.37 
Maximum  6.38 5.61 6.83 
SD  1.15 1.02 1.11 
SEM  0.03 0.02 0.03 
LCL Mean  2.27 2.02 2.29 
UCL Mean  2.38 2.11 2.40 
Skewness  -0.05 0.02 -0.00 
Kurtosis  0.17 -0.01 0.01 
 Level-1 Residual (Var (rij)) 
Estimate Original 

Data SAS 
SAS Nest 

Boot 
Original Data 

S-PLUS 
S-PLUS 

Nest Boot 
Bootstrap 

All 
Mean 37.72 36.18 37.72 36.09 36.16 
Minimum  31.22 30.70 30.56 
Maximum  41.78 42.37 40.87 
SD  1.53 1.53 1.55 
SEM  0.03 0.03 0.03 
LCL Mean  36.11 36.02 36.10 
UCL Mean  36.24 36.16 36.23 
Skewness  0.05 -0.02 0.06 
Kurtosis  -0.01 0.13 -0.11 
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confidence intervals did not capture the original data estimates.  In instances of the fixed effects estimates, 
it would then be proper to default to the bootstrapped estimate rather than assume the original estimate. 
 In Table 5 we can see the differences between the original estimates of the variance components and 
the bootstrapped estimates.  Upon looking at these results, we can see that in every bootstrapped estimate 
across both the SAS and S-PLUS results, the original estimate of the variance component is not captured 
by the 95% confidence intervals around the nested bootstrapped estimate.  This is especially troubling 
since on many occasions, model specification issues are often based on these estimates. 
 For example, consider the intraclass correlation from the original dataset and nested bootstrap (where 
ICC = τ00/[ τ00 + rij]).  In the case of the present dataset, the ICC for the original data in the SAS equation 
would be .168, suggesting that only 16.8% of the variance in the math scores is between-school variation, 
while the remaining 83.2% variation is within schools. We can contrast these results to the nested 
bootstrap sample where the ICC is .192.  This is critical when we consider that Kreft and de Leeuw 
(1998) and Roberts (2004) have defined an ICC of .20 or greater as a large effect.  These differences in 
the variance estimates might lead a researcher to interpret a fixed effect as a small or medium effect when 
in fact the effect is quite large (or vice versa).  This could prove problematic when basing modeling 
decisions on the interpretation of variance estimates alone. 
 

Discussion 
 One question that might be brought to attention from the results presented in Tables 4 and 5 is 
whether or not the effort justifies the ends.  In this analysis, the results from the individual bootstrap and 
the nested bootstrap yield similar results.  Although this has proven true in this case, it does not hold that 
the two types of resampling will yield similar results across all hierarchical datasets. Consider when a 
dataset (unlike the present dataset) has few Level 1 units inside each Level 2 unit. In this case, the 
individual bootstrap would be much more likely to obtain bootstrap estimates in which entire Level 2 
units are ignored, whereas the nested bootstrap will always include the same n for each Level 2 unit in 
every analysis. As was previously noted, the nested bootstrap will prove especially useful when N for the 
entire dataset is very small. 
 While the present paper has only identified certain components of the hierarchical linear model to 
bootstrap, it can be seen that bootstrapping other components of the model could help to answer some of 
the problems associated with assumptions in HLM. For example, we might wish to test the mutual 
independence of all residuals by testing to see if they are normally distributed and have zero means given 
the explanatory variables across bootstrap samples. Furthermore, we might also want to test each 
bootstrapped sample for heteroscedasticity and in cases where heteroscedasticity is high across bootstrap 
samples, apply a Box-Cox transformation to the dataset and then reapply the bootstrap (Snijders & 
Bosker, 1999). 
 Although it has been the primary purpose of this paper to discuss and illustrate the nested bootstrap in 
hierarchical linear and multilevel modeling, further applications of this type of analysis could be utilized 
beyond the topics presented currently.  For example, this type of nested bootstrap could prove vitally 
useful in Generalizability theory studies where actual items are bootstrapped rather than just individuals.  
This nested bootstrap might further be utilized in ANOVA type studies where researchers are concerned 
about the robustness of variance estimates within levels of a given way. 
 This type of resampling can also encourage researchers to think seriously about resampling designs in 
other types of analysis.  For example, consider if we were to apply a jackknife resampling design to the 
present study.  Since HLM type analyses require such large sample sizes, we are unlikely to see much of a 
difference in our parameter estimates.  Consider, however, if we were to apply a nested jackknife to the 
data where actual schools are jackknifed rather than individuals.  In this case, a researcher could easily 
note the potential contribution (or lack of contribution) for each school in the dataset.  This type of 
analysis could also be applied to Generalizability theory where items (or some other facet) are jackknifed 
rather than individuals. 
 This type of resampling could be further applied in a nested jackstrap (a combination of the nested 
bootstrap and nested jackknife).  In this type of analysis (in a school-effects model), schools would first 
be jackknifed and then the nested bootstrap would be applied to each jackknifed sample.  One might 
consider that this type of analysis could conceivably run on a single computer for a couple of days, but 
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the results could help solve some sampling issues that a researcher might be facing.  It is hoped that the 
presentation of this paper will encourage researchers to consider more complex resampling techniques 
that are more appropriate to the type of data and type of analysis that they might run. 

References 
Bollen, K. A., & Stine, R. (1993).  Bootstrapping goodness-of-fit measures in structural equation models.  

In K. A. Bollen & J. S. Long, (Eds.), Testing structural equation models (pp. 111-135).  Newbury 
Park, CA: Sage. 

Bryk, A. S., & Raudenbush, S. W.  (1992).  Hierarchical linear models.  Newbury Park, CA: SAGE 
publications. 

Carver, R.P. (1978). The case against statistical significance testing. Harvard Educational Review, 48, 
378-399. 

Dalgleish, L. I. (1994).  Discriminant analysis: Statistical inference using the jackknife and bootstrap 
procedures.  Psychological Bulletin, 116, 498-508. 

Diaconis, P., & Efron, B. (1983).  Computer-intensive methods in statistics.  Scientific American, May, 
116-130. 

Efron, B. (1979). Bootstrap methods: Another look at the jackknife.  Annals of Statistics, 7, 1-26. 
Efron, B. (1985).  Bootstrap confidence intervals for a class of parametric problems.  Biometrika, 72, 45-

48. 
Fan, X., & Jacoby, W. R. (1995).  BOOTSREG: A SAS matrix language program for bootstrapping linear 

regression models. Educational and Psychological Measurement, 55, 764-768. 
Fan, X., & Mathews, T. A.  (1994, April).  Using bootstrap procedures to assess the issue of predictive 

bias in college GPA prediction for ethnic groups.  Paper presented at the annual meeting of the 
American Educational Research Association, New Orleans.  (ERIC Document Reproduction Service 
No: ED 372 117) 

Fan, X. & Wang, L. (1996).  Comparability of jackknife and bootstrap results: An investigation for a case 
of canonical analysis.  Journal of Experimental Education, 64, 173-189. 

Harris, D. J., & Kolen, M. J. (1989).  Examining the stability of Angoff's delta item bias statistic using 
bootstrap.  Educational and Psychological Measurement, 49, 81-87. 

Kotz, S., & Johnson, N. L.  (1992).  Breakthroughs in statistics: Volumes 1 and 2. New York: Springer-
Verlag. 

Kreft, I., & de Leeuw, J. (1998). Introducing multilevel modeling. Thousand Oaks, CA: Sage. 
Lambert, Z. V., Wildt, A. R., & Durand, R. M. (1991).  Approximating confidence interval for factor 

loadings.  Multivariate Behavioral Research, 26, 421-434. 
Lunneborg, C. E. (2000). Data analysis by resampling: Concepts and applications. Pacific Grove, CA: 

Duxbury. 
Mendoza, J. L., Hart, D. E., & Powell, A.  (1991). A bootstrap confidence interval based on a correlation 

corrected for range restriction.  Multivariate Behavioral Research, 26, 255-269. 
Rasmussen, J. L. (1987).  Estimating the correlation coefficients: Bootstrap and parametric approaches.  

Psychological Bulletin, 101, 136-139. 
Roberts, J. K. (2004).  An introductory primer on multilevel and hierarchical linear modeling. Learning 

Disabilities: A Contemporary Journal, 2(1), 30-38. 
Shaver, J.P. (1993).  What significance testing is, and what it isn't.  Journal of Experimental Education, 

61, 293-316. 
Singer, J. D. (1998).  Using SAS PROC MIXED to fit multilevel models, hierarchical models, and 

individual growth models.  Journal of Educational and Behavioral Statistics, 24, 323-355. 
Snijders, T., & Bosker, R. (1999). Multilevel analysis. Thousand Oaks, CA: Sage. 
Stine, R. A. (1989).  An introduction to bootstrap methods: Examples and ideas.  Sociological Methods 

and Research, 8, 243-291. 
Thompson, B. (1988).  Program FACSTRAP: A program that computes bootstrap estimates of factor 

structure.  Educational and Psychological Measurement, 48, 681-686. 
Thompson, B. (1992).  DISCSTRA: A computer program that computes bootstrap resampling estimates 

of descriptive discriminant analysis function structure coefficients and group centroids.  Educational 
and Psychological Measurement, 52, 905-911. 



Roberts and Fan 

Multiple Linear Regression Viewpoints, 2004, Vol. 30(1) 
 

32

Thompson, B. (1993).  The use of statistical significance tests in research: Bootstrap and other 
alternatives.  Journal of Experimental Education, 61, 361-377. 

Thompson, B.  (1995).  Exploring the replicability of a study's results: Bootstrap statistics for the 
multivariate case.  Educational and Psychological Measurement, 55, 84-94. 

Yung, Y., & Bentler, P. M.  (1996).  Bootstrapping techniques in analysis of mean and covariance 
structures.  In G. A. Marcoulides & R. E. Schumacker (Eds.), Advanced structural equation modeling: 
Issues and techniques (pp. 195-226). Mahwah, New Jersey: Lawrence Erlbaum. 

 Send correspondence to:  J. Kyle Roberts, Ph.D. 
          P.O. Box 311335 
          University of North Texas 
          Denton, TX  76203-1335 
         Email: kroberts@unt.edu 

Appendix A 
SAS Code for the Nested Bootstrap 

*** SAS PROGRAM FOR BOOTSTRAPPING INDIVIDUALS WITHIN EACH SCHOOL ***; 
 
LIBNAME BTHSB20 'C:\HLM Bootstrap'; 
 
DATA HSB20; INFILE 'C:\HLM Bootstrap\HSB20.TXT'; 
  INPUT SCHID MATH SECTOR CSES; 
 
     *** direct the SAS log to a disk file to avoid SAS LOG Window becoming full; 
PROC PRINTTO LOG='C:\HLM Bootstrap\LOGFILE.TMP'; 
 RUN; 
 
%MACRO BTRAP;           *** start of bootstrap macro 'BTRAP'; 
%DO BTRAP=1 %TO 2000;   *** 2000 bootstrapped samples, about 4.5 sec. each iteration; 
%DO A=1 %TO 20;         *** select each school sequentially; 
DATA D1; SET HSB20;     *** (20 schools in the data set, unequal N in each school); 
   IF SCHID=&A; 
 
     *** sampling with replacement within each selected school; 
     *** bootstrapped sample size equal to the original sample size in each school; 
     *** bootstrapped sample within each school is named BTDATA_n; 
 DATA BTDATA;  
  DROP I;  
  DO I=1 TO N; 
    IOBS=INT(RANUNI(0)*N) + 1; 
    SET D1 POINT=IOBS NOBS=N; 
  OUTPUT;  
  END;   
STOP; 
      *** assign a unique random number for later combining data sets; 
DATA BTDATA_&A;  
  SET BTDATA; UNIQUE=RANNOR(0); 
 
%IF &A=1 %THEN %DO; 
      DATA BTDATA_ALL; SET BTDATA_&A; 
 %END; 
    %IF &A>1 %THEN %DO; 
       PROC SORT DATA=BTDATA_ALL;   BY UNIQUE; RUN; 
    PROC SORT DATA=BTDATA_&A;    BY UNIQUE; RUN; 
 
         *** combining bootstrapped samples from each school; 
      DATA BTDATA_ALL; 
      UPDATE BTDATA_ALL BTDATA_&A;  BY UNIQUE; RUN; 
    %END; 
%END; 
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   *** direct PROC MIXED output to a file on disk; 
   *** avoids potential problem of SAS Output Window becoming too full; 
  FILENAME MIXEDOUT 'C:\HLM Bootstrap\MIXEDFILE'; 
PROC PRINTTO PRINT=MIXEDOUT NEW; 
RUN; 
 
PROC MIXED data=btdata_all NOCLPRINT COVTEST NOITPRINT; 
  CLASS SCHID; 
  MODEL MATH = SECTOR CSES SECTOR*CSES/SOLUTION DDFM=BW NOTEST; 
  RANDOM INTERCEPT CSES/TYPE=UN SUB=SCHID; 
     ODS OUTPUT COVPARMS=CP;      *** output random cov. terms to a SAS-DATA-SET; 
     ODS OUTPUT SolutionF=FIXED;  *** output fixed effects to a SAS-DATA-SET; 
  RUN;  
 
    *** re-direct the output to SAS output window; 
PROC PRINTTO PRINT=PRINT; RUN;  
 
DATA COV; SET CP; 
  KEEP CovParm Estimate; 
PROC TRANSPOSE DATA=COV OUT=COVOUT LET; RUN; 
 
      *** obtain the variances/covariance of random effects; 
      *** Use Bryk and Raudenbush notations; 
DATA COVOUT; SET COVOUT; 
  DROP _NAME_; RENAME COL1=U0 COL2=U01 COL3=U1 COL4=R; 
 
DATA COEFF; SET FIXED; 
  KEEP EFFECT ESTIMATE; 
PROC TRANSPOSE DATA=COEFF OUT=COEFF LET; RUN; 
 
     *** obtain the model parameter estimates of the fixed effects; 
     *** Use Bryk and Raudenbush notations; 
DATA COEFF; SET COEFF; 
  DROP _NAME_; RENAME COL1=GA00 COL2=GA01 COL3=GA10 COL4=GA11; 
 
     *** combine the two data sets to have one observation for each bootstrapped 
sample; 
DATA BOTH; MERGE COVOUT COEFF;  
 
      *** append estimates from each bootstrap iteration; 
      *** to a permanent SAS dataset on disk: HSB20_L1ONLY; 
PROC APPEND BASE=BTHSB20.HSB20_L1ONLY FORCE; RUN;    
%END;                      *** end bootstrap iterations; 
%MEND BTRAP;               *** end of bootstrap macro;   
%BTRAP;                    *** execute the BTRAP macro; 
 
 
/*  
    *** read in the data of bootstrapped results; 
    *** (2000 observations from 2000 bootstrap iterations); 
 
DATA TEMP;  
  SET BTHSB20.HSB20_L1ONLY; 
 
    *** obtain some basic descriptive statistics for; 
    *** the bootstrapped distributions of the estimates; 
 
PROC means n mean std skew kurtosis min max maxdec=3; 
  title 'descriptive statistics of HLM model - HSB data'; 
  title2 'bootstrap individuals within each school'; 
RUN;  
*/ 
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Appendix B 
S-PLUS Code for the Nested Bootstrap 

### Nested Bootstrap for HLM 
 
### The following code is for performing a nested bootstrap within 
### the HLM framework using lme in S-PLUS. 
 
### Identify the number of schools or groups here 
schools<-c(20) 
 
### In the split command, identify the dataset and then the grouping variable 
abc<-split(Hsb20, Hsb20$schid) 
 
### Identify the number of bootstrap samples to be drawn 
nboot<-2000 
 
### In this matrix, the number of columns must equal number 
### of components to be extracted 
results.out<-matrix(0, ncol=8, nrow=nboot) 
for (j in 1:nboot){ 
 
abc.total<-abc[[1]][1,] 
for(i in 1:schools){ 
  data.index <- sample(nrow(abc[[i]]), size =  
                 nrow(abc[[i]]), replace = T) 
  temp<-abc[[i]][data.index,] 
  abc.total<-rbind(abc.total,temp)} 
 
  abc.total<-abc.total[2:nrow(abc.total),] 
  final.data<-data.frame(abc.total) 
 
### Define the lme model here but note that the dataset in this 
### case is final.data and not your original dataset 
  model.out<-menuLme(fixed = math~sector*cses, data = final.data, 
        random = ~  cses  |  schid, method = "ML") 
 
### Define which components you want to extract from lme here 
results.out[j,]<-c(VarCorr(model.out)[1], VarCorr(model.out)[8], 
            VarCorr(model.out)[2], VarCorr(model.out)[3],  
            model.out$coefficients$fixed[1],  
            model.out$coefficients$fixed[2], model.out$coefficients$fixed[3],  
            model.out$coefficients$fixed[4])} 
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