
Multiple Linear Regression Viewpoints 
 

 
 
 

Volume 33   •   Number 1  •  Fall 2007 
 

 
 
 

Table of Contents 
 
 
 
 

The Use and Impact of Adjusted R2  
Effects in Published Regression Research         1 
Lesley F. Leach   University of North Texas 
Robin K. Henson   University of North Texas 
 
 
 
 

Performance of the Roy-Bargmann Stepdown  
Procedure as a Follow Up to a Significant MANOVA   12 
W. Holmes Finch   Ball State University 
 
 
 
 

The Use of Propensity Score Analysis to  
Address Issues Associated with the Use of  
Adjusted Means Produced by Analysis of Covariance   23 
John W. Fraas    Ashland University 
Isadore Newman    University of Akron 
Scott Pool     Ashland University 
 
 
 
 

Estimation Methods for Cross-Validation  
Prediction Accuracy: A Comparison of Proportional Bias   32 
David A. Walker    Northern Illinois University  
 
 
 
 

A Publication sponsored by the American Educational 
Research Association’s Special Interest Group on 
Multiple Linear Regression: The General Linear Model MLRV



 
Multiple Linear Regression Viewpoints 

 
Editorial Board 

 
Randall E. Schumacker, Editor 

University of North Texas 
 
 

T. Mark Beasley, Associate Editor 
University of Alabama at Birmingham 

 
 

Isadore Newman, Editor Emeritus 
University of Akron 

 
Leonard B. Bliss (2003-2006) Florida International University 
Gordon P. Brooks (2003-2006) Ohio University  
Larry G. Daniel (2003-2006) University of North Florida 
Wendy Dickinson (1998-2005) University of South Florida 
Jeffrey B. Hecht  (2001-2005) Northern Illinois University 
Robin K. Henson  (2001-2004) University of North Texas 
Janet K. Holt (2000-2004) Northern Illinois University 
Daniel J. Mundfrom (1999-2006) Northern Colorado University 
Bruce G. Rogers (2001-2005) University of Northern Iowa 
Dash Weerasinghe (2001-2004) Dallas Independent School District 
 

   
 
 
 
 
Multiple Linear Regression Viewpoints (ISSN 0195-7171) is published by the AERA Special 
Interest Group on Multiple Linear Regression: General  Linear Model through the 
University of Alabama at Birmingham.  
 
Subscription and SIG membership information can be obtained from: 
Jeffrey B. Hecht, MLR:GLM/SIG Executive Secretary 
Department of Educational Technology, Research & Assessment 
Northern Illinois University 
DeKalb, IL   60115-2854.   
jbhecht@niu.edu 
 



MLRV abstracts appear in CIJE, the ERIC system, and microform copies are available from 
University Microfilms International, 300 North Zeeb Road, Ann Arbor, MI 48106. MLRV is 
listed in the EBSCO Librarians Handbook.  



Adjusted R2 

Multiple Linear Regression Viewpoints, 2007, Vol. 33(1)                                                                                         1 

The Use and Impact of Adjusted R2  
Effects in Published Regression Research 

     Lesley F. Leach           Robin K. Henson    
University of North Texas 

This paper empirically evaluates the reporting of adjusted effect sizes (e.g., adjusted R2, omega2) in 
published multiple regression studies by (a) documenting the frequency of adjusted effect reporting and 
interpretation, (b) identifying the types of corrected effects reported, and (c) estimating the degree of 
"shrinkage" present across regression analyses by using the information found in published journal 
articles to calculate corrected effects based on various formulae. Adjusted effects were infrequently 
reported in the literature, and interpretation of adjusted effects that were reported was rare. 

esearchers are becoming increasingly aware that interpretation of effect sizes is critical in 
evaluating empirical results (Henson & Smith, 2000; Henson, 2006; Kirk, 1996; Rosnow & 
Rosenthal, 1989; Thompson, 1996; Thompson & Snyder, 1997). The American Psychological 
Association (APA) Task Force on Statistical Inference (Wilkinson & APA Task Force on 

Statistical Inference, 1999) stated: 
It is hard to imagine a situation in which a dichotomous accept-reject decision is better than 
reporting an actual p-value or, better still, a confidence interval. . . Always provide some 
effect-size estimate when reporting a p-value. (p. 599, italics added). 

  The Task Force went on to state, “Always present effect sizes for primary outcomes . . .It helps to add 
brief comments that place these effect sizes in a practical and theoretical context" (Wilkinson & APA 
Task Force on Statistical Inference, 1999, p. 599). 
  This directive was a substantial step beyond the fourth edition of the APA’s Publication Manual, 
which only recommended reporting of effect sizes in research (APA, 1994).  Several empirical studies 
demonstrated, however, that this recommendation had little impact on the number of effect sizes reported 
in articles and it affected the interpretation of effect sizes even less (cf. Henson & Smith, 2000; Vacha-
Haase, Nilsson, Reetz, Lance, & Thompson, 2000). 
 The fifth edition of the APA manual (APA, 2001) incorporated the Task Force’s directive, stating 
“For the reader to fully understand the importance of your findings, it is almost always necessary to 
include some index of effect size or strength of relationship in your Results section” (p. 25).  The current 
APA manual also called the "failure to report effect sizes" a "defect in the design and reporting of 
research" (p. 5). At least 23 journals have followed suit, requiring the inclusion of effect sizes with 
statistical results (Onwuegbuzie, Levin, & Leech, 2003). 
 The use of effect sizes has been widely discussed in the literature vis-à-vis null hypothesis 
significance tests (NHST).  A discussion of issues surrounding the use of NHSTs is beyond the scope of 
this paper. Harlow, Mulaik, and Steiger (1997) present a balanced discussion of the debate for interested 
readers. Huberty and Pike (1999) and Huberty (2002) document the historical development of statistical 
testing and effect sizes, respectively. 
 Indeed, Pedhazur and Schmelkin (1991) noted that, “Probably few methodological issues have 
generated as much controversy among sociobehavioral scientists as the use of [statistical significance] 
tests” (p. 198).  Elsewhere, Pedhazur (1997) indicated that the “controversy is due, in part, to various 
misconceptions of the role and meaning of such [statistical significance] tests in the context of scientific 
inquiry” (p. 26). These “misconceptions” have been attacked for considerable time (see e.g., Berkson, 
1942; Tyler, 1931), and yet they persist in modern research practice (Cohen, 1994; Finch, Cumming, & 
Thomason, 2001).  Nevertheless, current methodological practice is increasingly emphasizing the need 
for effect size indices and more accurate interpretation of NHSTs (Kline, 2004). 
 Some researchers recommend using effect sizes and NHSTs together (Fan, 2001; Huberty, 1987).  
Moreover, some critics of NHSTs have argued that effect sizes should be reported whether or not the 
results are statistically significant (Rosnow & Rosenthal, 1989; Thompson, 1999).  As Roberts and 
Henson (2002) stated, “. . .one remaining point of debate concerns whether effect sizes should be reported 
(a) for all null hypothesis tests, even non-statistically significant ones, or (b) only after a finding is first 
determined to be statistically significant” (pp. 242-243). 

R 



Leach & Henson 

 
2                                                                                          Multiple Linear Regression Viewpoints, 2007, Vol. 33(1) 

Types of Effect Sizes: Corrected and Uncorrected Indices 
 There are many different effect size indices from which researchers can choose, but most can be 
grouped into two broad categories: (a) measures of standardized differences (e.g., Cohen's d, Hedges' g) 
and (b) variance–accounted-for measures (e.g., R2, η2) (Kirk, 1996; Kline, 2004; Olejnik & Algina, 2000; 
Onwuegbuzie, Levin, & Leech, 2003).  Reviews of various effect size indices are provided by Olejnik 
and Algina (2000), Snyder and Lawson (1993), and Yin and Fan (2001). 
 In addition, effect sizes can be further classified as “uncorrected” or “corrected” measures 
(Thompson, 2002). For example, R2 is commonly used in multiple regression applications and is the most 
prevalent effect size index documented in the literature – most likely due to the fact that practically all 
statistical computer packages routinely provide R2 as part of regression output (Kirk, 1996).  Studies have 
shown, however, that R2 systematically overestimates the proportion of explained variance to total 
variance expected in the population or future samples (Carter, 1979; Fan, 2001; Snyder & Lawson, 1993; 
Thompson, 1990, 1999; Yin & Fan, 2001).  That is, general linear model analyses such as multiple 
regression commonly utilize the ordinary least squares (OLS) estimation method to obtain the greatest 
possible effect size. Analyses using this estimation method capitalize on all the variance in a sample, 
including the variance attributable to sampling error that is unlikely to be present in future samples or the 
population (Thompson & Kieffer, 2000). Because the effect size accounts for error unique to the sample 
data, the resulting “uncorrected” R2 is often found to be a biased estimate of the variance explained in the 
population (Roberts & Henson, 2002; Yin & Fan, 2001) and future samples (Thompson, 1990).   
 To statistically remove the bias associated with sampling error, various adjustment formulae can be 
used to "shrink" the effect size by the theoretical amount of sampling error present in a given sample 
(Snyder & Lawson, 1993).  The amount of shrinkage is determined using the factors that affect sampling 
error.  Theoretically, sampling error increases (a) as sample size decreases, (b) as the number of variables 
in the model increases (and, by extension the number of predictors increase), and (c) as the population 
effect decreases (Thompson, 1999; Vacha-Haase & Thompson, 2004).   Because adjustment formulae 
limit the influence of the factors that increase sampling error, these "corrected” effects provide a better 
estimate of the population squared multiple correlation coefficient (Carter, 1979; Larson, 1931; Pedhazur, 
1997).  But as this paper demonstrates, corrected effects are rarely reported, and the failure to report such 
corrected effects may impact result interpretation.   
 
Purpose 
 Because corrected effects can be more accurate estimates of the effect in the population or future 
samples, the purposes of the present study were to (a) document the frequency of corrected effect 
reporting and interpretation, (b) identify the types of corrected effects that are reported, and (c) estimate 
the degree of shrinkage present when authors do not give corrected effects. Information found in the 
reviewed articles was used to calculate corrected effects based on various formulae (Snyder & Lawson, 
1993; Yin & Fan, 2001). This analysis facilitated inspection of interpretation differences resulting from 
effect size adjustment and permitted empirical investigation of the amount of correction provided by the 
various corrected effect formulae. Because R2 and adjusted R2 are typically reported with regression 
results in statistical software packages, this paper addressed only multiple regression applications. 
 
Adjusted R2 Formulae 
 There are many formulae available for calculating corrected effect sizes. Table 1 outlines various 
formulae presented by Snyder and Lawson (1993) and Yin and Fan (2001), which shrink R2 based on the 
number of predictors (k), sample size (n), and the obtained effect (R2) as an initial estimate of the 
population effect. The adjustment formulae fall into two different categories based on their purposes: (a) 
population effect estimates and (b) future sample effect estimates. Population effect estimates 
approximate the association strength expected to be realized in the population (Yin & Fan, 2001), while 
those in the future sample category estimate the effect likely to be found upon replication of the study 
with a new sample (Snyder & Lawson, 1993). One could expect greater shrinkage to be more likely with 
future sample estimates because “[they] must adjust for sampling error present in both the present study 
and some future study" (Snyder & Lawson, 1993, p. 340). Conversely, adjusted effect estimates of the 
population parameter only adjust for the sampling error influencing the present study's data and, 
consequently, will generally be less conservative than estimates of the effect in future samples.    
Table 1. Various Adjusted R2 Formulae. 
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Note. n=sample size. k=number of predictor variables. Adapted from Yin & Fan (2001) and, Snyder & 
Lawson (1993). aρ2 was estimated with the Ezekiel value. bρ was estimated with the square root of the 
Ezekiel value. Negative Ezekiel values were replaced with zeros. 
 

  Ultimately, the decision of which R2 adjustment formula to use depends on the generalizations that 
the researcher wishes to make.  As Snyder and Lawson (1993) observed, "Most researchers ground their 
work in empirical findings from previous samples and usually desire that their work generalize to future 
samples" (p. 341). Researchers seeking this goal would be wise to consider corrected effect size estimates 
for future samples. If, however, the researcher wishes to develop population expectations, a population 
effect estimate may be more appropriate (Snyder & Lawson, 1993; Yin & Fan, 2001). If replicability is 
indeed the hallmark of scientific inquiry, then the sample effect that best represents the effect expected in 
the population or future samples should be of primary analytic interest.  Accordingly, we argue that these 
corrected effects should be both reported and interpreted whenever possible. 
 

Method 
 We examined regression applications in four journals –Journal of Applied Psychology (v.86[5] – 
87[4]), Journal of Educational Psychology (v. 93[4]-94[3]), Journal of Experimental Education (v. 95[1]-
96[1]), and Journal of Educational Research (v. 70[2]-71[1])– over a one-year time span. We considered 
only the first three regression analyses presented in each article.  Additional analyses were not considered 
so that articles containing an above-average number of regression analyses would not overly impact the 
results. The frequencies of uncorrected and corrected effects were coded as well as the interpretation of 
the effects.  We considered an effect to be interpreted if the author included a statement explaining the 
effect in relation to the dependent variable.  For example, Klein, Conn, and Sorra (2001) interpreted R2 by 
noting, “Together management support and financial resource availability explained 19%. . .of the 
variance in implementation of polices and practices (β = .36, p < .05)” (p. 819).  This and similar 
statements were coded as interpreted.  
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Table 2. Reporting and Interpretation Frequency of Uncorrected and Corrected Effect Sizes. 

Journal 

No. of 
Articles 
Using 
Mult. 

Regression 

No. of 
Mult. 

Regression 
Analyses 

No. not 
Reporting 
an Effect 

Size 
No. 

Reported 
No. 

Interpreted 
No. 

Reported 
No. 

Interpreted
Journal of Applied 
Psychology   9 22 

0 
(0.00) 

16 
(72.73) 

7 
(31.82) 

9 
(39.13) 

0 
(0.00) 

Journal of Educational 
Psychology 11 28 

12 
(42.85) 

15 
(53.57) 

9 
(32.14) 

1 
(3.57) 

1 
(3.57) 

Journal of Educational 
Research 4   9 

3 
(33.33) 

4 
(44.44) 

3 
(33.33) 

3 
(33.33) 

2 
(22.22) 

Journal of Experimental 
Education   1   2 

0 
(0.00) 

2 
(100.00) 

0 
(0.00) 

0 
(0.00) 

0 
(0.00) 

Total 
25 61 

15 
(24.59) 

37 
(60.65) 

19 
(31.15) 

13 
(20.97) 

3 
(4.92) 

Note. The first, second, and third multiple regression analyses were considered from each article. 
Percentages are presented in parentheses under selected frequencies. The number of uncorrected and 
corrected effects may sum to greater than the total number of analyses due to the fact that some analyses 
reported both types of effects. 
 

Results 
Reporting Frequency 
  Reporting frequencies of uncorrected and corrected effects are displayed in Table 2. Overall, 61% of 
the analyses reported an uncorrected effect size. Fewer interpreted the effects, however, numbering 
roughly 50% of the total uncorrected effects reported. These results are relatively consistent with previous 
studies’ findings addressing uncorrected effect sizes and their interpretation (cf. Henson & Smith, 2000; 
Kirk, 1996; Thompson & Snyder, 1997; Vacha-Haase, Nilsson, Reetz, Lance & Thompson, 2000).   
  Corrected effects occurred much less often in the literature, showing up in only 21% of the reviewed 
articles.  Interpretation of the corrected effects was even rarer at 5% of all adjusted effects reported. 
Adjusted R2 was reported more frequently than other types of corrected effects to the near exclusion of 
other options (ω2 was reported in one instance), but the formulae used to calculate adjusted R2 were not 
reported in the literature.  Nevertheless, one could reasonably surmise that most of the authors likely used 
the Ezekiel formula (sometimes incorrectly attributed to Wherry [Yin & Fan, 2001]) because it is the 
formula used by the popular SAS and SPSS statistical software packages to calculate adjusted R2 (Kirk, 
1996; Yin & Fan, 2001).  Although use of the Ezekiel correction is better than no correction, the near 
complete dependence on it in the present review begs the issues of (a) whether authors are reporting 
adjusted R2 by default because it is provided in statistical output and (b) whether authors are aware of 
other correction options. 
 

Adjusted R2 using Various Formulae 
  For comparative purposes, we calculated adjusted effect sizes for all analyses that included an 
uncorrected effect size.  We used information provided by the journal authors to adjust R2 using each of 
the formulae listed in Table 1. Tables 3 and 4 present the uncorrected R2, followed by the values 
calculated for the population and future sample adjustment formulae, respectively. These calculations 
demonstrate the amount of correction for each formula in relation to the uncorrected effect size, number 
of predictors, and sample size. Tables 5, 6, and 7 present the degrees of shrinkage for each of the 
adjustment formulae categorized by sample size, uncorrected R2, and number of predictors, respectively. 
 

Discussion 
Reporting and Interpretation Frequency of Adjusted Effects 
  As noted, the reporting and interpretation of adjusted effects was rare.  In fact, only 3 of the 62 
(4.92%) regression analyses reviewed in this study reported and interpreted an adjusted effect. Given the  
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Table 3. Adjusted R2 Using Population Effect Adjustment Formulae 

N k 
Reported 
Adj. R2 R2 Smith Ezekiel Wherry-2 

Olkin-
Pratt Pratt Claudy-3 

578 2 - .01 .0066 .0066 .0083 .0066 .0066 .0083 
1340 3 - .02 .0178 .0178 .0185 .0178 .0178 .0186 

473 1 - .03 .0279 .0279 .0300 .0281 .0281 .0302 
1261 4 - .03 .0269 .0269 .0277 .0270 .0270 .0277 

99 2 - .05 .0304 .0302 .0402 .0316 .0309 .0417 
463 8 - .12 .1045 .1045 .1065 .1049 .1049 .1069 
463 8 - .12 .1045 .1045 .1065 .1049 .1049 .1069 
465 1 - .13 .1281 .1281 .1300 .1286 .1286 .1305 

62 1 - .14 .1259 .1257 .1400 .1309 .1296 .1456 
465 1 - .14 .1381 .1381 .1400 .1387 .1387 .1405 
465 1 - .14 .1381 .1381 .1400 .1387 .1387 .1405 

1515 6 - .14 .1366 .1366 .1372 .1367 .1367 .1373 
1515 6 - .14 .1366 .1366 .1372 .1367 .1367 .1373 
1515 6 - .14 .1366 .1366 .1372 .1367 .1367 .1373 

99 2 - .17 .1529 .1527 .1614 .1559 .1555 .1647 
343 10 - .17 .1451 .1450 .1476 .1458 .1457 .1483 
664 12 - .18 .1649 .1649 .1662 .1653 .1653 .1666 

37 2 - .19 .1437 .1424 .1669 .1536 .1499 .1784 
463 8 - .20 .1859 .1859 .1877 .1866 .1866 .1884 
187 11 - .22 .1713 .1710 .1757 .1727 .1725 .1772 

62 3 - .24 .2014 .2007 .2142 .2073 .2062 .2207 
99 3 - .26 .2369 .2366 .2446 .2408 .2404 .2487 

170 8 - .26 .2235 .2232 .2280 .2255 .2253 .2301 
24 3 - .29 .1886 .1835 .2224 .2064 .1979 .2442 
36 3 - .37 .3127 .3109 .3318 .3262 .3236 .3467 
45 3 - .42 .3786 .3776 .3924 .3898 .3885 .4044 
35 4 - .50 .4355 .4333 .4516 .4500 .4481 .4672 

289 7 .54 .55 .5388 .5388 .5404 .5405 .5405 .5421 
412 7 - .59 .5829 .5829 .5839 .5841 .5841 .5851 
289 7 .61 .62 .6106 .6105 .6119 .6122 .6122 .6136 

25 3 - .63 .5795 .5771 .5964 .5999 .5978 .6181 
170 8 - .64 .6222 .6221 .6244 .6249 .6249 .6272 
288 8 .65 .66 .6503 .6503 .6515 .6518 .6518 .6531 

25 3 - .67 .6250 .6229 .6400 .6444 .6427 .6605 
35 4 - .74 .7065 .7053 .7148 .7182 .7176 .7270 
35 3 - .75 .7266 .7258 .7344 .7380 .7376 .7462 
38 4 - .80 .7765 .7758 .7824 .7855 .7852 .7916 

 M .54 .31 .2870 .2864 .2938 .2917 .2910 .2989 
 SD .06 .24 .2382 .2379 .2392 .2414 .2413 .2426 
Note. Population adjusted effect estimates were calculated for analyses that reported uncorrected R2 
values. Analyses that did not include an uncorrected effect size were not included. n=sample size. 
k=number of predictor variables. 
 

fact that adjusted effects theoretically provide the researcher with a more realistic picture of the treatment 
effect, this result is surprisingly low.   
 

Comparison of Various Adjustment Formulae 
  For those analyses not reporting an adjusted effect, we calculated and compared adjustments using the 
each of the fourteen adjustment formulae. Of the adjusted R2 formulae estimating the population effect, 
the Ezekiel formula provided the most conservative correction for sampling error while the  
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Table 4. Adjusted R2 Using Future Sample Effect Adjustment Formulae. 

N k 
Reported 
Adj. R2 R2 Lord-1 Lord-2 

Darlington
-Stein Browne Claudy-1 Claudy-2 

Rozeboom
-1 

Rozeboom
-2 

578 2 - .01 -.0003 .0014 .0014 .0081 .0038 .0048 .0031 .0043
1340 3 - .02 .0141 .0149 .0149 .0185 .0157 .0163 .0156 .0158

473 1 - .03 .0218 .0238 .0238 .0297 .0260 .0279 .0259 .0260
1261 4 - .03 .0223 .0231 .0230 .0276 .0240 .0246 .0238 .0241

99 2 - .05 -.0094 .0008 -.0002 .0389 .0154 .0198 .0108 .0180
463 8 - .12 .0851 .0871 .0867 .1076 .0901 .0906 .0891 .0908
463 8 - .12 .0851 .0871 .0867 .1076 .0901 .0906 .0891 .0908
465 1 - .13 .1225 .1244 .1244 .1295 .1263 .1281 .1263 .1263

62 1 - .14 .0827 .0975 .0965 .1363 .1121 .1252 .1118 .1124
465 1 - .14 .1326 .1344 .1344 .1395 .1363 .1381 .1363 .1363
465 1 - .14 .1326 .1344 .1344 .1395 .1363 .1381 .1363 .1363

1515 6 - .14 .1320 .1326 .1326 .1375 .1332 .1337 .1332 .1332
1515 6 - .14 .1320 .1326 .1326 .1375 .1332 .1337 .1332 .1332
1515 6 - .14 .1320 .1326 .1326 .1375 .1332 .1337 .1332 .1332

99 2 - .17 .1181 .1270 .1261 .1607 .1363 .1436 .1358 .1367
343 10 - .17 .1150 .1176 .1166 .1509 .1220 .1217 .1202 .1231
664 12 - .18 .1473 .1485 .1482 .1686 .1504 .1507 .1498 .1508

37 2 - .19 .0471 .0728 .0658 .1651 .1016 .1150 .0974 .1043
463 8 - .20 .1683 .1701 .1697 .1901 .1723 .1733 .1719 .1726
187 11 - .22 .1130 .1178 .1138 .1849 .1281 .1233 .1225 .1309

62 3 - .24 .1352 .1491 .1451 .2176 .1649 .1722 .1627 .1659
99 3 - .26 .1977 .2058 .2043 .2472 .2144 .2202 .2138 .2145

170 8 - .26 .1773 .1821 .1796 .2368 .1893 .1892 .1869 .1901
24 3 - .29 .0060 .0474 .0152 .2347 .1013 .0940 .0871 .1078
36 3 - .37 .2125 .2344 .2233 .3467 .2570 .2652 .2555 .2560
45 3 - .42 .3068 .3222 .3160 .4071 .3374 .3457 .3371 .3360
35 4 - .50 .3333 .3524 .3367 .4952 .3714 .3736 .3710 .3671

289 7 .54 .55 .5244 .5260 .5256 .5515 .5277 .5289 .5277 .5275
412 7 - .59 .5738 .5748 .5746 .5923 .5758 .5767 .5758 .5757
289 7 .61 .62 .5984 .5998 .5994 .6247 .6011 .6022 .6011 .6009

25 3 - .63 .4890 .5095 .4943 .6533 .5266 .5332 .5291 .5200
170 8 - .64 .5998 .6021 .6009 .6519 .6045 .6056 .6044 .6038
288 8 .65 .66 .6381 .6393 .6389 .6677 .6406 .6414 .6406 .6403

25 3 - .67 .5443 .5625 .5489 .7026 .5774 .5836 .5800 .5710
35 4 - .74 .6533 .6632 .6551 .7922 .6715 .6743 .6729 .6669
35 3 - .75 .6855 .6945 .6898 .7826 .7020 .7070 .7031 .6994
38 4 - .80 .7394 .7463 .7411 .8597 .7519 .7544 .7529 .7487

 M .54 .31       
 SD .06 .24 .2489 .2565 .2528 .3076 .2649 .2676 .2640 .2646
    .2341 .2340 .2331 .2581 .2332 .2335 .2343 .2316
Note. Future sample adjusted effect estimates were calculated for analyses that reported uncorrected R2 values. 
n=sample size. k=no. of predictor variables. 
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Table 5. Degree of Shrinkage Categorized by Number of Predictors 
Population Effect Estimates 

 Smith Ezekiel Wherry-2 Olkin-Pratt Pratt Claudy-3     
K M SD M SD M SD M SD M SD M SD     

1-2a .0120 .0148 .0122 .0152 .0048 .0079 .0097 .0118 .0104 .0130 .0022 .0053   
3-4b .0391 .0266 .0404 .0279 .0267 .0180 .0284 .0218 .0300 .0239 .0153 .0127   
5-7c .0063 .0034 .0063 .0035 .0054 .0030 .0055 .0027 .0055 .0027 .0045 .0022   

8-9d .0182 .0094 .0183 .0095 .0159 .0082 .0169 .0091 .0169 .0091 .0146 .0079   

10+e .0296 .0173 .0297 .0174 .0269 .0157 .0288 .0168 .0288 .0169 .0260 .0152   

Future Sample Effect Estimates 

 Lord-1 Lord-2 
Darlington-

Stein Browne Claudy-1 Claudy-2 Rozeboom-1 Rozeboom-2
K M SD M SD M SD M SD M SD M SD M SD M SD 

1-2 .0392 .0454 .0315 .0372 .0326 .0394 .0059 .0082 .0229 .0281 .0177 .0242 .0240 .0295 .0222 .0272

3-4 .1062 .0738 .0919 .0632 .1010 .0717
-

.0050 .0330 .0773 .0504 .0735 .0516 .0781 .0531 .0790 .0499

5-7 .0146 .0078 .0136 .0073 .0138 .0075
-

.0001 .0031 .0126 .0069 .0119 .0066 .0126 .0069 .0127 .0070
8-9 .0411 .0213 .0387 .0200 .0396 .0209 .0064 .0134 .0355 .0180 .0349 .0184 .0363 .0188 .0353 .0177
10+ .0649 .0381 .0620 .0363 .0638 .0382 .0219 .0121 .0565 .0320 .0581 .0348 .0592 .0346 .0551 .0308
Note. N = 37 analyses. Shrinkage = uncorrected R2 – adjusted R2. an = 9. bn = 13. cn = 6. dn = 6. en=3. 
 
 
Table 6. Degree of Shrinkage Categorized by Sample Size. 

Population Effect Estimates 
Study Smith Ezekiel Wherry-2 Olkin-Pratt Pratt Claudy-3     

N M SD M SD M SD M SD M SD M SD     
1-30a .0656 .0311 .0688 .0327 .0438 .0207 .0464 .0323 .0505 .0361 .0224 .0203   

31-50b .0414 .0159 .0427 .0164 .0280 .0116 .0298 .0145 .0314 .0155 .0155 .0097   
51-100c .0225 .0096 .0228 .0098 .0119 .0095 .0187 .0088 .0195 .0088 .0077 .0091   

100+d .0115 .0121 .0115 .0122 .0097 .0113 .0071 .0068 .0107 .0118 .0089 .0109   

Future Sample Effect Estimates 

Study Lord-1 Lord-2 
Darlington-

Stein Browne Claudy-1 Claudy-2 Rozeboom-1 Rozeboom-2
N M SD M SD M SD M SD M SD M SD M SD M SD 

1-30 .1836 .0873 .1569 .0745 .1772 .0848
-

.0002 .0483 .1282 .0527 .1264 .0605 .1313 .0622 .1304 .0452
31-50 .1132 .0439 .0977 .0375 .1060 .0409 .0112 .0361 .0825 .0307 .0764 .0302 .0829 .0318 .0845 .0305

51-100 .0691 .0214 .0560 .0201 .0576 .0215 .0119 .0068 .0434 .0189 .0358 .0200 .0450 .0192 .0425 .0189
100+ .0265 .0263 .0247 .0253 .0252 .0262 .0050 .0106 .0147 .0135 .0217 .0242 .0229 .0243 .0220 .0226
Note. N = 37 analyses. Shrinkage = uncorrected R2 – adjusted R2. an = 3. bn = 7. cn = 5. dn = 22. 
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Table 7. Degree of Shrinkage Categorized by Uncorrected R2. 

Population Effect Estimates 
 Smith Ezekiel Wherry-2 Olkin-Pratt Pratt Claudy-3     

R2 M SD M SD M SD M SD M SD M SD     
.01-.15a .0065 .0065 .0066 .0065 .0036 .0049 .0059 .0060 .0060 .0061 .0029 .0053   
.16-.30b .0366 .0261 .0374 .0275 .0205 .0179 .0320 .0214 .0335 .0237 .0213 .0140   
.31-.50c .0544 .0018 .0561 .0124 .0381 .0104 .0413 .0101 .0433 .0106 .0239 .0086   

.51+d .0231 .0154 .0239 .0163 .0170 .0097 .0150 .0082 .0156 .0089 .0086 .0032   

Future Sample Effect Estimates 

 Lord-1 Lord-2 
Darlington-

Stein Browne Claudy-1 Claudy-2 Rozeboom-1 Rozeboom-2
R2 M SD M SD M SD M SD M SD M SD M SD M SD 

.01-.15 .0189 .0193 .0160 .0159 .0162 .0162 .0039 .0045 .0125 .0120 .0103 .0110 .0130 .0129 .0129 .0115

.16-.30 .0955 .0751 .0842 .0632 .0896 .0725 .0223 .0142 .0699 .0480 .0677 .0510 .0732 .0521 .0521 .0461

.31-.50 .1458 .0286 .1270 .0260 .1380 .0306 .0137 .0093 .1081 .0234 .1018 .0262 .1088 .0236 .0236 .0247

.51+ .0604 .0447 .0532 .0376 .0581 .0432
-

.0229 .0210 .0047 .0318 .0443 .0297 .0462 .0308 .0308 .0344
Note. N = 37 analyses. Shrinkage = uncorrected R2 – adjusted R2. an = 14. bn = 10. cn = 3. dn = 10. 
 
Table 8. Selected Study R2 Adjustments 

   Population Effect Estimates 

Study n k R2 Smith Ezekiel Wherry-2
Olkin-
Pratt Pratt Claudy-3 

  

38 4 .80a .7765 .7758 .7824 .7855 .7852 .7916 
45 3 .42b .3786 .3776 .3924 .3898 .3885 .4044 
25 3 .63c .5795 .5771 .5964 .5999 .5978 .6181 

463 8 .12d .1045 .1045 .1065 .1049 .1049 .1069 
24 3 .29e .1886 .1835 .2224 .2064 .1979 .2442 

   Future Sample Effect Estimates 

Study n k R2 Lord-1 Lord-2 
Darlington

-Stein Browne Claudy-1 Claudy-2 
Rozeboom

-1 
Rozeboom

-2 
38 4 .80 .7394 .7463 .7411 .8597 .7519 .7544 .7529 .7487
45 3 .42 .3068 .3222 .3160 .4071 .3374 .3457 .3371 .3360
25 3 .63 .4890 .5095 .4943 .6533 .5266 .5332 .5291 .5200

463 8 .12 .0851 .0871 .0867 .1076 .0901 .0906 .0891 .0908
24 3 .29 .0060 .0474 .0152 .2347 .1013 .0940 .0871 .1078

Note: aRoth, Speece, & Cooper (2002);  bMarks, Sabella, Burke, & Zaccaro (2002);  cGefland, Nishii, 
Holcombe, Dyer, Ohbuchi, & Fukuno (2001);, dHarackiewicz, Barron, Tauer, & Elliot (2002). 
 
Claudy-3 formula offered the least conservative correction. Table 3 illustrates this trend for these 
adjustments. One can infer that most adjusted R2 effects presented in the literature offer a conservative 
estimate since the Ezekiel correction is used in the SAS and SPSS (Kirk, 1996) software packages 
commonly used by researchers.  The uninitiated researcher may not know, however, that these software 
packages use a formula that estimates only the population parameter. 
  As illustrated in Table 4, the majority of the future sample effect estimates provided even more 
conservative estimates than those predicting the population effect. Of these adjustment formulae, the 
Lord-1 provided the most conservative estimate of the future sample effect while the Browne formula 
provided the most liberal overall. It is important to note that nine of the 62 adjustments using the Browne 
formula actually resulted in corrected effects that were greater than the uncorrected effects – a logically 
impossible result. That is, a sample cannot possess less sampling error than a population that, by 
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definition, has no sampling error at all. This phenomenon with the Browne formula begs further 
investigation. It would seem prudent to use caution with the Browne formulae for correction of effects of 
greater magnitude.   
  In shrinking R2, adjustment formulae consider the three factors that affect sampling error: (a) sample 
size, (b) number of variables in the model, and the (c) uncorrected effect size (as an estimate of the 
population effect).  It naturally follows that these three factors would affect the degree of correction 
provided by the adjustments to R2. 
  Table 5 provides evidence of the number of predictor’s impact on the degree of shrinkage. Generally, 
as the number of predictors increased, the degree of shrinkage increased as well.  Our results may be 
somewhat inconsistent, however, as the analyses with 5-7 predictors did not always show the upward 
trend as expected.  This may be due to the fact that the majority of the analyses in this group had large 
sample sizes.  In fact, no analysis in this group reported a sample size less than 289 subjects.  
Consequently, this group may not be representative of the adjustment trend based on the number of 
predictors typically found in the research literature; the large sample sizes may have lessened the degree 
of correction for this group. 
  Thompson and Melancon (1990) reported that "with a very large effect size, or a large sample size, or 
both, it will matter less which, if any, statistical corrections the researcher applies in estimating effect 
sizes" (p. 11).  This proposition is supported by the data in Table 6.  As sample size increased, the amount 
of correction lessened, although in varying amounts based on the formulae.  This is logical given that as 
sample size increases, sampling error – the issue for which adjustments are made – decreases.  More 
specific evidence of this fact is provided in Table 7. Given the case with a large sample size (n = 463) and 
a small effect size (R2 = 0.12), the correction was relatively small.   
Thompson and Melancon (1990) also noted the converse – that statistical corrections tend to be greater 
when effect sizes and sample sizes are small.  This can be noted generally in Tables 6 and 7.  As sample 
size decreased, adjustments generally increased.  Again, it is interesting to note that a smaller sample size 
typically results in greater theoretical sampling error in a sample. Because adjustments to R2 are 
determined by the degree of sampling error, it follows that one could expect a large correction given a 
small sample size.  
  The correction for one case detailed in Table 8 provides specific evidence for this proposition. With a 
small sample size (n=24) and a moderate effect size (R2=0.29), the adjustment was relatively large.  
Moreover, our results indicate that, in this case, result interpretation may have been different if the author 
had calculated adjusted R2.  The uncorrected R2 presented in the journal article indicated that the treatment 
explained 29% of the dependent variable variance.  When corrected using the Lord-1 and Darlington-
Stein formulae, however, R2 shrunk to near zero (.0060 and .0152, respectively.) In other words, after 
having corrected the effect size for sampling error expected upon replication of the study with a new 
sample, the treatment accounted for virtually no variance in the dependent variable, a fact  that was 
obscured by the uncorrected R2. 
  As demonstrated by the previous case, it is quite possible to overestimate the importance of a result if 
effect sizes are not adjusted to account for the influence of sampling error. Accordingly, researchers 
should report and interpret corrected effect measures in their results. Not only do corrected effects provide 
a better estimate of the effect in the population, they can provide information concerning the replicability 
of the results. When a researcher uses corrected effect sizes, we recommend that he or she take into 
account the various formulae, their purposes, and their relative degrees of correction. Such choices have 
the potential to directly impact results and their interpretation. 
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Performance of the Roy-Bargmann Stepdown  
Procedure as a Follow Up to a Significant MANOVA 

W. Holmes Finch 
Ball State University 

The Roy-Bargmann procedure has been suggested as a post hoc procedure for a significant MANOVA 
result.  This method, which is based on application of the univariate General Linear Model, requires the 
researcher to order the dependent variables a priori in terms of their contextual importance.  
Subsequently, if the MANOVA is found to be statistically significant for a categorical independent 
variable, these response variables are tested individually using univariate analyses in the sequence 
established a priori.  Thus, the first variable is treated as the dependent variable in an ANOVA and if the 
groups’ means are found to differ significantly on this variable, it serves as a covariate while the second 
variable in the sequence is the response and the means of the groups are once again compared.  This 
testing continues for each of the response variables, with variables higher in the sequence serving as 
covariates for those lower in importance. The current study was designed to examine the Type I error rate 
and power of this post hoc approach under a variety of data conditions.  Results show that factors such as 
distribution of the dependent variables, equality (or lack thereof) of the covariance matrices and sample 
size all have a significant impact on Type I error and power.  Furthermore, both Type I error rates and 
power of variables later in the sequence are influenced by variables earlier in the sequence. 

ultivariate Analysis of Variance (MANOVA) is a popular tool used by social science researchers 
and others, allowing for the analysis of multiple dependent variables with one or more 
independent factors.  The null hypothesis being tested by MANOVA is µ1 = µ2  = µ3 where µk is 

the vector of means for group k.  When this hypothesis is rejected due to a significant test statistic, 
researchers may be interested in to which groups or dependent variable(s) the result applies.  Given that 
rejection of the very general null hypothesis of the MANOVA indicates that there is some difference 
among the k groups on one or more of the p dependent variables.  In order to gain a more complete 
understanding of the nature of such a significant effect, a researcher may want to use a follow up analysis 
designed to illuminate the significant result in terms of group differences on the response variables 
(Tabachnick & Fidell, 2007; Stevens, 1996).  A number of such approaches have been discussed in the 
literature, including the Simultaneous Test Procedure (STP) (Gabriel, 1968), Descriptive Discriminant 
Analysis (DDA) (Huberty, 1994), a Step Down procedure (SD) (Roy, 1958), two groups multivariate 
comparisons (Stevens, 1972) and the use of univariate Analysis of Variance (ANOVA).  It should be 
noted that with the exception of the latter approach, all of these methods retain the general multivariate 
flavor of the original analysis, albeit in very different ways.  Indeed, several authors (e.g. Stevens, 1996) 
argue that whatever follow up to MANOVA is finally used, it needs to be based upon a multivariate 
platform.  Nonetheless, most researchers who make use of MANOVA will have specific questions 
regarding the nature, in terms of both the response variables and the groups, of the significant differences 
signaled by the multivariate analysis.  This study was designed to examine the performance of one of 
these follow up methods that may be effective in characterizing a significant MANOVA result.   
   
Analysis of Variance (ANOVA) 
  Perhaps the most straightforward approach to investigating a significant MANOVA result is through 
the application of individual univariate ANOVA analyses for each of the dependent variables separately.  
This approach is facilitated by common statistical software packages such as SAS and SPSS, which print 
the univariate results with the multivariate.  Despite this ease of use, the use of univariate ANOVA in this 
way has generally been rejected as a viable alternative for following up a significant MANOVA result 
because, as Enders (2003) points out, the univariate ANOVA does not accurately maintain the nominal 
Type I error rate in most cases (generally being too conservative), even when a correction such as 
Bonferroni or Holm is used. Indeed, Maxwell (1992) found that using such alpha corrections with 
univariate ANOVA to maintain the nominal experiment-wise Type I error rate only works when either the 
MANOVA null hypothesis is totally false, the MANOVA null hypothesis is totally true or the MANOVA 
null hypothesis is false for all but one of the dependent variables. In all other cases, using ANOVA to 
investigate a significant MANOVA will yield an incorrect Type I error rate. Keselman, Huberty, Lix, et al 
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(1998) assert that if the researcher is interested in a multivariate hypothesis then the follow up to a 
significant MANOVA should be multivariate in nature. 
 
Two groups multivariate comparison 
 Another MANOVA follow up approach that has been suggested in the literature is the two groups 
multivariate comparison.  As outlined by Stevens (1972), the two groups method involves using the 
Hotelling’s T2 test statistic (Hotelling, 1931) to compare all possible pairs of groups on the entire set of 
dependent variables simultaneously. As an example, if the MANOVA involved one independent 
categorical variable with 3 groups measured on 3 dependent variables, the two groups analysis would 
involve the multivariate comparison of groups 1 and 2, groups 1 and 3, and groups 2 and 3 on the 3 
response variables simultaneously. Stevens (1972) compared this approach with DDA, SD and 
multivariate contrasts and found that the results, in terms of identifying group differences, were fairly 
similar, though the two groups approach did not allow for direct identification of group differences on 
individual variables.  Thus, when two groups are found to differ the difference is for the entire set of 
responses, so that if a researcher would like to identify clearly for which of the response variables groups 
differ, (s)he could not do so using this method. 
 
Simultaneous Test Procedures 
 Gabriel (1968) expanded upon earlier work of Roy and Bose (1953) to develop multivariate 
simultaneous confidence intervals for group differences using any one of the common MANOVA test 
statistics, such as Roy’s greatest root, Pillai’s Trace, Hotelling’s trace and Wilks’ Lambda.  Various 
recommendations have been made regarding which of these is the most generally appropriate for use in 
the STP context (Sheehan, 1995; Elliott, 1993; Mudholkar, Davidson & Subbaiah, 1974; Olson, 1974).  
Simulation research on the power and Type I error control of the STP based on one or more of these 
statistics found that violations of the assumptions of normality and homogeneity of covariance matrices 
had a significant impact on their performance, such that no one approach could be identified as optimal in 
all cases (Sheehan, 1995; Bird & Hadzi-Pavlovic, 1983; Elliott, 1993).  These studies also found that the 
more restrictive the hypotheses being tested, the lower the power of the STP procedure, regardless of the 
statistic used to form the confidence intervals.  Indeed, Sheehan (1995) concluded that this approach was 
too conservative to investigate group differences on individual variables. 
 
Descriptive Discriminant Analysis 
 Several authors have recommended the use of DDA as an appropriate follow up procedure for a 
significant MANOVA (Enders, 2003; Huberty, 1994; Tabachnick & Fidell, 2007; Stevens, 1996).  The 
fact that DDA is a multivariate technique very closely related to MANOVA addresses concerns voiced by 
Keselman, et al. (1998) and Stevens (1996) that when the research questions of interest are multivariate in 
nature, then the analyses used to address these questions be multivariate as well.   DDA involves the 
identification of a linear combination of the dependent variables that maximizes the differences among 
the groups, as expressed in the between and within sums of squares and cross products matrices, SB and 
SW, respectively.  These linear combinations of the original set of dependent variables can then be used to 
characterize the nature of the difference(s) among groups identified by the significant MANOVA.  
Interpretation of these discriminant functions can be carried out in at least two ways, using either 
Structure Coefficients (SC) (Huberty, 1994), which are values representing the correlations between 
individual observed variables and the overall discriminant function or standardized discriminant function 
coefficients (Rencher, 1992).  While there is some disagreement as to which approach is preferable, in 
both cases the magnitudes of either of these values reflect the relative importance of each observed 
variable in defining the discriminant function, making them useful for identifying potentially important 
contributors (from among the set of dependent variables) to the observed differences among the groups, 
as well as providing some insight into the conceptual nature of the discriminant functions themselves 
(Enders, 2003; Huberty, 1994; Stevens, 1972; Rencher, 1992).   
 The fact that SC’s may be used in practice to ascertain which of the observed variables are related to 
the one or more discriminant functions (Tabachnick & Fidell, 2007) makes the issue of their interpretation 
very important.  By examining the magnitudes of SC’s, a researcher can determine which of the 
dependent variables are most associated with the linear combination(s) that best differentiate the groups in 
question.  Those with the largest SC’s are deemed to be most associated with the group differences, and 
are thus interpreted more fully in terms of how they might differ from group to group.  This difference is 



Finch 

 
14                                                                                          Multiple Linear Regression Viewpoints, 2007, Vol. 33(1) 

often characterized by examining the means of the groups on those variables with sufficiently large SC 
values (Tabachnick & Fidell, 2007).  A difficulty with employing this method is that there is not a formal 
hypothesis test available for the SC’s, and thus various rules of thumb have been recommended as cutoffs 
for identifying “sufficiently large” values.  Schneider (2004) conducted a simulation study using cut 
points of 0.3, 0.4 and 0.5 and found that the general ability of DDA to identify statistically meaningful 
variables, in terms of group differentiation, was lower for higher cut offs, except where the differences in 
group means was characterized by a large effect size.  Schneider also found that the use of these various 
cutoff values led to the false identification of “important” variables at rates reaching as high as 0.8 in 
many cases.  In other words, a researcher using these rules of thumb, would be likely to incorrectly 
conclude that particular variables were “important” in defining the discriminant function when they were 
in fact not. 
 
Stepdown Analysis 
 The Stepdown analysis (SD) examined here was introduced by Roy (1958) and Roy and Bargmann 
(1958) and extended by others (Marden & Perlman, 1990; Mudholkar & Subbaiah, 1988; Kabe, 1984) 
and is based on the General Linear Model (GLM) in the form of Analysis of Covariance (ANCOVA).  It 
has been recommended as a follow up procedure for a significant MANOVA by several authors, 
including Tabachnick and Fidell (2007), Stevens (1996), and Mudholkar and Subbaiah (1980).  In 
addition, the SD technique can be used to derive a test of overall significance in the multivariate context 
as demonstrated by Kabe (1984), among others.  The SD procedure involves a multi-step application of 
univariate linear models involving the dependent variables, much in the way that ANOVA does.  
However, there are some major differences between SD and ANOVA that make the former method 
potentially appealing as a MANOVA follow up, from a statistical perspective. Indeed, from one 
perspective the omnibus MANOVA test may not be required, given that an a priori ordering of the 
dependent variables is made by the researcher, implying a very specific set of hypotheses to be tested.  
Nonetheless, given the recommendations by the authors cited above to use it as a way to elucidate a 
significant MANOVA result, it is in this context that the current study was conducted. 
  As mentioned above, the SD procedure involves several steps.  In the first step the researcher places 
the dependent variables in descending order of theoretical importance.  It is crucial to note that this 
ordering is based on contextual issues and not on statistics.  Indeed, step one should always be done prior 
to any data collection so that sample estimates do not affect how variables are ordered.  In step two, an 
ANOVA is conducted in which group means on the most important response variable are compared.  In 
step three, this variable serves as a covariate and the means of the groups on the second most important 
response variable are compared using ANCOVA.  This stepping procedure continues for each dependent 
variable in turn, with response variables at a higher level of importance serving as covariates for those of 
lesser importance.   
  It has been shown that in the 2 groups case, an overall SD test statistic can be constructed that is 
equivalent to Hotelling’s T2 (Mudholkar & Subbaiah, 1980) allowing for an omnibus multivariate test.  
By including responses as covariates in subsequent analyses, correlations among the variables are 
accounted for in a way that they are not in the ANOVA analyses described above (Mudholkar & 
Subbaiah, 1975).  In order to control the Type I error rate, Bock and Haggard (1968) suggested using a 
variation of the Bonferroni approach by dividing the overall a so that more important variables are given 
a larger share of the rejection region than less important ones, while maintaining the desired overall level 
of significance.  It would also be possible to simply assign each test the same portion of the rejection 
region using Bonferroni’s correction more directly (Tabachnick & Fidell, 2007). 
 Mudholkar and Subbaiah (1980) cited several potential advantages to using the SD procedure as a 
follow up to a significant MANOVA result:  1) simplicity, 2) detailed results for specific variables and 
groups, 3) useful with small samples and 4) results for large samples that are equivalent to the omnibus 
likelihood ratio test.  Another potential strength of the SD is that a researcher can assign different levels 
of a to the dependent variables, reflecting their substantive importance in the investigation of which the 
MANOVA is a part (Subbaiah & Mudholkar, 1978; Mudholkar & Subbaiah, 1976; Bock & Haggard, 
1968).  Mudholkar and Subbaiah (1988) also suggest that under the SD procedure, test statistics such as 
the Studentized Range can be used for paired group comparisons, providing an added degree of analytic 
flexibility. 
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 While there are clear benefits to the researcher using the SD technique, it does have some weaknesses 
as well, perhaps foremost of which is the need to order the response variables in terms of theoretical 
importance.  It has been clearly demonstrated that the qualitative conclusions reached by researchers can 
differ substantially depending upon the variables’ ordering (Stevens, 1972; Koslowsky & Caspy, 1991; 
Mudholkar & Subbaiah, 1988).  Indeed, Stevens (1996) states that the SD procedure may not be 
appropriate when a clear a priori ordering of the response variables is not possible.  Mudholkar and 
Subbaiah (1980) suggest that when such an ordering is not reasonable, SD can still be used as a post hoc 
procedure for MANOVA if the observed variables are first subjected to analysis using a data reduction 
technique creating linear combinations, such as Principal Components Analysis.  These linear 
combinations could in turn be used with SD techniques, with combinations accounting for greater 
variance being placed higher in the sequence.  Koslowsky and Caspy (1991) observed that by applying 
the SD to multiple sequences of the response variables a researcher could engage in meaningful data 
exploration and testing of multiple hypotheses.  At the same time, Stevens (1996) points out that these 
various orderings are not independent of one another so that the actual Type I error rate across all of them 
is not known. 
 There has been some research examining the performance of the SD procedure in various conditions.  
Subbaiah and Mudholkar (1978) conducted a Monte Carlo simulation study in which they assessed the 
performance of the omnibus multivariate test statistic for the SD procedure.  They simulated data sets 
from the multivariate normal distribution with 2 response variables, equal covariance matrices across 2 
groups, each with samples of size 20.  They found that the SD procedure was able to maintain the 
nominal Type I error rates (0.01 or 0.05) while attaining power values above 0.8 for most studied 
conditions.  They also found that power was affected by the relative importance of the dependent 
variables.  If they were of unequal importance and this is reflected by unequal a values, the power of the 
SD procedure was higher than when all variables were treated as equally important in terms of a.  Finally, 
Subbaiah and Mudholkar reported that the precision of the hypothesis tests decreased for variables later in 
the ordering.  Mudholkar and Srivastava (2000) used a robust method based on trimmed estimates to 
conduct a SD analysis when the data were not normally distributed and samples were of unequal size.  
They found that this approach had greater power than did the standard parametric ANCOVA approach.   
  In addition to these simulations, other researchers have reported results obtained when using the SD 
with real data.  Stevens (1972) used both SD and DDA to compare 4 groups of subjects on 8 response 
variables.  The two methods yielded very similar results in terms of identifying variables on which the 
groups differed, while the application of univariate ANOVA’s produced a markedly different outcome.  
Stevens also demonstrated the impact on the SD analysis of different orderings of the dependent 
variables.  Koslowsky and Caspy (1991) reported on a refinement of the SD technique in which multiple 
orderings of the response variables are tested in following up a significant MANOVA.  If the qualitative 
results of these analyses differ, the researcher could conclude that there is overlap among the dependent 
variables.  Such a result would, according to the authors, help the user gain a greater understanding of the 
interrelationships among the responses while also allowing for the examination of multiple hypotheses 
about how the groups in question might differ on the measures of interest.  These authors acknowledge 
that when the number of dependent variables is 3 or more, the resulting Type I error rate could be 
somewhat inflated.  Analytic results in Mudholkar and Subbaiah (1975) match the findings of their 
simulation study (Mudholkar & Subbaiah, 1978), demonstrating that the power of hypothesis tests for 
variables lower in importance (and thus tested later in the sequence) was lower than when the variables 
were placed higher in the sequence.   
 
Focus of the Current Study 
 This study is designed to extend the work in studies reviewed above.  Specifically, the goals of this 
research are to ascertain the performance of the SD method for following up a significant MANOVA in 
terms of both power and Type I error rate and to identify data specific factors influencing the performance 
of this approach. Given that the SD approach has been recommended in popular multivariate texts for use 
in the post hoc investigation of significant MANOVA results, and has been studied relatively infrequently 
in this role, it is hoped that this study helps to fill a gap in the literature.  As has been reported above, a 
number of other approaches for following up a significant MANOVA have major problems that have 
been identified using Monte Carlo methods. For example, the STP appears to have low statistical power 
to investigate group differences on individual response variables, while DDA does not allow for 
hypothesis testing of individual dependent variables and cutoff values used with it appear to be somewhat 
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problematic to interpret.  The two groups multivariate approach, while appearing to be reasonably 
effective in differentiating multivariate group means, does not easily allow for comparisons on individual 
variables.  There has been relatively little work conducted in investigating the performance of the SD 
approach in terms of power and Type I error rates in the post hoc context, with most prior research 
focusing on its use in constructing an omnibus test statistic.  It is hoped, therefore, that this study will add 
greater understanding in this regard. 
 

Methodology 
  A Monte Carlo simulation study was used to investigate the performance of the SD follow up for 
MANOVA.  In this case, focus was on the SD results, rather than those of MANOVA, so that results of 
the omnibus MANOVA were not used in the conduct of the simulation. In other words, while in actual 
practice the SD procedure would not be used unless a significant MANOVA were first obtained, because 
the focus of the current study was on the SD procedure, an assumption was made that the omnibus 
MANOVA test was found to be statistically significant. A number of factors were manipulated in this 
study with all combinations being crossed, and 1000 replications were generated for each.  All 
simulations were conducted using SAS IML and PROC GLM.  The following factors were manipulated: 
  Sample size. The total sample size conditions were 30, 60, 100 and 150.  These values were selected 
in an effort to replicate sample size conditions appearing in published research using MANOVA. 
  Sample size ratio.  Two sample size ratio conditions were simulated, including equal and unequal 
group sizes.  In the unequal condition, the first group (group 1) had half the number of subjects as did 
group 2.   
  Number of dependent variables. Data were simulated with either 2 or 4 dependent variables.  
Variables earlier in the sequence were assumed to be more important than those later in the sequence and 
were tested as such.  The lower value (2) was simulated so as to provide information about the simplest 
case possible, while the latter (4) was selected because it conforms to examples used in prior research 
(e.g., Fan & Wang, 1999). 
  Correlation. The dependent variables were simulated with pooled within groups correlations of 0.3, 
0.5 and 0.8.  All inter-variable correlations were the same in the 4 variables condition. 
  Effect size. A total of 8 effect size combinations, based on Cohen’s d (Cohen, 1988), were simulated 
in this study to create univariate group separation.  The effect sizes used were 0 (no group separation), 0.5 
and 0.8. The latter values were chosen so as to correspond with Cohen’s (1988) benchmarks of medium 
and large effects. The combinations used appear in Table 1. It is important to note that effect size values 
for variables 2, 3 and 4 in the 4 variable case are identical.  In the case where the group variances were 
equal, this value was used as the denominator in the calculation of effect size, whereas in the unequal 
variances case, a pooled within-cell standard deviation was used. 
  Distribution of response variables. The dependent variables were distributed either as standard 
normal or with skewness of -1.5 and kurtosis of 3, with the latter distribution selected because it conforms 
to that used in earlier research and which has been shown to be associated with inflated Type I error rates 
in standard MANOVA testing (Finch, 2005).  In order to maintain the desired correlation values among 
these variables in the non-normal condition, a method proposed by Fleishman (1977) was used to 
simulate the data. 
 Covariance matrices. The group covariance matrices were simulated to either by equal or unequal. In 
the latter condition, the variances for group 2 were simulated to 5 be times larger than that for group 1, 
which was set at a value of 1. The latter value matches that which has been demonstrated previously to 
lead to inflated Type I error rates for MANOVA test statistics (e.g., Finch, 2005; Sheehan-Holt, 1998). 
The outcomes of interest were the Type I error rate and power for each variable in the sequence.  In order 
to ascertain which of the manipulated factors had a significant impact on the performance of the SD 
follow up, ANOVA and variance components analysis were used, treating either Type I error rate or 
power as the dependent variable and the manipulated factors as the independent. 
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Table 1:  Effect size combinations for simulation 
Variable 1 Variable 2 (3 and 4) 

0.5 0 
0.8 0 
0 0.5 
0 0.8 

0.5 0.5 
0.8 0.8 
0.8 0.5 
0.5 0.8 

 
Results 

Type I error rate 
 The results of the ANOVA/variance components analyses for the 2 and 4 variable cases yielded 
similar results in terms of identifying factors that influenced the Type I error rate of the SD procedure.  
For this reason, results of the ANOVA are only reported for the 2 variable case.  Results for the second 
variable in the two groups case are nearly identical to those for variables 2, 3 and 4 in the 4 variable case.  
Specifically, for the Type I error rate of the first response variable (variable 1), the 2-way interaction of 
equality of the covariance matrices and the distribution of the variables was the highest order significant 
interaction, and accounted for 90.9% of the observed variability.  The 3-way interaction of the correlation 
between the response variables by equality of the covariance matrices by variable distribution was the 
highest order significant term for the second variable (variable 2), accounting for 46% of the variation in 
Type I error rates. The 2-way interaction of correlation and response variable distribution was also 
significant for variable 2 and accounted for an additional 20% of variation in Type I error rate.  Other 
main effects and interactions were also statistically significant for the Type I error rates of both variables, 
but none accounted for more than 10% of the variation, and will therefore not be considered further.  
 Table 2 contains the Type I error rates for the 2 and 4 variable cases by the inter-variable correlation, 
covariance status (equal or unequal) and distribution of the response variables.  It appears that the Type I 
error rate for the first variable in the set is near the nominal level of 0.05, except when the assumptions of 
normality and equality of covariance matrices underlying the ANCOVA have both been violated. The 
Type I error rates for variables 2 through 4 were found to be inflated for most of the conditions displayed 
in Table 2.  The Type I error inflation for these variables also increased somewhat with increasing 
correlation among the variables.  Although all Type I error conditions for the later variables in the 
sequence were inflated, the severity of this inflation was less when the assumptions of normality and 
equality of covariance matrices were both met. 
 
Power 
The ANOVA and variance components analyses for the power rates indicated that for variable 1, the 
statistically significant interaction between covariance matrix equality/inequality and distribution of the 
variables accounted for 78.5% of the variability in power.  No other term in the model was both 
statistically significant and accounted for more than 10% of the variance in power for variable 1.  Three 
terms were found to be statistically significant and account for more than 10% each of the variation in 
power for variable 2 (3 and 4).  The highest order interaction, accounting for 25% of power variation, was 
covariance matrix equality/inequality by correlation by distribution, while effect size (15.5%) and sample 
size (12.1%) were the two statistically significant main effects that accounted for more than 10% of 
variation in power.  As with the Type I error rates, the same factors contributed significantly to observed 
power in the 2 and 4 variable cases. 
 Table 3 displays the power rates by covariance matrix equality/inequality, correlation and distribution 
for all of the variables. One outcome to note is that across these conditions power rates generally diminish 
through the sequence from variable 1 to 4. Power for the first variable in the set was higher in the normal 
distribution condition when the groups’ covariance matrices were also equal than when the data were 
normal but the variances were unequal. However, when the covariance matrices were unequal, the 
opposite pattern can be seen, where variable 1 power was greater in the skewed condition. It 
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Table 2:  Type I error rate by correlation among dependent variables, covariance equality/inequality and 
response distribution: 2 and 4 variables 

2 response variables 
Correlation Covariance Distribution V1 V2 
0.3 Equal Normal 0.051 0.141 
  Skewed 0.047 0.252 
 Unequal Normal 0.036 0.063 
  Skewed 0.848 0.674 
0.5 Equal Normal 0.047 0.142 
  Skewed 0.044 0.259 
 Unequal Normal 0.038 0.132 
  Skewed 0.852 0.784 
0.8 Equal Normal 0.053 0.234 
  Skewed 0.046 0.317 
 Unequal Normal 0.034 0.488 
  Skewed 0.850 0.827 

4 response variables 
Correlation Covariance Distribution V1 V2 V3 V4 
0.3 Equal Normal 0.050 0.143 0.138 0.107 
  Skewed 0.047 0.251 0.212 0.181 
 Unequal Normal 0.050 0.144 0.144 0.140 
  Skewed 0.849 0.674 0.540 0.512 
0.5 Equal Normal 0.053 0.135 0.125 0.150 
  Skewed 0.044 0.266 0.267 0.249 
 Unequal Normal 0.036 0.137 0.133 0.151 
  Skewed 0.852 0.690 0.652 0.640 
0.8 Equal Normal 0.051 0.236 0.228 0.208 
  Skewed 0.049 0.366 0.450 0.362 
 Unequal Normal 0.034 0.490 0.324 0.287 
  Skewed 0.849 0.870 0.831 0.830 

 

is important to keep in mind that it was in this combination of conditions (unequal covariance matrices 
and skewed data) that the Type I error rate for variable 1 was elevated.  For this reason, these high power 
rates in the skewed/nonnormal condition are not particularly meaningful.  With respect to variables 2, 3 
and 4, a pattern similar to that for variable 1 was evident, where power was higher for the normal (versus 
skewed) distribution when the covariances were also equal, while the opposite pattern by distribution was 
evident when the covariance matrices were unequal.  Again, given the aforementioned Type I error 
inflation when neither assumption was met, it is not meaningful (nor particularly surprising) that power in 
this case was also higher.   
  Table 4 includes power by effect size combination. Please note that the category “50” in the table 
refers to the condition where the first variable has an effect size difference of 0.5 between the groups for 
the first response variable and no difference for variable 2 (as well as 3 and 4 where applicable).  In like 
fashion, “05” refers to the condition where the first variable has no group difference but variable 2 (3 and 
4) is characterized by an effect size difference of 0.5.  The remaining combinations should be interpreted 
similarly. Results in this table for variable 1 show that a greater effect size, reflecting larger group 
separation, was associated with higher power.  Furthermore, the power for variable 1 was unaffected by 
the effect size of the accompanying variable(s).  Of course, this would be expected given that it is the first 
variable in the sequence, and thus tested independently of the others. 
 Results in Table 4 demonstrate that, as with variable 1, greater effect size was associated with higher 
power for variables 2 through 4. However, an important outcome for these latter variables was that the 
effect size of the first variable had an impact on their power. For example, in the two variables condition, 
the power for the second variable in the 05 case (where there was not a group difference for the first 
response and a difference of 0.5 for the second response) was 0.365, while when the first variable was 
characterized by a large effect size difference and the second by this same moderate effect (85), the 
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Table 3:  Power by correlation among dependent variables, covariance equality/inequality and response 
distribution:  2 and 4 variables 

2 response variables 
Correlation Covariance Distribution V1 V2 
0.3 Equal Normal 0.721 0.513 
  Skewed 0.193 0.122 
 Unequal Normal 0.359 0.243 
  Skewed 0.872 0.693 
0.5 Equal Normal 0.718 0.454 
  Skewed 0.194 0.176 
 Unequal Normal 0.357 0.228 
  Skewed 0.873 0.136 
0.8 Equal Normal 0.717 0.456 
  Skewed 0.194 0.278 
 Unequal Normal 0.355 0.297 
  Skewed 0.872 0.070 

4 response variables 
Correlation Covariance Distribution V1 V2 V3 V4 
0.3 Equal Normal 0.687 0.360 0.400 0.301 
  Skewed 0.176 0.097 0.096 0.073 
 Unequal Normal 0.690 0.361 0.397 0.296 
  Skewed 0.873 0.682 0.522 0.398 
0.5 Equal Normal 0.688 0.352 0.323 0.218 
  Skewed 0.175 0.173 0.076 0.057 
 Unequal Normal 0.336 0.150 0.144 0.099 
  Skewed 0.869 0.593 0.544 0.531 
0.8 Equal Normal 0.691 0.464 0.315 0.207 
  Skewed 0.175 0.312 0.079 0.052 
 Unequal Normal 0.334 0.254 0.157 0.103 
  Skewed 0.875 0.535 0.522 0.521 

 
Table 4:  Power by effect size:  2 and 4 variables 

2 response variables 
Effect size combination V1 V2 
50 / 05* 0.424 0.365 
80 / 08* 0.610 0.582 
85 0.610 0.188 
58 0.426 0.449 
88 0.611 0.235 
55 0.424 0.158 

4 response variables 
Effect size combination V1 V2 V3 V4 
50 / 05* 0.454 0.395 0.237 0.163 
80 / 08* 0.641 0.613 0.365 0.255 
85 0.643 0.199 0.115 0.092 
58 0.454 0.479 0.267 0.183 
88 0.643 0.263 0.177 0.132 
55 0.452 0.178 0.126 0.099 

*The effect size combination to the left of / is for variable 1, while to the right of / is the corresponding 
combination for variable 2. 
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Table 5:  Power by sample size:  2 and 4 variables 
2 response variables 

Sample size V1 V2 
30 0.296 0.158 
60 0.509 0.263 
100 0.626 0.359 
150 0.711 0.441 

4 response variables 
Sample size V1 V2 V3 V4 
30 0.307 0.140 0.102 0.080 
60 0.524 0.235 0.173 0.121 
100 0.640 0.330 0.255 0.178 
150 0.719 0.406 0.327 0.239 

 

power for variable 2 was 0.188.  In other words, the power for detecting mean differences for variable 2 
decreased between the two examples, though the degree of group separation in the two cases was 
identical.  This result was present across all effect size combinations for all three latter variables in the 
sequence.  As noted above, power declined from variable 2 through variable 4 in the testing sequence.  
This outcome was true even though the variables were characterized by comparable effect sizes in the 4 
variables condition.  In other words, even though in the population group separation was equivalent for 
variables 2, 3 and 4, power was higher for those variables tested earlier in the sequence. 
  Table 5 contains power rates by sample size.  In interpreting all of these power results, it is important 
to keep in mind that the Type I error rates presented in Table 2 were elevated above the nominal error rate 
of 0.05 for many of the conditions studied here.  Power for all variables in both the 2 and 4 variable 
conditions increased concomitantly with increases in sample size.  As was evident from results in Table 4, 
power was lower for variables tested later in the sequence than those tested earlier. 
 

Discussion 
  The purpose of this study was to explore the effectiveness of the Roy-Bargmann stepdown procedure 
as a follow up to a significant MANOVA as has been recommended in some popular multivariate 
statistics texts in the social sciences (Tabachnick & Fidell, 2007; Stevens, 1996). Using this method, a 
researcher would conclude that dependent variables for which significant results on the individual 
ANCOVA’s were found could be identified as “important” contributors to the group separation identified 
by the MANOVA (Mudholkar and Subbaiah, 1980). The results of this study indicate that when both the 
assumptions of normality and equality of covariance matrices are not met, the Type I error rate for the 
first variable in the sequence was inflated, while in all other cases it was near the nominal 0.05 level.  
This result should serve to encourage researchers using the SD as a post hoc to a significant MANOVA to 
assess the viability of both the normality and equality of covariance matrices assumptions prior to making 
use of the technique.  However, the Type I error rates of subsequent variables in the sequence were 
inflated in most cases studied here, including when the assumptions underlying ANCOVA are met. This 
widespread Type I error inflation for the latter variables in the testing sequence must call into question the 
findings for power, though they have been presented in order to fully inform the reader as to the results of 
the study. In general, power rates declined further into the testing sequence so that even with the same 
effect size in the population, power was lower for testing variable 2 than for variable 1 and for variable 3 
than for variable 2, etc. Furthermore, the power for later variables in the sequence was influenced by the 
effect size of the first variable, such that larger group differences on variable 1 were associated with lower 
power on variables 2, 3 and 4, regardless of the effect size characterizing these latter variables.  
 

Implications for practice 
 It should be remembered that this study was conducted under the presumption that a researcher would 
elect to use the SD approach prior to the conduct of analysis. Thus, by implication a reasonable ordering 
of the variables, based on contextual issues germane to the area being studied and not statistical concerns, 
is possible. In cases where this ordering is not reasonable, the SD procedure would not be an  
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appropriate approach, and some other method would clearly seem to be better as a follow-up for 
MANOVA.  
 The results of this research must, to some degree, call into question the use of the Roy-Bargmann 
stepdown procedure as a follow-up to a significant MANOVA, despite recommendations for its use (e.g., 
Tabachnick & Fidell, 2007; Stevens, 1996).  Prior research (e.g., Kabe, 1984; Mudholkar & Subbaiah, 
1980) has shown that this approach works well in many conditions in terms of constructing an omnibus 
test of significance in the multivariate case.  However, the current study does not support the use of this 
technique in trying to identify specific variables for which the groups might differ, other than the first 
one.  When groups didn’t differ on the latter variables in the testing sequence, the Type I error rate was 
generally inflated above the nominal rate, while when they did differ, power tended to be lower than for 
variable 1.  Furthermore, in cases where the first variable in the sequence was characterized by a large 
effect size (0.8), power for the latter variables was even more diminished. 
 For these reasons, it does not seem prudent to use this technique to ascertain which variables might be 
significantly different between groups. This does not call into question the potential utility of this 
procedure for an omnibus test in the MANOVA context, as mentioned previously.  In that case, the 
hypothesis being tested is very different from those addressed by the method as studied here.  In addition, 
given the inflated Type I error rates for the tests of all but variable 1, practitioners who do choose to use 
this approach in the manner outlined here should be very wary of significant results for all but the first 
variable in the testing sequence, particularly in (though not limited to) cases when the assumptions of 
normality and homogeneity of variances are not met. 
 

Limitations and directions for future research 
There are some methodological limitations to this study that should be addressed in future research 
efforts. Perhaps chief among these is the somewhat limited set of effect size values used.  The 6 
combinations reported here were selected in order to allow for an investigation of Type I error rate and 
power under a variety of conditions while maintaining a manageable study size.  These values selected 
corresponded to the benchmarks of medium and large effects laid out by Cohen (1988).  It is recognized, 
however, that more work is needed with a greater variety of patterns in order to gain a more complete 
understanding of the performance of the Roy-Bargmann approach to post hoc testing for a significant 
MANOVA.  Such a future effort should include both a different set of effect size values, particularly 
those smaller than 0.5, as well as a more complex pattern of values in the 4 variables condition.  In the 
current study, variables 2, 3 and 4 all had the same effect size value for all conditions, which may not be 
representative of the wide array of possibilities seen in real data.  At the same time, given that this study is 
one of the first Monte Carlo efforts to examine the performance of the Roy-Bargmann method in this 
MANOVA post hoc context, it was felt that in order to maintain a manageable study design and ease 
interpretation, this somewhat limited set of combinations was advisable. Furthermore, it is not clear that 
major differences in results would be expected from those presented here. 
A second recommendation for future research would be to include more group conditions.  As stated 
above, it was felt that since this study was examining this approach in a fairly different way from previous 
research, a simpler design was preferable. However, in order to broaden its generalizability, future efforts 
should include more groups. 
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The Use of Propensity Score Analysis to  
Address Issues Associated with the Use of  

Adjusted Means Produced by Analysis of Covariance 
    John W. Fraas       Isadore Newman      Scott Pool     
       Ashland University      University of Akron     Ashland University 
It is common for researchers in the field of education to engage in research that involves two groups (e.g., 
control and experimental) and not have the opportunity to randomly assign the participants to the groups.  
The challenge facing educational researchers is how to analyze the differences between two groups when 
randomization is not possible and selection bias is an issue. An analytic technique commonly used by 
educational researchers to address this challenge is analysis of covariance. The use of this technique, 
however, raises two concerns: (a) The inclusion of the covariates in the analysis of the criterion variable 
may change the construct represented by the criterion variable, and (b) the analytic technique employed 
does not match the research question, which is a Type VI error. A technique referred to as propensity 
score analysis, which is also designed to deal with selection bias in the comparison of non-randomized 
group means, may address these two concerns. How this technique can be applied by educational 
researchers is presented. 

arious analytic methods have been proposed to control nuisance variables in the analysis of two or 
more groups (Kirk, 1982).  One approach is to randomly assign participants to groups.  It is 
common, however, for researchers in the field of education to engage in research that involves 
two groups (e.g., control and experimental) and not have the opportunity to randomly assign the 

participants to the groups.  As noted by Halperin and Jorgensen (1994), there are two broad classes of 
research designs where such randomization is not possible (a) observational studies as identified by 
Cochran (1983) and (b) quasi-experimental designs as discussed by Campbell and Stanley (1963).   
 McNeil, Newman, and Kelly (1996) stated that "some statisticians . . . take the position that lack of 
random assignment disallows a meaningful conclusion" (p.155).  They further state, however, that it is 
their "position . . . that research and decisions must be made in the real world.  Random assignment of 
[subjects to] groups is ideal, but insight can be gained when this is not possible" (p.155).    
 One analytic approach suggested by Kirk (1982) that can be used to analyze data obtained from a 
non-randomized research design involved the sub-classification of the participants on key covariates and 
the inclusion of these sub-classifications in the analysis.  It should be noted, however, that the sub-
classification procedure can be difficult when multiple key covariates are identified (Halperin & 
Jorgensen, 1994).  As the number of covariates increases, the number of sub-classifications grows 
exponentially.  It is quite possible that some of the sub-classifications will contain none of the study's 
participants.    
  A second analytic approach often used by educational researchers when random assignment of 
subjects is not possible is analysis of covariance (ANCOVA) (Huitema, 1980; McNeil, et al., 1996).  In 
analysis of covariance, the researcher estimates and statistically tests the amount of unique variation in the 
dependent variable accounted for by the variable or variables representing group membership.  One 
concern with the use of ANCOVA to analyze the difference between group means in non-randomized 
designs, which is the focus of this article, was discussed by Tracz, Nelson, Newman, and Beltran (2005).  
Tracz et al. stated that: 

It is important to remember that the outcome or dependent variable in ANCOVA is an 
adjusted score. . . .  After the effects of the covariate have been statistically controlled or 
removed from the dependent variable . . . , the error variance is all that remains.  This 
residualized or adjusted dependent variable is no longer the same as the original dependent 
variable. (p. 20) 

Thus, when the covariates are included in the analysis of the criterion variable, the criterion variable may 
change as a measure of the construct.   
 A second concern with the use of ANCOVA deals with the lack of congruency between the research 
question and the analytic technique, which is referred to as a Type VI error (Newman, Deitchman, 
Burkholder, & Sanders, 1976; Newman, Fraas, Newman, & Brown, 2002).  If the research question deals 
with student achievement, but the analytic technique analyzes adjusted scores due to the inclusion of 
covariates, the analytic technique may not produce results that directly address the research question.  

V 
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 One technique that may allow researchers to address these two concerns is propensity score analysis.  
The next section of this article presents the concept of propensity score analysis and its application to a 
hypothetical set of data. 
 

Propensity Score Methodology 
 Rosenbaum (2002) and Rosenbaum and Rubin (1983; 1984) presented an analytic method that used 
propensity scores to adjust the comparison of non-randomized group means for selection bias due to 
systematic differences on a set of covariates.  Rosenbaum and Rubin (1984) stated: 

There exists a scalar function of covariates, namely the propensity score, that summarizes the 
information required to balance the distribution of the covariates. Specifically, subclasses 
formed from the scalar propensity score will balance all . . . covariates. In fact, often five 
subclasses constructed from the propensity score will suffice to remove over 90% of the bias 
due to each of the covariates. (p. 516) 

As noted by Yanovitzky, Zanutto, and Hornik (2005): 
The diagnostics and fitting of the propensity score model are done independent of the outcome 
and, thus, approximate random assignment of the subjects to treatment . . . .  Propensity score 
methods seek to create comparison groups which are similar (or balanced) on all confounders 
[covariates] but different on their levels of treatment. (pp. 210-211) 

We believe this characteristic of the propensity score technique allows researchers to address the selection 
bias concern with respect to the covariates while not changing the construct represented by the criterion 
variable.  In addition, propensity score analysis may allow the researcher to better match the analytic tool 
and the research question.  Thus, a researcher would not be as likely to commit the Type VI error that 
involves the analysis of adjusted means when the research question of interest deals with unadjusted 
means. 
 
Steps Used to Conduct Propensity Score Analysis 
 Propensity score analysis can be understood by reviewing the steps used to conduct such an analysis.  
The means of conducting propensity score analysis presented in this article is not meant to be an 
exhaustive discussion of the various ways researchers can implement the technique, but rather the 
discussion is meant to provide insight into how this analytic technique may allow researchers to address 
the two concerns previously mentioned regarding the use of ANCOVA.   
 Yanovitzky et al. (2005) presented six steps researchers may follow to conduct a propensity score 
analysis. 

   Step 1--Select the covariates. The researcher must select, a priori, a set of covariates 
based on theoretical grounds and previous empirical studies. These covariates are used to 
estimate the propensity scores used to form sub-groups of participants.   
  Step 2--Assess the initial imbalance in the covariates. The researcher gauges the initial 
imbalance in each of the covariates with respect to the groups. For covariates with interval or 
ratio level of measurement, an independent-samples t test can be used, while for dichotomous 
covariates a z test of differences in proportions can be employed. Assessing the initial 
imbalance in the covariates is useful for two reasons.  First, it allows the researcher to determine 
if the balance is adequate, that is, the degree of balance one would expect in a completely 
randomized experiment (see Rosenbaum & Rubin, 1984; Zanutto, Lu, & Hornik, 2005). If the 
balance is adequate, the researcher does not need to employ the propensity score analytic 
technique and the group means on the criterion variable can be directly analyzed.  Second, the 
assessment of the initial imbalance serves as a benchmark against which the propensity score 
methodology has increased the balance in the covariates.   
  Step 3--Estimate the propensity scores. If an imbalance exists between the groups with 
respect to a number of the covariates, the propensity scores are estimated for each of the 
participants in the study.  These propensity scores can be estimated using a variety of methods.  
Researchers could use discriminant analysis, probit models, or logistic regression models with 
the dependent variable being the group variable (e.g., control and experimental) and the 
covariates serving as the independent variables (D'Agostino, 1998; Rosenbaum & Rubin, 1984). 
McCaffrey, Ridgeway, and Morral (2004) described the use of generalized boosted regression 
models, which is a multivariate nonparametric regression technique, to estimate the propensity 
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scores. Yanovitzky et al. (2005) noted that the use of logistic regression models was the most 
common method used to generate the propensity scores.   
  Step 4--Stratify the propensity scores. Once the propensity scores are estimated, they are 
stratified into four or five levels with equal or nearly equal numbers of subjects in the 
categories.  As noted by Cochran (1983), stratifying into more than 4 or 5 groups usually gains 
very little.          
  Step 5--Assess the balance on the covariates across the treatment groups. Once the 
propensity scores are stratified, the researcher needs to verify that the propensity score groups 
remove any initial bias on the covariates.  Yanovitzky et al. (2005) suggested that this 
verification procedure can be conducted through the use of a two-way analysis of variance 
(ANOVA), where the two factors are the treatment groups and the propensity score groups and 
each covariate is used as the criterion variable.  Balance is assumed to be achieved when the 
treatment main effect and the interaction effect are not statistically significant. Yanovitzky et al. 
noted that: 

If these two conditions are not met, the propensity score should be re-estimated by adding 
interaction terms and/or non-linear functions (e.g., quadratic or cubic) of imbalanced 
covariates to the propensity score model. . . .  Steps 3 through 5 are repeated until balance is 
achieved or no further improvement in balance can be made. (p. 214) 

  Step 6--Estimate and statistically test the difference between the treatment means.  In 
this step, the differences between the treatment means on the criterion variable are calculated 
and statistically tested for (a) each propensity score group and (b) across all propensity score 
groups.  The statistical tests of the difference between the means in each propensity score group 
can be conducted with the use of t tests..          

 As noted by Yanovitzky et al. (2005), the overall estimate of the treatment effect is calculated by 
averaging the differences between means of the treatment groups across all propensity score groups.  The 
overall treatment effect is calculated as follows: 
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where, δ  is the estimated treatment effect; the propensity score groups (1 through 4) are represented by 
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  The estimated standard error for the estimated treatment effect is calculated as follows: 
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where, kn  is the number of participants in the k propensity score group; N is the total number of 

participants; the sample variances of the experimental and control groups are sek
2 and sck

2 , respectively; 
and the number of participants in the experimental and control groups are nek and nck, respectively. 
  The t value for the estimated treatment effect is calculated by dividing the estimated treatment effect 

(δ ) by its standard error ( s (δ )).    
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              Table 2. Comparison of Differences between 
 Table 1. Descriptive Statistics for the Criterion   Control and Experimental Groups on Covariates 
 Variable and Covariates          Before and After Propensity Group Formation 

  
Treatment Groupa 

  Pre-Propensity 
Group Formation 

Post-Propensity 
group formation 

 Control Experimental  Variable p p 
Variable Mean SD Mean SD  Pretest <0.01 0.41 

Posttest 40.95 7.27 44.91 6.49  OPT 0.24 0.66 
Pretest 23.76 8.29 29.51 7.38  Ability 0.13 0.90 
OPT 227.82 26.49 231.54 23.57     
Ability 116.02 13.89 113.63 11.31     
Note: aThe sample sizes for the control and experimental  
   groups are 123 and 129, respectively. 
 

An Illustration of Propensity Score Analysis 
 To illustrate the application of propensity score analysis, consider a set of hypothetical data collected 
from a nonrandomized design.  For this example the criterion variable (posttest) is a quantitative variable 
consisting of scores on a math test administered to the students at the completion of the study.  Once the 
criterion variable was identified, the propensity analysis was conducted by completing the six steps 
previous presented. 

  Step 1. The following three covariates were identified: 
    1. The math pretest covariate, which is labeled pretest, consisted of math scores 
obtained from a test administered prior to the implementation of the instructional methods. 
    2. The Ohio Math Proficiency Test (OPT) covariate was composed of student 
scores on the Ohio Math Proficiency Test administered prior to the implementation of the 
instructional methods.   
    3. The covariate labeled ability consisted of student scores on a cognitive ability 
test administered to the students prior to their exposure to the methods of instruction. 
 In addition to these three covariates, a dichotomized independent variable was formed to 
identify the instructional method.  For this independent variable, which was labeled treatment, 
the values of zero (control group) and one (experimental group) were assigned indicating the 
instructional method to which the students were exposed.  The mean and standard deviation 
values of the criterion variable and the three covariates for both the control and experimental 
groups are listed in Table 1.   
   Step 2. The initial imbalances between the treatments on the covariates were determined 
through the use of independent-samples t tests applied to the pretest, OPT, and ability means for 
the control and experimental groups.  The probability values of these three statistical tests are 
listed in Table 2 under the heading Pre-Propensity Group Formation.   
    Step 3. A logistic regression model was constructed for the purpose of estimating the 
propensity score for each student. The treatment variable served as the criterion variable for the 
model and the covariates and their two-way interaction variables were considered as possible 
predictor variables. The first procedure used in the construction of the model consisted of 
entering the three covariates (i.e., pretest, OPT, and ability).  The next procedure allowed the 
three two-way interaction variables formed from the three covariates (i.e., pre-by-OPT, pre-by-
ability, and OPT-by-ability) to be entered into the logistic regression model in a step-wise 
fashion. The step-wise procedure used was a forward method of entry with the criterion for 
entry set at .05 for the probability of the Wald test value of each two-way interaction variable 
coefficient.    
  Once the step-wise procedure was completed the final procedure used to construct the 
logistic regression model involved in constructing the model consisted of a review of the 
significance levels of the three covariates (i.e., pretest, OPT, and ability).  Any covariate with a 
non-significant coefficient was deleted unless it was used to form a two-way interaction variable 
that was entered into the model.  The results of the analysis of the logistic regression model, 
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which included the predictor variables of pretest, OPT, ability, pre-by-ability, and OPT-by-
ability, are listed in Table 3. 
   Step 4.  The logistic regression model developed in Step 3 was used to estimate a 
probability for each of the 252 participants in the study.  Each probability value represented the 
probability that the corresponding participant would be a member of the treatment group (i.e., 
the group assigned a value of one in the treatment variable) based on that participant’s covariate 
values.  These 252 probability values, which are referred to as propensity scores, were stratified 
into four equal groups of 63 participants as follows: 
    1. A participant with propensity score less than or equal to the first quartile value 
was placed in Propensity Group 1. 
    2. A participant with propensity score greater than the first quartile value but less 
than or equal to the second quartile value was placed in Propensity Group 2. 
    3. A participant with propensity score greater than the second quartile value but 
less than or equal to the third quartile value was placed in Propensity Group 3. 
    4. A participant with propensity score greater than or equal to the first quartile 
value was placed in Propensity Group 4.  
   Step 5.  Three two-way ANOVA analyses were used to verify that the propensity score 
groups removed initial bias on the three covariates with the two main effects consisting of (a) 
the two treatment groups and (b) the four propensity score groups. The probability value of the 
F test of the treatment main effect for each of the three analyses is listed in Table 2 under the 
column entitled Post-Propensity Group Formation.  Recall that the column in Table 2 entitled 
Pre-Propensity Group Formation contains the probability values of the statistical tests of the 
differences between the covariate means for the control and experimental groups for the three 
covariates.  Since the post-propensity group formation probability values are substantially 
higher than the pre-propensity group probability values, the propensity group formation is 
considered to have reduced the initial bias between the treatments with respect to the covariates.   
 As previously stated Yanovitzky et al. (2005) suggested that balance between the treatment 
groups with respect to the covariates is assumed to be achieved when both the treatment main 
effect and the interaction effect between the treatment group and propensity group variable are 
not statistically significant for the analysis of each covariate. As indicated by the p values listed 
in the column entitled Post-Propensity Group Formation in Table 2, none of the treatment 
effects was statistically significant for the three covariates.  In addition, the p values for the 
interaction effects between the treatment and propensity group variables in the three two-way 
ANOVA analyses of the pretest, OPT, and ability variables were .10, .45, and .19, respectively, 
which indicates that none of the interaction effects was statistically significant.   
   Step 6.  Table 4 contains the posttest mean and standard deviation values for the control 
and experimental groups for each of the propensity score groups. The corresponding t test 
values for the four mean differences are also listed.  None of the t values corresponding to the 
four differences between the posttest means of the experimental and control groups reached the 
critical t value of 1.67, which corresponds to a one-tailed alpha level of .05. Thus, the difference 
between the control and experimental groups for each of the propensity score groups was not 
statistically significant.  

 Since the results of these four t tests resulted in the same conclusion for each propensity group, that 
is, none of the differences between the control and experimental posttest means was statistically 
significant, it was appropriate to test the difference between the overall posttest means of the two groups. 
The overall treatment effect and its standard error values were calculated using Equations 1 and 2, 
respectively.  The treatment effect value was 1.17, which is also equal to the difference between the 
overall means listed in Table 4, and the standard error value was 0.77.  The t value for the overall 
treatment effect (1.52) was calculated by dividing the treatment effect (1.17) by the standard error (0.77).  
Since this t test value did not reach the one-tailed critical t value of 1.65, which corresponds to  
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Table 3. Results for the Logistic      Table 5. Results of the ANCOVA Analysis of  
  Regression Modela          the Posttest Scores Using MLR Model 2a 
Variable Coefficient Wald p  Variable Coefficient t p 
Pretest -0.417 2.21 0.14  Treatmentb 1.49 2.63 <0.01c 
OPT 0.255 7.72 <0.01b  Pretest 0.40 9.00 <0.01c 
Ability 0.306 5.81 0.02b  OPT 0.09 6.27 <0.01c 
Pre x Ability 0.005 4.14 0.04b  Ability 0.07 2.66 <0.01c 
OPT x Ability -0.002 8.21 <0.01b  Constant 1.83 0.64 0.53 
Constant -38.375 6.77 <0.01b      
Note: a∆(-2 Log likelihood) = 68.995, χ2 = 98.96,   Note: aR2 =.692, dfn = 4, dfd = 247, F =139.00, 

   df = 5, p <.01, Cox Snell R2 =.24,          , p<.01, R2 = .687 
   Nagelkerke R2= .32.             bThe proportion of unique variation in the  
   bStatistically significant at the two-tailed α = .05.      posttest variable accounted for by the  
                    treatment variable is .009. 
                 cStatistically significant at one-tailed α =. 05. 
 
Table 4. Estimated Treatment Effects on Posttest Math Scores Using Propensity Score Groups 
Propensity Score Group Treatment  Group Size Mean (SD) t 
Group 1 Control 

Experimental 
51 
12 

38.53 (9.15) 
40.25 (5.08) 

0.63a 

Group 2 Control 
Experimental 

36 
27 

41.17 (5.28) 
41.44 (7.40) 

0.17a 

Group 3 Control 
Experimental 

27 
36 

43.56 (4.11) 
43.92 (5.10) 

0.30a 

Group 4 Control 
Experimental 

9 
54 

46.00 (3.97) 
48.33 (5.35) 

1.25a 

Overall Control 
Experimental 

123 
129 

     42.32b 

     43.49b 
1.52c 

Note: aNot significant at the one-tailed alpha level of .05 (critical t value = 1.67 for comparisons within 
Propensity Score Groups 1 through 4).  
     bThe means are the overall estimates averaged over the propensity score groups.  The standard error 
used to calculate the t test value for difference between the two overall estimates is 0.77. 
      cNot significant at the one-tailed alpha level of .05 (critical t value = 1.65 for overall comparison).  
 

the significance level of .05, the propensity analysis indicated that the overall treatment effect was not 
statistically significant.   
 It is important to note that if one or more of the differences between the posttest means of the control 
and experimental groups were statistically significant, it would not be appropriate to test the overall 
posttest difference.  The researcher would identify the propensity score group or groups for which the 
differences in the posttest means were statistically significant, and describe the differences of the 
characteristics of the students in those groups as compared to the characteristics of the students in the 
propensity score groups for which the differences in the posttest scores were not statistically significantly 
different. 
 

An ANCOVA Analysis of the Posttest Scores 
  To better understand how the results of propensity score analysis differ from results generated from 
an ANCOVA analysis, it is helpful to compare results produced by both analytic techniques.  The next 
section presents an ANCOVA analysis for the data used in the propensity score analysis.  
 The initial ANCOVA analysis of the posttest criterion variable, which was conducted with the use of 
a multiple linear regression model (MLR Model 1), included seven independent variables: (a) treatment, 
(b) pretest, (c) OPT, (d) ability, (e) pre-by-OPT, (f) pre-by-ability, and (g) OPT-by-ability.  Since none of 
the multiple linear coefficients was statistically significant at the .05 level, a second model (MLR Model 
2) was constructed and analyzed that did not include the three two-way interaction variables.  That is, the 
amount of variation in the posttest scores accounted for by the three two-way interaction variables in 
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MLR Model 1 was pooled into the error term in MLR Model 2. The results of MLR Model 2, which 
included the treatment independent variable and the pretest, OPT, and ability variables as covariates, are 
listed in Table 5. 
 The regression coefficient for the treatment variable (1.49) in the MLR Model 2 estimated the 
difference between the adjusted posttest means of the experimental and control groups.  The treatment 
coefficient indicated that the estimated adjusted posttest mean of the experimental group was 1.49 points 
higher than the estimated adjusted posttest mean of the control group.  The t test value (2.63) for this 
coefficient produced a corresponding one-tailed p value that was less than .01.  Since this one-tailed p 
value was less than the alpha level of .05, the difference between the estimated adjusted posttest means of 
the experimental and control groups was statistically significant.   
 To better understand what the t test of the treatment variable coefficient produced by the ANCOVA is 
testing with respect to the posttest criterion variable, it is helpful to note that this test is equivalent to the 
statistical test (i.e., the F test) of the amount of variation in the posttest variable accounted for by the 
variation in the treatment variable over and above the amount of variation accounted for by the 
covariates. That is, the t test of the treatment coefficient is comparable to testing the amount of unique 
variation in the posttest scores accounted for by the treatment variable.  It should be noted that 
statistically testing the unique proportion of variation in the posttest scores accounted for by the treatment 
variable is comparable to testing the unique amount of variation accounted for by the treatment variable.     
 The formula used to convert the t test of the treatment coefficient to the proportion of unique 
variation in the criterion variable accounted for by the treatment variable is as follows:  
 

           
( )2 2

2
1

d

t R
R

df

−
∆ =                                            (3) 

 

where: ∆R2  is the proportion of unique variation accounted for by the treatment variable; t2 is the square 
of the t test value of the treatment coefficient; and dfd is the denominator degrees of freedom value for the 
multiple linear regression model.  
 Substituting the t test value of the treatment coefficient (2.63), the R2 value(.692), and the dfd value 
(247), which were generated by MLR Model 2, into Equation 3 revealed that the proportion of unique 
variation in the posttest variable accounted for by the treatment variable was .009.  This proportion of 
unique variation accounted for by the treatment variable can be statistical tested with an F test.  The 
statistical test of the .009 value produced an F test value of 6.92, which is equivalent to the square of the t 
test value for the treatment coefficient.  Since the directional p value for this F test value (p < .01) was 
less than the .05 alpha level, the proportion of unique variation in the posttest scores accounted for by the 
treatment variable was statistically significant, which must be the case when the difference between the 
adjusted means is statistically significant.   
 

Comparison of Results and Implications 
 It is interesting to note that this conclusion differs from the results produced by the propensity score 
analysis.  The t test results produced by the propensity analysis indicated that no significant differences 
existed between the mean posttest scores of the experimental and control groups within each propensity 
score group and across all propensity score groups.  The ANCOVA results, however, revealed that the 
difference between the adjusted posttest scores of the experimental and control groups was statistically 
significant.  Why the difference?   
  One possible reason for the difference in the results of the two analytic methods is the difference in 
what is being analyzed by the two methods.  In the propensity score analysis, the posttest scores of the 
control and experimental groups were compared within the propensity groups, that is, within groups of 
students with similar predicted probabilities of being members of the control or experimental groups 
based on the covariate variables.  Thus, the propensity score analysis did not statistically test adjusted 
posttest means, which is to say, the propensity analysis did not test the amount of unique variation in the 
criterion variable accounted for by the treatment.  In contrast, the difference between the adjusted posttest 
means of the control and experimental groups was analyzed in the ANCOVA, which is synonymous with 
testing the amount of unique variation in the posttest scores (the criterion variable) accounted for by the 
treatments.   



Fraas, Newman, & Pool 

 
30                                                                                          Multiple Linear Regression Viewpoints, 2007, Vol. 33(1) 

  Which method is appropriate?  To address this question, two issues should be considered by the 
researcher.  First, if the researcher is concerned that the construct represented by the criterion variable 
may be substantially altered by the analysis of adjusted means, which is the issue discussed by Tracz et al. 
(2005), propensity score analysis may provide an appropriate alternative analytic technique to ANCOVA.  
Tracz et al. note that if ANCOVA is used, researchers should consider establishing reliability and validity 
estimates for the adjusted scores, which is no small task and, we suggest, unlikely to be done by most 
researchers.  The use of propensity score analysis provides a less time consuming alternative by not 
analyzing the amount of unique variation in the criterion variable accounted for by the treatments.     
  Second, if the researcher is interested in testing the difference between the posttest means and not the 
adjusted posttest means, propensity score analysis would be the recommended procedure.  If, however, 
the researcher is interested in testing the difference in the adjusted means, ANCOVA will provide that 
analysis.  The key point regarding this issue is that the researcher should strive to match the analytic 
technique to the research question.  That is, the researcher should select the research technique that will 
not lead to a Type VI error.   
 

Summary 
  The purpose of this article is to suggest the use of propensity score analysis as an appropriate 
analytical tool for addressing two concerns expressed in the literature.  One of these concerns deals with 
the issue that the construct represented by the criterion variable may change (Tracz et al., 2005) when the 
analytic tool used by the researcher analyzes adjusted means, that is, the amount of unique variation in the 
criterion variable accounted for by the treatment variable.  If ANCOVA is used, Tracz et al. (p. 20) 
suggest that the "residualized or adjusted dependent variable is no longer the same as the original 
dependent variable."  In such a case, Tracz et al. recommend that the researcher establish the reliability 
and validity of the residualized or adjusted scores.  Since this would be no small task, researchers may 
find it more practical to utilize propensity analysis to address selection bias issues because it involves the 
analysis of means in propensity score groups rather than the analysis of adjusted means, as is the case in 
ANCOVA. 
  The other concern deals with the use of an analytic technique that appropriately matches the research 
question, that is, the researcher avoids committing a Type VI error (Newman, Deitchman, et al. 1976; 
Newman, Fraas, et al., 2002).  Specifically, if a researcher is concerned with selection bias and the 
research question involves unadjusted posttest scores, propensity analysis will produce results that deal 
with unadjusted posttest scores, while ANCOVA will not. 
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Estimation Methods for Cross-Validation  
Prediction Accuracy: A Comparison of Proportional Bias 

David A. Walker 
Northern Illinois University 

Using empirical data, the performance of the predictive effectiveness of four algorithms and a bootstrap 
method for cross-validation of a multiple regression equation were examined. Results indicated that the 
Browne algorithm was the most accurate in 8 of the 9 data situations. The Rozeboom algorithm, in a 
majority of conditions, had the second least amount of proportional bias. The Nicholson and Lord and 
Stein-Darlington formulas demonstrated a consistent pattern of low relative accuracy in many situations, 
with the most amount of proportional bias in 4 of 9 and in 6 of 9 data sets, respectively. The bootstrap 
method showed no discernable pattern of relative accuracy with results ranging from the most accurate in 
a situation to the least accurate in three different data situations. 

or prediction studies derived via multiple regression that estimate how well a sample equation 
generalizes to other samples, or as Rozeboom (1978, p. 1350) called this “a sample regression’s 
generalized validity,” the use of empirical methods such as cross-validation or double cross-
validation have been studied in the past (Lord & Novick, 1968; Mosier, 1951). However, there are 

cautions with these techniques. For example, when applied to small sample sizes, where the sample is 
split into two sub-samples, this can lead to less precise estimates of prediction (Browne, 1975; Cattin, 
1980a; Cotter & Raju, 1982). To resolve this major limitation, the use of estimation algorithms has been 
noted in the scholarly literature, where the sample size is not split, but left whole, exacting a more 
accurate estimate of the criterion score estimation for cross-validation of a multiple regression equation 
(Allen, 1971; Claudy, 1978; Cotter & Raju, 1982; Gollob, 1967; Huberty & Mourad, 1980; Morris, 1984; 
1986).  
  From a review of the literature in the area of proposed cross-validation techniques, the vast majority 
of the research conducted on the predictive effectiveness of multiple regression equations derived via an 
algorithm has been conducted as Monte Carlo studies. That is, very few studies reported results from 
cross-validation algorithms when empirical data were used. Of the small number of studies that did 
implement empirical data, most used data from large samples derived from business, government, or 
educational institutions (cf. Cotter & Raju, 1982; Huberty & Mourad, 1980; Kromrey & Hines, 1995). A 
few exceptions found in the literature that applied empirical data sets from smaller samples were Krus and 
Fuller (1982) who used cross-validation algorithms with data from a textbook, and Morris (1986) who 
employed Allen’s (1971) PRESS (Predicted Error Sum of Square) technique with data from journal 
articles, textbooks, and professional conference papers. 
  Various formulas have been proposed for use as estimation algorithms for cross-validating a 
regression equation. From the literature, four formulas emerge as viable estimators. Many of the 
subsequent formulas are decidedly related algebraically and/or are hybrids of one another. Formulas 1, 2, 
and 4 are found in Huberty & Mourad (1980) and formula 3 is from Cattin (1980b). 
Nicholson (1960) and Lord (1950) proposed 2

NLR , where:   
  

       2
NLR  = 21 11 1

1
N p N R
N p N

⎡ ⎤+ + −⎡ ⎤ ⎡ ⎤− −⎢ ⎥ ⎣ ⎦⎢ ⎥− − ⎣ ⎦⎣ ⎦
        (1) 

 

Stein (1960) and Darlington (1968) proposed 2
SDR , where: 

 

      2
SDR  = 21 2 11 1

1 2
N N N R

N p N p N
⎡ ⎤ ⎡ ⎤− − +⎡ ⎤ ⎡ ⎤− −⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎢ ⎥− − − − ⎣ ⎦⎣ ⎦ ⎣ ⎦

      (2) 

 

F 
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Browne (1975) proposed 2
BR , rearranged by Cattin (1980b), where: 

 

        2
BR  = 

2 2 2

2

[( 3)( ) ]
[( 2 2) ]
N p R R
N p R p
− − +
− − +

          (3) 

 

Rozeboom (1978) restructured Browne’s (1975) algorithm and proposed a simpler version, 2
RR , where: 

 

        2
RR  = 21 1N p R

N p
⎡ ⎤+ ⎡ ⎤− −⎢ ⎥ ⎣ ⎦−⎣ ⎦

          (4) 

 

where, N = Sample size, p = Number of X variables, and R2 = Squared multiple correlation coefficient. 
  Finally, in prediction studies derived via multiple regression that have the intention of closely 
approximating a sample prediction equation, the bootstrap method, as well as the leave-one-out method 
and the jackknife method, have been found to be similar to cross-validation techniques (Efron, 1983; 
Gong, 2003; Huberty & Mourad, 1980; Kromrey & Hines, 1995; Lachenbruch, 1967). The bootstrap is a 
resampling method where the sampling properties of a statistic, in this instance R2, are derived by 
recomputing its value for artificial samples. Thus, the sample data from this study will serve as pseudo-
populations and 1,000 random samples with replacement will be drawn from these full samples. One 
thousand iterations will be used as an established threshold where all of the nine empirical data sets will 
have had convergence. Once the bootstrap method is repeated 1,000 times on each empirical data set, a 
distribution of bootstrapped estimates for R2 will emerge, where the mean value (i.e., 2

BOOTR ) of each 
bootstrapped distribution is the estimate for R2. 
 

Purpose 
  Using empirical data, the intention of the current research is to determine the stability of predictive 
effectiveness of the criterion score estimation of four algorithms and the bootstrap method for cross-
validation of a multiple regression equation. The stability of predicative effectiveness is defined as the 
performance of the techniques in terms of relative accuracy as determined from bias and proportional bias 
(cf. Aaron, Kromrey, & Ferron, 1998; Morris, 1986). As bias multiples, the distance between the 2

CVR  
value and the R2 value increases, which leads to diminished stability and a lesser proportion of the 
criterion score variance accounted for in the predicted Y value than in the original sample’s Y value. The 
measures of bias are: 
            Bias = R2 – 2

CVR                 (5) 
 

           Proportional Bias = Bias / R2  =  1 – ( 2
CVR  / R2)              (6) 

 

where, 2
CVR  is defined by either 2

NLR , 2
SDR , 2

RR , 2
BR , or 2

BOOTR . 
  Thus, this study will compare the performance of four algorithms and the bootstrap method in a three-
tier situation: (1) in the first set of empirical data, each will contain two regressor variates (p=2), variable 
sample sizes (N) = 12, 20, 30, and variable R2 values = .799, .255, .358; (2) in the second set of data, each 
will have p =3, N = 20, 30, 93, and R2 = .943, .617, .261; (3) in the third set of data, each will have p = 4, 
N = 13, 30, 36, and R2 = .982, .640, .355. 
 

Methods 
  The data sets for this research came from Agresti and Finlay (1986), Cohen and Cohen (1983), Hald 
(1965), Kerlinger and Pedhazur (1973), Rulon, Tiedeman, Tatsuoka, and Langmuir (1967), Sprinthall 
(2000), and Thurstone (1947). These data are well-known and found in textbooks utilized in graduate-
level research design and statistics courses. Also, they exemplify the types of data often applied in social 
science research, with varying distributional characteristics, multicollinearity, sample sizes, regressor 
variates, and criterion variables such as predicting grade point average, psychiatric impairment, or job 
success. 
  The previously listed N, p, and R2 values from the data sets will be entered into the four formulas for 

2
NLR , 2

SDR , 2
RR , and 2

BR , which are part of a program written in SPSS (Statistical Package for the Social 
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Sciences) v. 14.0 by the author (see Appendix A). The data sets also will be bootstrapped in the program 
AMOS v. 5.0 (Analysis of Moment Structures) for 2

BOOTR .  
 

Results and Discussion 
 Table 1 shows that in terms of the relative accuracy of prediction, overall, the Browne algorithm, 2

BR , 

was superior in every data situation, except one. The 2
BR  showed a distinct pattern of low bias and high 

stability and appeared to have the most relative accuracy for predictive effectiveness of criterion score 
estimation. Furthermore, following the standard set by Kromrey and Hines (1995), estimates within .01 of 
the sample R2 value can be thought of as statistically unbiased, which occurred in two situations with 2

BR  
(i.e., the Thurstone and Hald data sets). 
  For the other three algorithm estimation techniques, none were noticeably superior in all nine of the 
data sets. That is, based on empirical data with varying sample sizes, regressor variates, and R2 values, no 
generalizable rules can be constructed concerning which of the remaining three algorithm-based cross-
validation methods were the “best” to use in a particular condition. However, patterns from the results do 
emerge to allow for some suggestions. For example, in the majority of data sets (i.e., 6 of 9), the 
Rozeboom algorithm ( 2

RR ) had the second least amount of proportional bias of the remaining formulas. In 
the other three data situations, this formula’s prediction accuracy was the next most precise. Though 
research by Huberty and Mourad (1980) and Cotter and Raju (1982) studied the same three cross-
validation formulas (e.g., 2

NLR ; 2
SDR ; 2

RR ) in different ways, and came to some differing conclusions 
pertaining to predictive accuracy, they both concluded that RR

2 was a precise estimator in most empirical 
data circumstances. Another apparent pattern from the current study’s results was that after 2

BR  and 2
RR , 

the Nicholson and Lord ( 2
NLR ) and the Stein-Darlington ( 2

SDR ) formulas demonstrated consistent patterns 
of low relative accuracy in many situations, with the most amount of proportional bias in 4 of 9 and in 6 
of 9 data sets, respectively. 
  For the bootstrap method, 2

BOOTR  showed no discernable pattern of relative accuracy with results 
ranging from the most accurate in a situation to the least accurate in three different data situations. Of 
interest is that the 2

BOOTR  method had the least amount of proportional bias, in fact it was less than 0.01, 
when used with the Hald data set, which was the only data set with multicollinearity (e.g., variance 
inflation factor > 38 and tolerance < 0.03). This situation was checked with a data set independent from 
the others used in this study, which also manifested multicollinearity (e.g., variance inflation factor > 30 
and tolerance < .02). In the scholarly literature, results from a study conducted by Ayabe (1985) using a 
technique similar to the bootstrap method, the jackknife procedure, found inferior estimates as well. 
Kromrey and Hines (1995) found mixed results, similar to the current study’s findings, with use of the 
bootstrap method with small sample sizes. However, when sample sizes were N ≥ 100, they found more 
unbiased estimates when using the bootstrap.   
 

Conclusion 
  Given the very unique characteristics of each data set in this study in the areas of dissimilar N, p, and 
R2 values, the 2

BR  algorithm was the most accurate in 8 of the 9 data situations. None of the remaining 
three proposed cross-validation algorithms, or the bootstrap method, were exceedingly superior or inferior 
to each other when compared based on proportional bias. Although it may be convenient to run all four 
cross-validation methods from the program in Appendix A to determine which one has the least amount 
of bias given a specific data situation, the definite preference is toward 2

BR  in nearly every  
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Table 1. Bias Affiliated with Cross-Validation Estimation Methods 
Data Set R2 Biases 2

NLR  2
SDR  2

RR  2
BR  2

BOOTR  
Kerlinger (1973) 
N = 12 
p = 2 
DV = Attitude Score 

0.799 2
CVR  

Bias 
Proportional
Bias 

0.693 
0.106 
0.133 

0.667 
0.132 
0.165 

0.719 
0.080 
0.100 

0.775 
0.024 
0.030 

0.675 
0.124 
0.155 

Sprinthall (2000) 
N = 20 
p = 2 
DV = Anger Score 

0.255 2
CVR  

Bias 
Proportional
Bias 

0.042 
0.213 
0.835 

0.016 
0.239 
0.937 

0.089 
0.166 
0.651 

0.221 
0.034 
0.133 

0.073 
0.182 
0.714 

Agresti (1986) 
N = 30 
p = 2 
DV = Psychiatric Impairment 

0.358 2
CVR  

Bias 
Proportional
Bias 

0.241 
0.117 
0.327 

0.233 
0.125 
0.349 

0.266 
0.092 
0.257 

0.336 
0.022 
0.061 

0.215 
0.143 
0.399 

Thurstone (1947) 
N = 20 
p = 3 
DV = Volume of a Box 

0.943 2
CVR  

Bias 
Proportional
Bias 

0.919 
0.024 
0.025 

0.915 
0.028 
0.03 

0.923 
0.02 

0.021 

0.935 
0.008 
0.008 

0.929 
0.014 
0.015 

Kerlinger (1973) 
N = 30 
p = 3 
DV = GPA 

0.617 2
CVR  

Bias 
Proportional
Bias 

0.516 
0.101 
0.164 

0.506 
0.111 
0.18 

0.532 
0.085 
0.138 

0.588 
0.029 
0.047 

0.478 
0.139 
0.225 

Rulon (1967) 
N = 93 
p = 3 
DV = Success Score 

0.261 2
CVR  

Bias 
Proportional
Bias 

0.203 
0.058 
0.222 

0.202 
0.059 
0.226 

0.212 
0.049 
0.188 

0.246 
0.015 
0.057 

0.167 
0.094 
0.360 

Hald (1965) 
N = 13 
p = 4 
DV = Heat Evolved (Cement) 

0.982 2
CVR  

Bias 
Proportional
Bias 

0.963 
0.019 
0.019 

0.954 
0.028 
0.029 

0.966 
0.016 
0.016 

0.974 
0.008 
0.008 

0.975 
0.007 
0.007 

Kerlinger (1973) 
N = 30 
p = 4 
DV = GPA 

0.640 2
CVR  

Bias 
Proportional
Bias 

0.513 
0.127 
0.198 

0.497 
0.143 
0.223 

0.529 
0.111 
0.173 

0.599 
0.041 
0.064 

0.508 
0.132 
0.206 

Cohen (1983) 
N = 36 
p = 4 
DV = Religious Attitude 

0.355 2
CVR  

Bias 
Proportional
Bias 

0.171 
0.184 
0.518 

0.152 
0.203 
0.572 

0.194 
0.161 
0.454 

0.303 
0.052 
0.146 

0.222 
0.133 
0.375 

 
empirical data cross-validation circumstance. Thus, it is probably prudent to apply 2

BR  first while 

regarding the proportional bias derived from 2
RR  as a comparison. The remaining two algorithms, 2

NLR  

and 2
SDR , did not perform well in virtually any data situation. Though use of the AMOS bootstrap 

technique it not difficult (cf. Fan, 2003 for application instructions), the mixed results derived from 
2
BOOTR  should afford caution when used with small sample sizes (i.e., N < 100), except in situations of 

multicollinearity where the 2
BOOTR  method showed the least amount of proportional bias. 
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Appendix A.  Cross-Validation Algorithms Program 
 
****************************************************************************** 
Copyright David A. Walker, 2006 
Contact dawalker@niu.edu 
Northern Illinois University, 101J Gabel, DeKalb, IL 60115 
  **APA 5th Edition Citation** 
Walker, D. A. (2006). Four estimators for sample cross-validation [Computer 
 program]. DeKalb, IL: Author. 
******************************************************************************. 
 
          
****************************************************************************** 
NOTE: Between BEGIN DATA and END DATA, insert the multiple correlation 
coefficient (R2), the sample size (N), and the number of regressor variates (p) 
derived from your data 
******************************************************************************. 
 
DATA LIST LIST / R2(F9.3) p(F8.0) N(F8.0). 
BEGIN DATA 
.799 2 12 
.255 2 20 
.358 2 30 
.943 3 20 
.617 3 30 
.261 3 93 
.982 4 13 
.640 4 30 
.355 4 36  
END DATA. 
COMPUTE RNICHOL = (N+p+1)/ (N-p-1).  
COMPUTE RLORD = (N-1)/(N). 
COMPUTE RNICLORD = (1-(RNICHOL*RLORD)* (1-R2)). 
COMPUTE RSTEIN1 = (N-1)/ (N-p-1).  
COMPUTE RSTEIN2 = (N-2)/ (N-p-2).  
COMPUTE RDARLING = (N+1)/(N). 
COMPUTE RSTDARL = (1-(RSTEIN1*RSTEIN2*RDARLING)* (1-R2)). 
COMPUTE RROZE = (1- (N+p)/ (N-p) * (1-R2)). 
COMPUTE RBROWNE1 = ((N-p-3) * (R2)**2)+R2. 
COMPUTE RBROWNE2 = ((N-2*p-2) * R2)+p. 
COMPUTE RBROWNE = RBROWNE1 / RBROWNE2. 
EXECUTE. 
FORMAT RNICHOL TO RBROWNE (F9.3). 
VARIABLE LABELS R2 'Multiple Correlation Coefficient'/p 'Number of Predictor Variables'/ N 'Sample 
Size'/RNICLORD 'Nicholson-Lord'/ RBROWNE 'Browne'/RSTDARL 'Stein-Darlington'/ RROZE 
'Rozeboom'/. 
REPORT FORMAT=LIST AUTOMATIC ALIGN (CENTER) 
MARGINS (*,110) 
  /VARIABLES=N p R2 RNICLORD RSTDARL RROZE RBROWNE  
  /TITLE "Estimation of the Sample Cross-Validity Expectancy". 
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