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Achieving Accurate Prediction Models:  
Less is Almost Always More 

      John D. Morris          Mary G. Lieberman 
Florida Atlantic University 

Accurate cross-validated prediction accuracy is posited as the ultimate criterion for prediction model 
performance. This study investigates and demonstrates, across a wide variety of data sets, the nearly 
ubiquitous benefit to classification model accuracy of optimal subset selection. Unlike popular “stepwise” 
methods often used (and abused) in the literature, this study considers only all-possible-subset cross-
validated performance as the criterion of accuracy. The superiority of variable subsets is demonstrated for 
predictive discriminant analysis and logistic regression. Computer programs are also made available. 

mong the techniques used for solving classification problems, logistic regression (LR) and 
predictive discriminant analysis (PDA) are two of the most popular (Yarnold, Hart & Soltysik, 
1994). Unlike PDA, LR captures the probabilistic distribution embedded in a categorical outcome 
variable, avoids violations to the assumption of homogeneity of covariance matrices (in the case 

of the linear PDA model), and does not require strict multivariate normality. Therefore, when PDA 
assumptions are violated, we might expect greater cross-validated classification accuracy with LR than 
PDA. 
  Although several studies have compared the classification accuracy of LR and PDA, the results have 
been inconsistent. For example, some studies (Baron, 1991; Bayne, Beauchamp, Kane, & McCabe, 1983; 
Crawley, 1979) suggest that LR is more accurate than PDA for nonnormal data. However, several 
researchers (e.g., Cleary & Angel, 1984; Knoke, 1982; Krzanowski, 1975; Lieberman & Morris, 2003; 
Meshbane & Morris, 1996; Press & Wilson, 1978) found little or no difference in the accuracy of the two 
techniques with PDA often performing better than LR. Part of the reason these results are in dispute is 
that one may look at accuracy for all groups or separate-groups. As well, one may consider a cross-
validated index of accuracy or the accuracy of reclassifying the calibration sample; these studies are not 
consistent in respect to the criterion of accuracy used. Specifically, examination of cross-validation 
accuracy in LR studies is uncommon, and when done is usually of the most basic (also non-unique and 
unstable) sort (hold-out sample). No computer packages support more appropriate resampling cross-
validation methods (variously called PRESS, Lachenbruch U, leave-one-out, jackknife and bootstrap). 
  Whichever method (LR or PDA) is selected, one may consider subsets of all possible variables for 
purposes or parsimony, and/or to increase cross-validation accuracy of the model (Morris & Meshbane, 
1995). The most usual method is to consider accuracy in classification of the sample upon which the 
model is created (internal) with the objective of parsimony. That is, realizing that some accuracy will be 
lost in reducing the number of predictor variables in classifying the calibration sample, but compromising 
that loss with the gain in parsimony afforded by the reduction in size of the prediction model. However, 
as in multiple regression, an increase in cross-validated prediction accuracy (the most appropriate 
criterion) is almost always available using a model composed of fewer than all variables available. Thus 
one may gain both parsimony and some degree of explanatory power for the model. In addition, although 
traditional methods considering the piecemeal change in performance of models in respect to prediction 
within the calibration sample have often been used (forward, backward, stepwise, or variants thereof), 
they are neither optimal, nor unique and are now generally in disfavor. 
  In the case of PDA an examination of the cross-validation accuracy of all 2p-1 (where p is the number 
of predictor variables) subsets of variables has been recommended and utilized (Huberty, 1994; Huberty 
& Olejnik, 2006; Morris & Meshbane, 1995). In this case the method of cross-validation is the leave-one-
out method. In the leave-one-out procedure (Huberty, 1994, p. 88; Lachenbruch & Mickey, 1968; 
Mosteller & Tukey, 1968) a subject is classified by applying the rule derived from all subjects except the 
one being classified. This process is repeated round-robin for each subject, with a count of the overall 
classification accuracy used to estimate the cross-validated accuracy. [Clearly the same round-robin 
procedure can be used to estimate either relative or absolute accuracy in the use of multiple regression 
and has appeared in that context, with perhaps the earliest reference due to Gollob (1967). In a system 
intended to select optimal multiple regression predictor variable subsets, Allen (1971) coined the 
procedure PRESS, and he appears to be the source most often cited in the multiple regression literature.] 

A 
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Table 1. Data set, number of predictor variables (p), PDA hit-rate for all p variables, number of variables  
               in the best performing subset(s), hit-rate for that subset, and the % change in hit-rate. 

# Data Set Source p Hit-rate for p # Predictors in Max Hit-rate % Change 
      Predictors Best Subset(s)     
1 Rulon Grps 1 & 2 4 .809 3 .831a 2.72 
2 Rulon Grps 1 & 3 4 .927 3 .934 .75 
3 Rulon Gps 2 & 3 4 .830 3 .836 .72 
4 Block - Grps 1 & 2 4 .679 2 .743 9.43 
5 Block - Grps 1 & 3 4 .646 4 .646 0.00 
6 Block - Grps 1 & 4 4 .603 1 .667 10.61 
7 Block - Grps 2 & 3 4 .553 1 .632 14.29 
8 Block - Grps 2 & 4 4 .600 2 .640 6.67 
9 Block - Grps 3 & 4 4 .684 3 .711 3.95 

10 Demographics 8 .581 3,6 .613 5.51 
11 Dropout from 4th 10 .702 2,3,4,5 .787 12.11 
12 Dropout from 8th 11 .739 5,6 .803 8.66 
13 Fitness 10 .588 7 .616 4.76 
14 Warncke -Grps 1 & 2 10 .482 2 .607 25.93 
15 Warncke -Grps 1 & 3 10 .571 3,5,6 .657 15.06 
16 Warncke -Grps 2 & 3 10 .402 1,5 .575 43.03 
17 Bisbey 1& 2 13 .888 5,6,7,8,9,10 .914 2.93 
18 Bisbey 2& 3 13 .839 2,4,5,6 .983 17.16 
19 Talent - Grps 1 & 3 14 .578 7 .698 20.76 
20 Talent - Grps 3 & 5 14 .772 8.9 .835 8.16 
21 Talent - Grps 1 & 5 14 .746 5,7,8 .797 6.84 
a Bold when > than LR. 

 
 In the case of PDA (and regression) a matrix identity due to Bartlett (1951) allows the task of the 
requisite N-1 matrix inversions to be accomplished with far less computational labor that would otherwise 
be necessary. However, this mathematical tool is irrelevant to the iterative method of LR optimization, 
thus N-1 LR optimizations must be completed for each of 2p-1 subsets of predictor variables. 
  Unlike most LR studies that consider calibration sample statistics as the criterion for model fit (e.g., 
the Cox & Snell, or Nagelkerke R2), the criterion for model accuracy is construed in this study, as is 
typically the case in PDA, as classification accuracy. That is, the proportion of correct leave-one-out 
cross-validated classifications (hit-rate) for the total sample and each separate group. Thus for a two-
group problem, we may order the accuracy of our 2p-1 candidate LR equations according to three 
different (total sample and each group) cross-validated classification accuracy criteria. 
 

Method 
  Analyses from 21 two-group classification problems from Morris and Huberty (1987) were used to 
illustrate the method and computer program for PDA (Table 1) and LR (Table 2). Although not purported 
to represent all potential data structures, these data sets have been used in several classification studies as 
representing a wide variety of number of predictor variables, group separation, and covariance structures. 
As the number of predictors ranges from 4 to 14, the candidate 2p-1 cross-validated subsets range from a 
very modest 15 to 16,383 for the 14 predictor variable problem. However, even in the case of the 
calculation and sorting of the16K+ cross-validated classification performances, the program executes (on 
a midrange laptop) in less than 30 seconds. 
 

Result and Conclusions 
  In the case of both PDA (Table1) and LR (Table 2), one can see that, in all cases, except #5 in PDA, 
selection of the best performing subset (of the 2p–1 possibilities) offers a reduction in the number of 
predictor variables, often by more than half, thus parsimony is well served. One may also note that,  
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Table 2. Data set, number of predictor variables (p), LR hit-rate for all p variables, number of variables 
                in the best performing subset(s), hit-rate for that subset, and the % change in hit-rate. 

# Data Set Source p Hit-rate for p # Predictors in Max Hit-rate % Change 
      Predictors Best Subset(s)     
1 Rulon Grps 1 & 2 4 0.803 3 .815 1.49 
2 Rulon Grps 1 & 3 4 0.914 3 .934 2.19 
 Rulon Gps 2 & 3 4 0.824 3 .830 0.73 

4 Block - Grps 1 & 2 4 0.692 1,2 .718 3.76 
5 Block - Grps 1 & 3 4 0.620 3,4 .620 0.00 
6 Block - Grps 1 & 4 4 0.577 1,2 .628 8.84 
7 Block - Grps 2 & 3 4 0.566 1,2 .605 6.89 
8 Block - Grps 2 & 4 4 0.587 2 .627 6.81 
9 Block - Grps 3 & 4 4 0.684 3 .697 1.90 

10 Demographics 8 0.591 4 .620a 4.91 
11 Dropout from 4th 10 0.660 4 .787 19.24 
12 Dropout from 8th 11 0.725 3 .782 7.86 
13 Fitness 10 0.591 4 .620 4.91 
14 Warncke -Grps 1 & 2 10 0.446 1 .580 30.04 
15 Warncke -Grps 1 & 3 10 0.600 4 .667 11.17 
16 Warncke -Grps 2 & 3 10 0.425 2 .563 32.47 
17 Bisbey 1& 2 13 0.879 6,7,8,9,10 .914 3.98 
18 Bisbey 2& 3 13 0.856 5,6,7 .924 7.94 
19 Talent - Grps 1 & 3 14 0.621 5 .733 18.04 
20 Talent - Grps 3 & 5 14 0.787 6,7,8,9 .858 9.02 
21 Talent - Grps 1 & 5 14 0.740 5 .797 7.70 
a Bold when > PDA.  

 
particularly with larger models, multiple sets of predictors and size models often achieve maximum 
accuracy. In addition, one can see that due to the reduction in the number of predictor variables, cross-
validation accuracy increased from less than 1% all the way up to more than 40%. Only in data set #5 
(PDA & LR) did the reduced model perform the same as the full model. In the case of LR, still offering 
the same accuracy, but with increased parsimony, and in the case of PDA, offering no advantage. The 
mean increase in cross-validated hit-rate due to the reduction in the number of predictor variables over all 
21 data sets was about 5% for LR and 10% for PDA. Thus one can have parsimony and increased 
accuracy. Through this procedure and computer programs, researchers will be able to make better 
decisions about optimally accurate classification model construction.  
 Although not the focus of this study, it is difficult to ignore potential comparisons between PDA an 
LR performance. As was stated, greater parsimony and accuracy is afforded in almost every case by 
selecting an optimally performing subset. As has been previously documented, cross-validation 
performance was often very close between PDA and LR. However, if one considers only the optimally 
performing subsets the advantage seems to go to PDA herein. PDA is best in 12 data sets, LR in 5, and 
performance is the same in 4. 
 Further consideration of the advantage of the availability of multiple optimally performing subsets 
should also be noted. Missing data is almost always a difficulty in dealing with real data. First, a model 
depending on a smaller number of variables has not only the philosophical advantage of parsimony, but 
may also afford the opportunity to accommodate missing data; there is more opportunity for the model to 
be applicable as the number of variables decreases. Moreover, if several equally performing (or nearly so) 
superior subsets are available, the opportunity to accommodate the missing data of an individual score 
vector is increased; one can use alternative models for alternate missing data configurations, unless, of 
course, that variable that is missing is including in all of the best subsets. Table 3 illustrates the top 20 (of 
256 possibilities) subset accuracies for PDA prediction of dropout from high school from 8 predictors. 
One can see that the optimal subset contains 4 variables, but many subsets are close, such that 
performance is maintained. Such information can aid in handling missing data. That is, one might argue 
that if the four variables in the best performing model are available for a subject (SCHOOLS8, MATH8, 
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Table 3. Ranked 20 best (of 255) performing subsets, and total model. 
                                                                               Variables Included in the Model: 
Hit-Rate  SCHOOLS8 REPEATS8 READING8 MATH8 LANG8 SCIENCE8 SOCST8 DSFS8 

0.753  √   √  √  √ 
0.747  √   √    √ 
0.747  √       √ 
0.747  √    √ √ √ √ 
0.747  √   √ √ √ √ √ 
0.741  √  √  √  √ √ 
0.741  √   √  √ √ √ 
0.735  √  √  √ √  √ 
0.735  √   √   √ √ 
0.735  √ √ √    √  
0.735  √   √ √  √ √ 
0.735  √     √ √ √ 
0.735  √  √ √ √   √ 
0.735  √ √      √ 
0.735  √ √ √      
0.728  √ √    √ √  
0.728  √     √  √ 
0.728  √ √    √  √ 
0.728  √ √ √   √  √ 
0.728  √ √    √   

         
Total Model         

0.679  √ √ √ √ √ √ √ √ 
Note: SCHOOLS8: Accumulated # of schools attended by grade 8. 
  REPEATS8:  Accumulated # of Grades repeated by grade 8. 
  READING8:   8th Grade Reading grade. 
  MATH8:         8th Grade Math grade. 
  LANG8:         8th Grade Language grade. 
  SCIENCE8:    8th Grade Science grade. 
  SOCST8:  8th Grade Social Studies grade. 
  DSFS8:   Accumulated # of D and F grades over all subjects by grade 8. 
 
SCIENCE8, DSFS8) it should be used. However, if for some reason MATH8 and SCIENCE8 (as well as 
REPEATS8, READING8, LANG8, and SOCST8) are missing from a case, then a model that 
demonstrates essentially the same performance is available using only SCHOOLS8 and DSFS8. In this 
case, the SCHOOLS8 is the number of schools the child had attended by the 8th grade and DSFS8 is the 
number of “D” and “F” grades the child had accumulated, whereas MATH8 and SCIENCE8 are grades in 
those specific subjects in the 8th grade. So, as an example, for a teacher, or school not reporting subject 
grades, but the more “global” accumulated variables of SCHOOLS8 and DSFS8 are retained in the 
county database, the alternate model could be used with the expectation of attaining essentially the same 
accuracy. 
 Note, however, in this case, that if SCHOOLS8 is not available, optimal accuracy appears 
improbable. It is a “don’t leave home without it” variable. The programs used herein (one for PDA and 
one for LR) for the examination and ordering of the 2p–1 possible subsets of predictor variables by their 
leave-one-out accuracy are available from the senior author at: jdmorris@fau.edu. They are available as 
Intel based EXE files (compiled from FORTRAN). 
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Regression Discontinuity:  Examining Model Misspecification 
Randall E. Schumacker 

University of Alabama 
The Regression Discontinuity (RD) design looks similar to the non-equivalent group design, which uses 
analysis of covariance, but assumptions and advantages are much different.  The major problem in 
analyzing data from the RD design is model misspecification.   If the regression equation or statistical 
model does not reflect the data distribution, then biased estimates of the treatment effect will occur.  For 
example, if the true pre-post relationship is curvilinear, but the regression equation only modeled linear 
regression effects, the treatment effects would be biased. However, a statistical approach is possible using 
a full model with all terms specified and then test restricted sub-models that omit individual parameters. 

he basic RD Design is a two-group pretest-posttest model and is depicted as follows: 
 

             C O X O 
          C  O  O 

 

 The RD design looks similar to the non-equivalent group design, which uses analysis of covariance, 
but assumptions and advantages are much different (Campbell, 1989; Loftin & Madison, 1991; 
Schumacker, 1992). The RD design does not have subject selection bias (pre-defined group membership) 
rather uses a pre-test measure to assign treatment or non-treatment status. The basic RD model would 
have an intercept term, pre-test measure, and dummy-coded group assignment variable regressed on a 
post-test measure. The pre-test measure does not have to be the same as the post-test measure.  
 The major problem in analyzing data from the RD design is model misspecification. If the regression 
equation or statistical model does not reflect the data distribution, then biased estimates of the treatment 
effect will occur. For example, if the true pre-post relationship is curvilinear, but the regression equation 
only modeled linear regression effects, the treatment effects would be biased. Consequently, it is a good 
idea to visually inspect the pre-post scatter plot to see what type of relationship exists. However, a 
statistical approach is possible using a full model with all terms specified and then test restricted sub-
models that omit individual parameters. This will be illustrated in this paper. 
There are five central assumptions when performing an RD analysis. A major concern is the model 
specification in the pre-post distribution being a polynomial function rather than a logarithmic or 
exponential function. The five central assumptions are: 
 
   1. The cutoff value must be absolute without exception. A subject selection bias is introduced 
and the treatment effect is biased if incorrect assignment to groups based on the cutoff value occurred 
(unless it is known to be random). 
   2. The pre-post distribution is a polynomial function. If the pre-post relationship is logarithmic, 
exponential or some other function, the model is misspecified and the treatment effect is biased. The data 
can be transformed to create a polynomial distribution prior to analysis to yield appropriate model 
specification. 
   3. There must be a sufficient number of pretest values in the comparison group to estimate the 
pre-post regression line.  
   4. The experimental and comparison groups must be formed from a single continuous pretest 
distribution with the division between groups determined by the cutoff value.  
   5. The treatment or program intervention must be delivered to all subjects, i.e., all receive the 
same reading program, amount of training, etc.  
 
 Model specification can be identified in three different ways or types: exactly specified, over 
specified, and under specified RD models. An exactly specified model has an equation that fits the “true” 
data. So if the “true” data is linear then a simple straight-line pre-post relationship with a treatment effect 
would yield unbiased treatment effects. The RD equation would include a term for the posttest Y, the 
pretest X, and the dummy-coded treatment variable Z with no unnecessary terms. When we exactly 
specify the true model, we get unbiased and efficient estimates of the treatment effect. If the RD equation 
is over specified it includes additional parameter estimates that are not required, i.e. interaction or 
curvilinear coefficients, and treatment effect would be inefficient. If the RD equation is under specified it 
leaves out important parameter estimates and the treatment effect would be biased. 

T 
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 The basic steps being proposed to statistical test the type of model when conducting an RD analyses 
would be as follows: 
 

   1. Subtract the cut-off score from the pretest score (Xpre – Xcut). 
   2. Visually examine the pre-post scatter plot for type of data relationship.  
    3. Determine if any higher-order polynomial terms or interactions are present. 
   4. Estimate the “full” RD regression equation. 
   5. Modify the RD equation by dropping individual non-significant terms. 
 

Methodology 
 The “full” RD regression equation with subsequent “modified” or “restricted” regression models 
permit one to statistically determine the best fitting model for estimating treatment effects.   A “full” 
regression discontinuity model could be as outlined below. 
 

        2 2
0 1 2 3 4 5i i i i i i i i iy X Z X Z X X Z eβ β β β β β= + + + + + +  

 

The RD regression equation terms are defined as: 
 

     yi = post test score outcome for ith subject 
  β0 = regression coefficient for intercept 
  β1 = linear pre test regression coefficient 
  β2 = mean post test different for treatment group  
  β3 = linear interaction regression coefficient between pre and group  
  β4 = quadratic regression coefficient for pretest 
  β5 = quadratic interaction regression coefficient for pre test and group  
  Xi = transformed pre test score for ith subject 
  Zi =  group assignment based on cut off score (0 = comparison, 1 = treatment) 
  ei  = residual score for ith subject. 
 

Data Simulation 
 The S-PLUS program that generated the 
simulated data and computed results for the RD 
analysis is footnoted (SPLUS, 2005). The rnorm 
function in S-PLUS generated 100 random 
normal data points (Chambers, Mallows, & Stuck, 
1976). The post test scores (Y) and pre test scores 
(X) were created by adding residual error (ey or 
ex) to this random normal variable (true). Group 
assignment (Z) was determined based on 
subtracting a cut score of 20 from the pre test 
score (1–treatment, 0–comparison). This 10 point 
treatment gain was added to the post test score 
(Y). Optional print and write statements are 
included to either view or save the data in a file. 
 The least squares regression function, lm, was 
used to run the RD analyses where ypost = post 
test score; xc = transformed pre test score; z = group assignment; xz = linear interaction; xsq = quadratic 
pre test; and xsqz = quadratic interaction of pre test and group.  The sequence of RD regression equations 
that were tested are as follows: 
 

   1.  Full model:        lm (ypost ~ xc + z + xz + xsq + xsqz) 
   2.  No quadratic Interaction:   lm (ypost ~ xc + z + xz + xsq) 
   3.  No quadratic Interaction:  lm (ypost ~ xc + z + xz) 
   4.  Linear model:    lm (ypost ~ xc + z) 
   5.  No pre test model:        lm (ypost ~ xc) 

Figure 1.  Simulated Regression Discontinuity data
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 A visual inspection of the simulated data in Figure 1 indicates that we would expect the best fitting 
RD model to be the linear model.  The scatter plot displays the ypost (post test scores) and xc (transformed 
pre test scores) variables. A ten point treatment effect is visible between the two groups.  Recall that the 
treatment group had a mean of 30 and the comparison group had a mean of 20, which are visually present 
in the scatter plot. 
 

Results 
  The full model results indicated that all regression coefficients were non-significant.  The model 
misspecification (over specified) further indicated an inefficient treatment effect (z = -87.86), which we 
know is not true given the simulated data.   
 
   RD Full Model (F=384.3, df = 5, 95) 
 

   Coefficients: 
                   Value Std. Error   t value  Pr(>|t|)  
   (Intercept)   -9.7719   57.9279    -0.1687    0.8664 
            xc   -1.9094    5.2984    -0.3604    0.7194 
             z  -87.8617  108.9808    -0.8062    0.4222 
            xz    9.9789   10.5763     0.9435    0.3478 
           xsq    0.0766    0.1455     0.5261    0.6001 
         xsqz   -0.2570    0.2588    -0.9932    0.3232       
 

 The RD restricted model that dropped the quadratic interaction between squared pre test and group is 
still over specified because all of the regression coefficients were non-significant.  The treatment effect 
was inefficient and over estimated at 19.15 (Z) compared to the known treatment effect of 10 points. 
 
   RD – drop quadratic interaction of pre test and group (F = 480.2, df = 4, 95) 
 

   Coefficients: 
                  Value Std. Error  t value Pr(>|t|)  
   (Intercept)  22.5800  47.8979     0.4714   0.6384 
            xc   1.0476   4.3824     0.2390   0.8116 
             z  19.1494  16.3454     1.1715   0.2443 
            xz  -0.4933   0.8209    -0.6010   0.5493 
           xsq  -0.0047   0.1203    -0.0392   0.9688        
 

 The RD model with both quadratic terms removed is still over specified and yielded a larger F value, 
however, the linear interaction (xz) between pre test and group was not statistically significant (t = -1.81; 
p = .07).  The treatment effect was also inefficient and higher than the known true treatment effect value. 
 
   RD – drop both quadratic interaction effects (F = 646.9, df = 3, 96) 
 

   Coefficients: 
                  Value Std. Error  t value Pr(>|t|)  
   (Intercept)  20.7031   0.2793    74.1277   0.0000 
            xc   0.8761   0.1991     4.4010   0.0000 
             z  19.7477   5.8067     3.4008   0.0010 
            xz  -0.5234   0.2891    -1.8104   0.0734        
 

  The RD model with all interaction terms removed is an exactly specified model.  This RD analysis 
modeled the “true” nature of the linear relationship between pre and post scores and yielded an intercept 
value of 20, which is close to the comparison group mean and a treatment effect of 9.26, which is close to 
the known treatment effect of 10 points, given the introduction of random error.    
 
   RD – drop linear interaction (F = 946.5, df = 2, 97)  
 

   Coefficients: 
                 Value Std. Error t value Pr(>|t|)  
   (Intercept) 20.4362  0.2400    85.1603  0.0000  
            xc  0.6279  0.1460     4.2995  0.0000  
             z  9.2592  0.3945    23.4706  0.0000         
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  The RD model without the pre test score term removed is an under specified model.  This RD 
analysis yielded a biased treatment effect that overestimated the “true” effect of 10 points.  The F value is 
inflated and a key variable, the pre test score was omitted.  Recall that under specified models leave out 
important variables, hence affect the model validity.    
 
   RD No pre test Model (F = 1591, df = 1, 98) 
 

   Coefficients: 
                  Value Std. Error  t value Pr(>|t|)  
   (Intercept)  19.7607   0.1969   100.3519   0.0000 
             z  10.5900   0.2655    39.8842   0.0000        
 
 

Conclusions 
 The RD design was one of three designs approved for program evaluation by the Department of 
Education many decades ago, yet the technique is not widely used (Thistlethwaite & Campbell, 1960; 
McNeil, 1984; Trochim, 1984). The regression discontinuity design uses a least-squares equation to yield 
an intercept (baseline measure) and regression weight (treatment effect measure) in assessing program 
effectiveness. A positive or negative regression weight determines gain or loss due to treatment or 
intervention effect, which is also tested for statistical significance. However, if the regression model is 
misspecified then treatment effects are inefficient and biased estimates. 
 RD is a powerful alternative to using quasi-experimental designs with distinct advantages. Regression 
discontinuity has fewer assumptions in comparison to not meeting assumptions in quasi-experimental 
designs that use analysis of covariance, i.e., random sampling; normality of treatment levels; homogeneity 
of variance; independence of variance estimates; linear regression assumption; and homogeneity of 
regression lines. The analysis of covariance assumptions are seldom met, thus leading to erroneous 
interpretations of treatment effects (Campbell, 1989; Loftin & Madison, 1991).   
 The RD normal distribution assumption is not problematic and can be handled by robust regression 
methods or probit data transformation. The cut-off score misspecification is usually not a problem 
because state agencies or school districts mandate a cut-off score for high-stakes testing. The model 
misspecification can also be examined by including linear, polynomial, and interaction terms in the RD 
equation and then dropping non-significant terms. Other advantages include RD designs being able to 
explore treatment effect differences at different cutoff points, use different pre-test measures than post-
test measures, do not require matching of subjects, and can use multiple comparison groups with different 
cutoff scores.   
 Educational researchers should therefore make increased use of the regression-discontinuity 
technique for program evaluation because you can use a different pre-test measure for the cut-off value, 
use different regression models that reflect the distribution of the data (linear, curvilinear, and 
interaction), and do not have to meet all of the assumptions in ANCOVA to yield stable estimates of 
treatment effects. 
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Is High School Performance and Standardized Test 
Scores as Admission Criteria Enough Considering 

the Institutional Cost of Misclassification? 
      Michael Bronsert          Daniel Mundfrom 

University of Northern Colorado 
High school performance and aptitude test scores have been shown to have a marginal relationship with 
common measures of undergraduate student academic success. This minor relationship suggests a source 
of admission errors which could contribute to tuition revenue loss. This study’s objective was to answer 
the following questions: (1) can discriminant functions be constructed that can correctly classify students 
as individuals obtaining a degree within a reasonable amount of time or individuals that withdrawal early, 
(2) how efficient are these discriminant functions, (3) do they differ by gender, and (4) what is the 
estimated institutional cost of misclassifying students. Results indicated that discriminant functions could 
be developed that correctly classified approximately 60% of students. These discriminant functions were 
also shown to have similar success rates for males and females. Finally, the estimated institutional cost of 
misclassifying students along with error rates of occurrence suggest a source of tuition revenue loss and 
that improved predictability of student potential for academic retention is needed. 

he problem of undergraduate student attrition is an important economic issue due to loss of tuition 
revenue, cost of recruitment, and government grants tied to institutional performance (Simpson, 
2005). This loss of potential revenue coupled with tighter school budgets and expanding pressures 
to do more with less places increased demand for accurate assessment of incoming students’ 

potential (Murray, 1997). The information primarily utilized to make admission decisions are high school 
performance and standardized test scores which have been shown to be related to academic success (e.g., 
Aleamoni & Obler, 1978; Eimers & Pike, 1997; Mathiasen, 1984; Mouw & Khanna, 1993; Neely, 1977; 
Noble & Sawyer, 1987, 1997; Pike, 1991; Stumpf & Stanely, 2002). However, this relationship is 
marginal at best and usually requires the addition of other variables to improve the predictability of 
students’ success to adequate levels.  This minor relationship between high school performance and 
college success suggests a source of admission errors which could ultimately result in increased attrition 
rates and corresponding decreases in revenue. 
  The primary purpose of this study is to use admission data, more specifically high school 
performance and standardized test scores, to predict college success as defined by the attainment of a 
degree within a reasonable amount of time and to evaluate the institutional cost of misclassifying 
students. This study’s objective was to answer the following questions: 1) can discriminant functions 
constructed from high school grade point average, high school rank, and American College Testing scores 
be developed that can correctly classify students into “Graduated” or “Dropped Out” categories, 2) how 
efficient are these discriminant functions in correctly classifying students into the two categories, 3) do 
these discriminant functions differ for male and female students and 4) what is the estimated institutional 
cost of misclassifying students into the wrong category. 
 

Method 
Subjects 
 Subjects of the study were limited to students who had enrolled at the University of Northern 
Colorado between the fall semester of 1998 and the fall semester of 2005.  Individuals that were enrolled 
for three or less years and were not enrolled in the fall of 2005 were classified as “DROP” students.  
While individuals that obtain a degree within six years of matriculation were classified as “GRAD” 
students.  All other individuals were considered in an academic transition state, i.e. each student will 
eventually either enter the GRAD or DROP category.  Therefore, this category of students was not 
included in the analyses since their true membership has not yet been revealed.  Complete data were 
found for 9,892 undergraduate students with 3,085 students belonging to the GRAD category split 
between 1,086 male and 1,999 female students.  For the DROP category complete data were found for 
6,807 students with 2,790 males and 4,017 females.  
 

T 
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Procedure 
 Data were obtained from admission applications and included gender, high school grade point 
average (GPA), high school rank (RANK), American College Testing composite scores (ACT), years in 
which they enrolled, and whether or not they received a degree.  Students lacking ACT test scores had 
their Scholastic Aptitude Test (SAT) scores converted into equivalent ACT test scores using the 
concordance table developed by Dorans, Lyu, Pommerich, and Houston (1997). 
 Three discriminant analyses were conducted, one for each of the following groups: total group of 
students, male students, and female students.  In each case, quadratic discriminant functions were 
developed through the DISCRIM procedure of SAS® with priors equal and all individuals were 
subsequently classified using the Jackknife method into one of the two categories.  All discriminant 
functions were developed using GPA, RANK and ACT test scores as discriminant variables and were 
considered statistically significant at an alpha level of .05 or less. 
 

Result and Conclusions 
 An analysis of the data indicated that statistically significant discriminant functions could be 
developed for Males [F(3, 3872) = 57.06, p < 0.0001], Females [F(3, 6012) = 77.18, p < 0.0001], and the Total 
Group [F(3, 9888) = 143.66, p < 0.0001]. 
 
Total Group of Students 
 The discriminant function developed using all of the students were able to correctly classify into the 
appropriate category 2038 of the GRAD students at 66% accuracy and 3528 of the DROP students at 52% 
accuracy (Table 1).  The total probability of misclassifying a student was .41 with subcategory probability 
error rates of .17 for GRAD students and .24 for DROP students (Table 2). 
 
Male Students 
 The discriminant function developed for male students correctly classified 679 of the GRAD students 
at a success rate of 63% and 1589 of the DROP students at a success rate of 57% (Table 1).  This function 
resulted in a total probability of misclassifying a student of .41 with probability error rates of .19 for 
GRAD students and .22 for DROP students (Table 2).  
 
Female Students 
 The discriminant function developed for female students correctly classified 1321 of the GRAD 
students at 66% accuracy and 1993 of the DROP students at only a 50% success rate (Table 2).  This 
function resulted in a total probability of misclassifying a student of .42 with a probability error rate of 
.17 for students belonging to GRAD category and .25 for those in the DROP category (Table 3). 
 
Estimating Cost of Misclassification 
 The cost of misclassifying a particular student would depend on the type of admission decision error, 
the amount of time until that student either dropped out of school or would have obtained a degree, and 
the classification of the subsequent student that potentially is being displaced, i.e., whether or not the 
misclassified student displaces the acceptance of another DROP or GRAD student. The assumption of the 
latter criteria is that there are a finite number of available admission seats and that the acceptance of a 
particular student displaces one admission seat available to subsequent students.   
 
University of Northern Colorado Case Study 
  With tuition revenues for the fiscal year of 2004-2005 being approximately $34.6 million for 
undergraduate students (UNC A, 2007) and a total undergraduate fall enrollment of 11,014 students 
(UNC B, 2007), the estimated annual tuition revenue per undergraduate student at the University of 
Northern Colorado was $3,141 (in 2004 dollars). The misclassification of a GRAD student into the DROP 
category would result in the student not being accepted into the institution despite the fact that that 
student would have persisted until graduation and consequently there would be a loss of tuition revenue 
from that student.  The amount of this revenue loss would be determined by how long it would have taken 
that student to graduate.  Approximately 86% of the undergraduate students that graduate from the 
University of Northern Colorado did so within four to five years of enrollment giving an  
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Table 1. Correct Classification by     Table 2. Error Rates and Total Probability of 
            Discriminant Analysis in Each Group     Misclassifying Students 
 GRAD DROP   GRADa DROPb Totalc  
Total Group 2038 (66%) 3528 (52%)  Total Group .17 .24 .41 

Male    679 (63%) 1589 (57%)  Male  .19 .22 .41 

Female  1312 (66%) 1993 (50%)  Female  .17 .25 .42 

             a Probability of misclassifying GRAD student into DROP 
              b Probability of misclassifying  DROP student into GRAD 
              c Total probability of misclassifying a student. 
 
average academic career of 4½ years (UNC C, 2007) and an average loss of revenue to the institution of 
misclassifying a GRAD student as a DROP student of $14,135 per student (4½ years x $3,141 tuition 
revenue per year).  Consequently, since the misclassified student was not granted acceptance, admission 
seat displacement issues are not relevant in this scenario and would not contribute to institutional loss.   
  The misclassification of a DROP student into the GRAD category would result in the student being 
accepted into the institution despite his or her future withdrawal and consequently the student would pay 
tuition as long as they were enrolled.  However, the student would eventually withdraw preventing 
payment of future tuition revenues to the institution.  The amount of future revenue loss would depend on 
the classification, i.e., DROP or GRAD, of the student that was displaced from being accepted following 
the initial admission decision error and the amount of subsequent years that the student would have 
enrolled had he or she been accepted.  If the misclassified student were to displace the acceptance of a 
DROP student then the institution ultimately would not incur a loss from the misclassification since that 
student would have displaced the acceptance of another student who would have withdrawn early as well.  
However, if the misclassified student displaces the acceptance of a GRAD student the loss to the 
institution would be the amount of future tuition revenue lost once the student withdraws that would have 
been paid had the GRAD student not been displaced.  Approximately 84% of undergraduate students that 
eventually withdrew from the University of Northern Colorado did so within the first two years following 
enrollment suggesting an attrition average of 1½ years (UNC C, 2007).  Given an academic career length 
of 4½ years (from above) and an attrition period of 1½ years, the institution on average would lose out on 
three years of future tuition revenue following the withdraw of a student and an estimated cost of 
misclassifying a DROP student as a GRAD student would be approximately $9,423 per student (3 years x 
$3,141 tuition revenue per year) when a GRAD student is being displaced. 
 

Discussion 
 The results demonstrated that the use of high school performance and college aptitude test scores can 
be used to develop discriminant functions that correctly classify students as degree receiving or early 
withdraw individuals.  Overall, the discriminant functions were slightly better at correctly classifying 
students that belonged to the category that receives a degree which on the surface seems optimistic.  
However, this ability to correctly classify students is only marginally better than guessing in most cases 
and no better than guessing in one particular case, i.e., female individuals that withdrew early.  The total 
probability of misclassifying students further support that high school performance and college aptitude 
test scores can be used to classify approximately 60% of students correctly.  But once again, these error 
rates of correctly classifying students are only marginally better than guessing at 50%.  Therefore, the 
percentages of correctly classified students and the rate of errors in classifying those students support the 
need for other discriminant variables to improve predictability of students’ potential for academic success.  
Such improvement in predictability of students’ academic success would be important especially 
considering that many institutions automatically accept and reject individuals based on composite scores 
made up of high school performance and aptitude test scores.  Finally, the percentage of correctly 
classified students and error rates of misclassification were essentially the same for male and females 
along with the total group of students.  The similar rate of errors and percentage correctly classified for all 
three groups suggests that gender is not essential in determining whether a student will eventually 
graduate or withdraw.  However, other demographic or academic information might reveal differences in 
admission errors between individuals that graduate with individuals that eventually withdrew. 
 When considering the cost of making an incorrect admission decision the institution would incur the 
greatest revenue loss following the misclassification of an individual that would have persisted until 
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graduating as a student that will eventually withdraw before obtaining a degree and subsequently, deny 
their acceptance.  On the other hand, the misclassification of a student that will withdraw as a student that 
should persist until graduation would result in less revenue loss and in some situations, i.e., when a 
student that will eventually withdraw is being displaced, would not result in any loss of tuition revenue 
despite the occurrence of an error in student classification. Unfortunately, the actual classification of the 
student being displaced cannot be determined since he or she was never accepted and therefore, would 
prevent the actual amount of revenue loss to be determined following the misclassification of the initial 
student.  Furthermore, when the cost of making an incorrect admission decision is considered along with 
the corresponding error rates for those decisions, the misclassification of a student that would persist until 
graduation as a student that will eventually withdraw, which would result in a larger revenue loss, would 
also have a lower probability of occurring.  While, the misclassification of a student that will withdraw as 
a student that will graduate would have a greater probability of occurring, it would also have a lower 
financial impact on the institution.  This result suggests that despite the greater probability of making an 
error in misclassifying a student that withdrawals early as a student that persists until graduating, this 
error would ultimately have less affect on the institution’s “bottom line” than the other error of 
misclassifying a student that persists until graduating as a student that withdrawals early.  However, the 
occurrence of either error in admission decisions would ultimately result in some amount of tuition 
revenue loss suggesting the need for improved accuracy in classification of students. 
Finally, an institution able to adjust enrollment numbers more efficiently will be able to attenuate their 
loss of tuition revenue due to admission decision errors.  For example, institutions routinely accept more 
individuals than actually enroll to prevent empty admission seats and admission seats left vacant 
following a student’s withdrawal can be filled with new applicants the following term.  However, other 
sources of institutional revenue such as recruitment cost, student fees, state grants based on institutional 
performance, and auxiliary services would also contribute to the overall loss in revenue regardless of 
enrollment efforts (Simpson, 2005; Swail, 2004).  These other sources of revenue loss suggest that cost of 
attrition cannot necessarily be totally “recruited away” and that increased accuracy of students’ potential 
can be one source to reduce the cost associated with attrition.   
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The Impact of Graphing Calculator Use  
on Algebra I End of Course Examinations 

   Todd Sherron       Vicki Dimock           Rob Foshay 
    info2knowledge, LLC  Southwest Educational Development Laboratory       Texas Instruments 
This study examined the impact of the use of graphing calculators on standardized end of course 
examinations in Algebra I courses. Researchers sought to answer questions regarding the relationships 
among the use of graphing calculators on standardized assessments and student achievement, levels of 
access, and classroom use of graphing calculators. The researchers recruited participation in the study by 
high schools in two states. Students took a pre- and post- version of a state standardized end-of-course 
examination without using a graphing calculator then took a second post-test using a graphing calculator. 
Researchers examined data with descriptive statistics and multiple linear regression, to investigate 
differences and relationships between mathematics achievement, graphing calculators, and student and 
teacher variables. Researchers found that students demonstrated higher levels of math performance when 
a graphing calculator was used.  There was a positive correlation between the residual gain scores and 
students using a classroom set of graphing calculators. 

n a meta-analysis of 54 studies of the use of any type of calculator in the classroom, Ellington (2003a) 
reports, “when calculators were included in testing and instruction, students in grades K-12 
experienced improvement in operational skills as well as in paper-and-pencil skills and the skills 
necessary for understanding mathematical concepts” (p. 456). These findings were for classes of 

mixed ability students and were not sufficient to generalize to low or high ability classes. Use of 
calculators for longer periods of time (greater than 9 weeks) appeared to yield more positive effects. 
 In addition, Ellington’s (2003b) preliminary findings in a meta-analysis of studies of the use of 
graphing calculators suggest positive effects of the use of graphing calculators on students’ procedural 
skills, conceptual skills, combined skills, and skills retention. In all four areas, students using graphing 
calculators outperformed the students who did not have access to graphing calculators on mathematics 
achievement tests. In three studies, students using graphing calculators retained what they learned better 
than their non-graphing calculator counterparts. On mathematics tests of conceptual skills and overall 
math achievement, students who used graphing calculators during instruction outperformed the students 
who did not use graphing calculators during instruction. Comparison of the retention studies and the 
studies that lasted long term (16 or more weeks) with the short term studies (less than 16 weeks) revealed 
that students benefit from using graphing calculators for an extended period of time. 
 Several states (e.g., Texas, North Carolina, Mississippi, Maryland, and New York) now require the 
use of graphing calculators in their curriculum standards and on their standardized state assessments. 
Other states allow, but do not require, the use of graphing calculators on state assessments. In an 
examination of the use of graphing calculators in Texas high schools and the use of those calculators on 
the Texas Assessment of Knowledge and Skills (TAKS) (Dimock and Sherron, 2005), a linear regression 
analysis indicated that holding all else constant, scale scores on the TAKS test were 28 points higher in 
schools where teachers reported the use of graphing calculators for homework. A second significant 
positive correlation was found between scale scores and students supplying their own calculators. In 
schools where this was the case, the average scale scores were 36 points higher. Due to the chronology of 
the introduction of the TAKS test and the timing of this study, the ability to compare test data both with 
and without the use of graphing calculators on this test was not possible. 
 The current study examined the use of graphing calculators on a standardized end-of course 
examination with students enrolled in Algebra I courses in a state that requires the use of graphing 
calculators on state assessments and those enrolled in Algebra I in a state that does not require the use of 
graphing calculators on state assessments. The study sought to answer the following research questions: 
 
   1. Does the use of a graphing calculator on an Algebra I End of Course Exam by students 

influence student achievement as measured by that test? 
   2. Are there relationships among student achievement scores on an Algebra I End of Course 

Exam and level of students’ access to, and use of, graphing calculators? 
 

I 
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Method and Procedure 
 To answer these questions regarding the potential relationships among the use of graphing calculators 
on standardized assessments and student achievement, as measured by those assessments, and the possible 
relationships of levels of access and classroom use of graphing calculators with scores on this assessment, 
the researchers recruited participation in the study by high schools in Texas, a state that requires the use 
of graphing calculators on state assessments, and Arkansas, a state that allows but does not require the use 
of graphing calculators on state assessments. Teachers who were teaching Algebra I courses in these 
schools agreed to participate, as indicated by signed informed consent agreements. Parents of the students 
enrolled in these teachers classrooms signed informed consent for their children to participate. 
  A repeated measures design was used in which students took two forms of a standardized Algebra I 
End of Course examination without using a graphing calculator and a third form of that assessment using 
a graphing calculator. As a pre-test, Form A of an Algebra End Of Course exam was administered to 
Algebra I students at the beginning of the 2005–2006 school year. Since items can vary in their 
sensitivity, future usage should identify what percent are graphic calculator friendly and whether items 
are aligned in the curricula.  This test was not used for purposes of determining student placement in a 
course or to determine any school ratings for adequate yearly progress or other high stakes accountability 
purposes. Testing situations where students know it doesn’t count may affect their motivation and 
performance, so random assignment was used in the study.  Students post-tested on a second form of the 
Algebra I End-of-Course examination without the use a graphing calculator and a third form of the 
examination with a graphing calculator. Students were randomly assigned to take one of the two versions 
of the posttest with and one without graphing calculators. Thus, each student took both versions, but were 
randomly assigned to whether they used the graphing calculator with Form B or Form C. This should help 
to eliminate any item or form bias in the student responses. 
  At the end of the 2006 academic school year, a survey was also administered to teachers and students 
to collect information regarding variables such as socio-economic status of students in the school, 
teachers’ experience and professional development in the use of graphing calculators, and students’ 
access to and use of graphing calculators in class. As an incentive in the study, teachers received stipends 
to participate in the study. 
  Researchers applied a multiple linear regression to examine data for differences and relationships 
between mathematics achievement, student graphing calculator use, and teacher variables to answer the 
research questions. 
 
Data Preparation 
  Teachers administered the tests and then submitted the tests to researchers for scoring. All tests were 
administered in the regular classroom setting in a 45 minute class period. Correct answers received one 
point and incorrect answers were scored as zero. Missing values were also scored as incorrect response.  
A total score for each Test (Test Time1, Test Time 2, and Test Time 3) was created by summing the items 
q1-q40. Survey data was also coded and entered in to a data file.  All data were screened and verified 
before analyses were performed.   
 
Sample 
  Researchers recruited schools in two states that had different policies regarding the use of the 
graphing calculators on state assessments.   Data were collected from 362 students, 13 teachers, and 4 
schools.  There were no significant differences between states with regard to the residualized gain scores. 
Therefore, the sample is reported in aggregate. Ninety-five percent of the students participating in the 
study were in the ninth grade. Four percent were tenth graders and 1% was in the eleventh grade. Students 
enrolled in a Texas high school made up 57% of the participants.  Ten of the teachers were from Texas 
and three were not. The majority of the teachers taught four to six Algebra I classes per day.  Eleven of 
the thirteen teachers indicated they taught 9th grade only.  Five teachers indicated they teach in an urban 
setting and five reported they teach in rural setting.  Only one teacher indicated s/he teaches in a suburban 
setting.   
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Results 
Test Score Results 
 Table 1 illustrates the aggregate mean scores for all three tests across all students. Test Time 3, the 
test on which graphing calculators were used, had a significantly higher mean score than either of the two 
tests taken without a graphing calculator.  
  A simply but highly informative graphical 
method for displaying the spread of scores in a 
distribution is a box plot.  This graphical summary 
illustrates both the central tendency and the 
dispersions of scores.  The measure of central 
tendency used in the box plot is the median (although 
close in value to the mean); the measure of 
dispersion, which is illustrated by the length of the 
box, is the inter-quartile range which contains 50% of 
values (see Figure 1). 
  To answer the research questions a Linear 
Regression Analysis was performed to explore the 
individual contribution of the student variables.  For 
this analysis, the dependent variable was a 
residualized gain score.  That is, students’ scores for 
Test Time 1 and Test Time 2 were regressed onto 
Test Time 3, calculating residualized or regressed 
gain scores. These scores were calculated by 
predicting posttest scores from the pretest scores on 
the basis of the correlations between Test Time1, 
Test Time 2 and Test Time 3 (posttest), and then 
subtracting these predicted scores from the posttest 
scores to obtain residual gain scores.  The effect of 
the pretest scores is removed from the posttest scores; 
that is, the residual scores are posttest scores purged 
of the pretest influence.  The residualized gain score 
has a mean of 0 and a standard deviation of 1. The 
minimum predicted value was 7 and the maximum 
was 35. 
 
Model Specification 
 To apply the regression procedure, researchers selected mathematics achievement (residualized gain 
score) as the dependent variable (Y) to be predicted and explained by independent variables representing 
availability, type of training, familiarity with a graphic calculator, class time, percentage of instructional 
activities, and types of use of graphing calculators in the classroom. Researchers specified a model with 
the following student variables as independent variables: 
• Own/Lease my own graphing calculator (T2S2) 
• I do not have my own graphing calculator but I use one that is part of the teacher’s classroom set 

while I am in class (T2S4) 
• I am eligible for the free or reduced lunch program at my school (T2S5) 
• Self-taught without using manual – explored graphing calculator features on my own (q2) 
• Self taught using manual (q3) 
• Learned how to use as we go in the math course/s I am taking or have taken (q4) 
• Graph a function (q5) 
• Graph more than one function on the same screen (q6) 
• Graph an inequality (q7) 
• Graph a scatter plot (q8) 
• Create a table (q9) 
• Write a program (q10) 
• Use the TRACE feature (q11) 

  Table 1.  Mean Test Scores        
Mean Test Score N Mean SD 
Test 1  
(without graphing calculators) 

309 12.4 5.6 

Test 2  
(without graphing calculators) 

309 11.9 6.9 

Test 3  
(with graphing calculators) 

309 15.7 8.0 

 
 
 Figure 1. Box Plot for Test Time 
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• Use the ZOOM feature (q12) 
• Use the WINDOW feature (q13) 
• Use the INTERSECT feature (q14)  
• Use the MAXIMUM and MINIMUM features (q15) 
• Connect graphing calculators to motion calculators to motion detectors, computers, or other graphing 

calculator (q16) 
• Teacher Presentation or explanation (q17) 
• Whole class discussion (q18) 
• Small group work (q19) 
• Individual work (q20) 
• percent of the instructional activities in your Algebra 1 class involve a graphing calculator (q21) 
• To investigate graphs (e.g., to perform stretches, shifts, reflections) (q22) 
• To find graphical solutions for different kinds of equations, functions, and relations (q23) 
• To check answers (q24)  
• To perform direct manipulations of graphs and numerical data (zooming, scaling, scrolling) (q25) 
• To create tables (q26) 
• To do the more difficult calculations (q27) 
• To find maxima, minima, vertices, x- and y- intercepts, and other points on the graph of a function 

(q28) 
 
 The model below was specified and estimated. Note: The base group were students who: (1) did not 
report any training; (2) were unfamiliar with a graphing calculator; (3) did not estimate class time 
activities; and (4) did not report types of use. 
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  Under this analysis, 14% of the variance in the dependent variable (Residual mathematics 
achievement gain score) was accounted for and 4 of the 30 independent variables were statistically 
significant with p-values in the  p < 0.003 to p < 0.05 range. An experiment wide error rate is plausible 
since a p < .05 level implies that a 1 in 20 chance of significance exists. Consequently, one or two 
variables may be significant by chance alone. See Table 2 for parameter estimates. 
 
Parameter Interpretation 
  Interpretation of the parameter estimates is as follows: 
   There is a positive correlation between the residual gain score and students using classroom set of 
graphing calculators (t = 2.065, p < 0.004).  In other words, the average student math residual gain scale 
scores increases by 0.369 residual points if the student remarked they used a classroom set of graphing 
calculators ( 1 3β β+ ). 
   Variable (q2) Self-taught without using manual – explored graphing calculator features on my 
own was statistically significant (t = 2.35, p < 0.019).  That is, the average student math residual gain 
scale scores increases by 0.372 points if the student remarked they self-taught without using manual – 
explored graphing calculator features on my own ( 1 5β β+ ). 
   As the variable (q6) familiarity of graphing more than one function increases by 1 unit, math 
residual gain scale scores increases by 0.194 points, holding all else constant (t = 2.02, p < 0.045). 
   The variable q20 (Individual work) was statistically significant (t = 3.03, p < 0.003).  That is, as 
the variable q20 Time spent on Individual work increases by 1 unit, math residual gain scale scores 
increases by 0.175 points, holding all else constant. 
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Table 2: Parameter Estimates 
Model Unstandardized 

Beta Std Error 
Standardized 

Beta 
t Sig 

(Constant) -1.788 .380 - -4.70 .00 
T2S2 .284 .154 .136 1.84 .07 
T2S4 .369 .178 .163 2.07 .04* 
T2S5 -.008 .125 -.044 -.69 .49 
Self-taught w/out 
manual 

.372 .158 .152 2.35 .02* 

Learned as we go .253 .168 .099 1.51 .13 
Graph a function .006 .116 .006 .06 .95 
Graph more than one 
function 

.194 .096 .212 2.02 .05* 

Graph inequality .001 .079 .016 .22 .83 
Graph a scatter plot -.001 .070 -.013 -.17 .87 
Create Table -.003 .072 -.004 -.05 .96 
Write a program -.109 .080 -.093 -1.37 .17 
Use the Trace -.005 .070 -.059 -.71 .48 
Zoom .004 .083 .047 .54 .59 
Window -.003 .078 -.004 -.05 .96 
Intersect -.009 .071 -.104 -1.33 .18 
MaxMin .004 .072 .049 .66 .51 
Connect to motion 
detector 

-.003 .069 -.035 -.51 .61 

Teacher pres/explain -.008 .067 .085 1.28 .20 
Whole class discussion -.008 .062 -.101 -1.43 .15 
Small group -.009 .059 -.107 -1.61 .11 
Individual work .175 .058 .189 3.03 .003* 
% of instructional 
activities 

.008 .070 .079 1.20 .23 

Investigate graphs .004 .142 .002 .03 .97 
Find graphical solutions .004 .176 .018 .27 .79 
Ck answers .233 .180 .088 1.29 .20 
Perform direct 
manipulations 

.104 .135 .054 .77 .44 

Create tables -.101 .166 -.046 -.61 .54 
Find max/min .008 .166 .038 .52 .60 
Note. * Statistically significant 
 

 In conclusion, four of the 30 independent student variables positively correlated to the math residual 
gain scores.  These four variables explained 14% of the variance in the math residual gain scale scores 
with 86% unexplained variance due to other factors (variables).   Analysis revealed that: (1) The average  
student math residual gain scores increases if the student remarked they used a classroom set of graphing 
calculators; (2) The average student math residual gain scale scores increases if the student remarked they 
were self-taught without using manual – explored graphing calculator features on their own; (3) As 
familiarity of graphing more than one function increases by 1 standard deviation, math residual gain scale 
scores increase; and (4) As the amount of time spent on individual work increases by 1 standard 
deviation, math residual gain scale scores increase. 
 

Conclusions 
  The purpose of this study was to investigate the impact of graphing calculator use on Algebra I end of 
course examinations. This study sought to answer two research questions:  
   1. Does the use of a graphing calculator on an Algebra I End of Course Exam by students 

influence student achievement as measured by that test? 
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   2. Are there relationships among student achievement scores on an Algebra I End of Course 
Exam and level of students’ access to graphing calculators? 

 

  Analysis did reveal that students scored higher on standardized assessments when a graphing 
calculator was used. Further, regression analysis indicated positive relationships among student 
achievement scores on an Algebra I End of Course Exam and level of students’ access to graphing 
calculators. That is, (1) The average student math residual gain scores was higher if the student remarked 
s/he used a classroom set of graphing calculators, (2) The average student math residual gain scale scores 
was higher if the student remarked s/he was self-taught without using a manual, that is, s/he explored 
graphing calculator features on their own, (3) As familiarity of graphing more than one function increased 
by 1 unit, math residual gain scale scores increased, (4) As the amount of time spent on individual work 
increased by 1 unit, math residual gain scale scores increased.   
 

Discussion 
  The lack of other significant variables may offer insight into the nature of the mathematics instruction 
on the campus.   For example, socio economic status (SES) which is commonly reported when predicting 
student achievement was not a statistically significant predictor variable.  It may also suggest the level of 
use or student familiarity with the graphing calculator. Nonetheless, this study adds evidence to the body 
of research suggesting that the use of a graphing calculator makes a significant and practical impact in 
mathematics achievement in Algebra I classes. Our findings are consistent with the findings of 
Ellington’s (2003) meta-analysis indicating that the use of graphing calculators in testing significantly 
improved performance. Her findings were for classes of mixed ability students and were not sufficient to 
generalize to low or high ability classes.  
  The regression analysis demonstrated significant positive relationships among student achievement 
scores on an Algebra I End of Course Exam, use of a graphing calculator on that examination, and level 
of students’ access to graphing calculators. Average student math gain scores were higher if the student 
remarked s/he used a classroom set of graphing calculators. The average student gain scale scores was 
higher if the student remarked s/he had explored graphing calculator features on her/his own by using the 
manual. As the mean score for student familiarity with graphing more than one function increased by 1 
unit,  student math gain scale scores increased. Finally, as the reported amount of time spent on individual 
work increased by 1 unit, math gain scale scores increased. Thus, factors that may impact student 
performance as measured by standardized assessments are student access to graphing calculators, student 
knowledge of how to use graphing calculator functions, and the use of graphing calculators on 
standardized assessments. 
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Coors Field: A Pitchers Graveyard? 
       Jay Schaffer           Raj Chandran 

University of Northern Colorado 
Batting and pitching statistics for the Colorado Rockies have long been considered inflated by sports 
writers and fans. Schaffer and Heiny (2006) documented a Coors Field effect on slugging percentage.  
This research examines the Coors Field effect on pitching statistics, ERA and on-base percentage. 

n their 14 years of existence, the Colorado Rockies have not yet distinguished themselves as a “good 
team”.  They have only made the playoffs once, as a wildcard team, in the strike shortened season of 
1995. It would be easy to blame Rockies pitching, since their statistics are perennially at the bottom of 
the league. In fact, the Rockies ranked 26 out of 28 teams in opponent batting average in the only 

season they made the playoffs.  The Rockies have always had to make up for their weak pitching with 
their offensive prowess, aided in part by the elevation of their ballpark, Coors Field.   Schaffer and Heiny 
(2006) demonstrated a significant slugging percentage advantage by playing half of their games in the 
thin air of Coors Field. 
 Is the elevation of Coors Field the bane of Rockies and visiting pitchers? The answer of nearly every 
sportswriter would be an emphatic “Yes!” Johnathan Leshansky of athomeplate.com sums up pitching at 
Coors Field: “Of course pitching at Coors is like trying to defuse a bomb when you have a bad case of the 
shakes.  You might do alright for a while, but the odds are that eventually something is going to blow up 
in your face.”  In fact, the general manager for the Rockies, Dan O’Dowd even stated, "I'm not sure even 
if we had Randy Johnson, Curt Schilling, or those kinds of guys in our rotation.  I'm sure they'd be good, 
but I don't think they'd be as good as they are pitching elsewhere."  
  According to www.baseball-reference.com, the air pressure in Denver is about 15% lower than at 
other parks near sea level. Reduced air pressure decreases aerodynamic forces on the baseball by the same 
amount. Thus, there is less movement on breaking pitches, making them easier to hit, and less drag on 
balls in flight allowing baseballs to fly further. 
 In a study performed by Schaffer and Heiny (2006), the effect of elevation on slugging percentage 
was examined. By performing a repeated measures ANOVA, Schaffer and Heiny concluded that a 
significant effect of elevation existed on slugging percentage. This study will use the same analyses as 
Schaffer and Heiny (2006), but examine earned run average and on base percentage. 
  In order to help bridge the gap between Coors Field being a hitters park versus an average ballpark, 
the Rockies began putting their baseball’s in a humidor. The unorthodox practice began in 2002 and has 
been ongoing since.  The method was so well received that now all 30 MLB teams keep their baseballs in 
a climate controlled environment. In 2006, the Rockies posted their smallest disparity in earned run 
average, posting a 4.72 ERA at home and a 4.59 ERA on the road.  Part of this receding gap may be due 
to Rockies pitchers adjusting to the effects of elevation, though many believe that the implementation of 
the humidor is the main cause.  
  The effect of high elevation on the flight of the baseball has been studied by Sterling Professor 
Emeritus of Physics at Yale University and “Physicist to the National League” Robert K. Adair (2002). 
He wrote, “Since the retarding force on the ball is proportional to the density of the air, the ball will travel 
farther in parks at a high altitude. A 400-foot drive by Sammy Sosa or Mark McGwire at Shea Stadium, 
near sea level, on a windless summer day would translate to a 404-foot drive in Atlanta on the Georgia 
Piedmont at 1,050 feet, the highest park in the majors before 1994. The same home run could be expected 
to go about 403 feet in Kansas City and 403 feet at the Metrodome in Minneapolis or Wrigley Field in 
Chicago. These differences are not so great as to modify the game, but Sosa could expect his long drive to 
travel about 420 feet at mile-high Denver. And if the major leagues are further internationalized someday, 
say to Mexico City, at 7,800 feet, Sosa’s blow could sail nearly 430 feet. Old home run records will be 
swept away unless the fences are moved out in the high parks.”  
  Adair mentions that moving the fences back is not the only solution. He continues, “Even if the 
fences are adjusted, the high-altitude stadiums will still be a batter’s boon and a pitcher’s bane. With 
fences moved back, there will be acres of outfield for balls to fall into for base hits, and, though the 
pitcher’s fastball will be about six inches quicker in Denver, the curve will bite about 20% less, which is 
more important.  

I 
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 Figure 1. ERA for each Stadium 
 

 
Figure 2. OBP for each stadium. 
 
 

 With less drag, the ball will also get to the outfielders faster in Denver than at Fenway Park in 
Boston. Players for the Colorado Rockies have noted that in Denver’s outfield, ‘Fly balls come at you 
faster and sail farther than you might expect.’ Indeed, a hard-hit ‘gapper’ between the outfielders will 
reach the 300-foot mark about two-tenths of a second faster in Denver than at sea level, cutting down the 
pursuit range of an outfielder by five or six feet—not inconsiderable in this game of inches. Even the 
range of a shortstop covering a line drive or one-hopper will be cut by about a foot in Denver.” 
 When considering the pitching statistics of Rockies starting pitcher Jeff Francis, Adair’s theory seems 
to hold true. In 2006, Francis posted an ERA of 4.30 at home and a 4.05 away. In addition, Francis had a 
0.339 on-base percentage against, OBP, at home and a 0.324 on the road.  Francis has played his entire 
MLB career with the Rockies starting in 2004.  Thus far, Francis has posted a career ERA of 7.66  
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Major League Ballpark Elevations
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Figure 3. Elevations of major league ballparks. 
 

at Coors Field and a 3.86 ERA on the road.  The phenomenon extends beyond just Coors Field.  In 
general, stadiums with high elevation have high pitching statistics. Figures 1 and 2 display 2006 ERA and 
OBP respectively for each stadium.  It should be noted that Coors Field has nearly the highest ERA and 
OBP when compared with the other stadiums. 
 

Data 
 Data was taken from sportsnet.ca, a leading Canadian sports company, who obtain their stats from 
STATS LLC.  STATS LLC gathers stats for the Major League Baseball Association.  Data was collected 
such that each pitcher’s statistics were tallied for each stadium he pitched at for the 2006 season.  The 
pitching statistics that were collected initially are shown in the appendix 1.  Elevations for each ballpark 
were found using the US Geological survey website, www.usgs.gov, and are shown in Figure 3. 
 

Methods 
 An ANOVA procedure was used to determine if elevation had a significant effect on pitching 
statistics.  An unbalanced, repeated measures design with nested factors was used. A treatment was 
considered each combination of ballpark and elevation.  The subjects in this experiment were the pitchers. 
This is considered an unbalanced design because none of the pitchers play at every ballpark. The response 
variables were ERA and OBP. In this study, ERA and OBP were weighted by innings pitched. The model 
used is shown below in equation 1: 
 

          Xijk = µ + αi + βj(i) + γk + εijk ;         (1) 
 

where, Xijk = ERA or OBP of a pitcher; αi = effect of elevation; βj(i) = effect of ballpark; γk = effect of 
player; µ = overall mean ERA; and εijk = random error.  
 The effects for elevation, ballpark and player were treated as fixed effects. The data used in this study 
were not a random sample of ballparks, elevation or players from a larger population, but rather a 
collection of pitching statistics from the entire major league for the 2006 season.  
  In order to test whether elevation had a significant effect on pitchers both ERA and on-base 
percentage against were used. ERA is one of the oldest and most popular statistics gathered on pitchers. 
ERA is calculated by equation (2). 

         ERA = 
PitchedInningsofNumber
RunsEarnedofNumber 9*         (2)
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Figure 4. Elevation versus ERA 

 
Figure 5. Elevation versus OBP. 
 

Earned runs do not include errors by the catcher or position players, as the pitcher did not control this.  
  In addition to ERA, OBP was used to capture hits given up by pitchers. While batting average against 
is a widely used statistic to capture hits given up, it does not account for walks, players hit by a pitch, and 
sacrifice flies. OBP takes into account these additional statistics and is calculated by equation (3). 
 

      OBP = Hits Walks Batters Hit By Pitch Sacrifice Flies
Number of Opponent At Bats

+ + +

−
       (3) 
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 Using elevation as a numerical variable presents 
analytical difficulties, as Coors Field is 5,277 feet above 
sea level and the other 29 ballparks are all below 1,100 
feet. Figures 4 and 5 show ERA versus elevation and 
OBP versus elevation respectively, for each major league 
stadium. As illustrated in both figures, Coors Field is an 
obvious outlier with respect to elevation.  Due to the 
leverage point created by Coors Field, it would be 
detrimental to fit any type of regression model to the 
data using elevation as a continuous variable. Therefore elevation was categorized into five levels, so that 
a reasonable number of teams would be distributed into each level of elevation. Coors Field, in Denver, 
Colorado was categorized into a level of its own for reasons discussed previously. In addition, ballparks 
with elevations less than 100 feet were considered their own level due to the large amount of ballparks 
that fit this into that category. The elevation range and number of stadiums in each level is shown in 
Table 1. The elevation of each major league city is displayed in Figure 3 with a space between each level 
for the factor elevation. 
As seen in Figures 4 and 5, Kauffman Stadium, home to the Kansas City Royals was the only stadium 
that posted higher ERA and OBP than Coors Field. When considering the characteristics of the Royals, it 
may be safe to say that factors other than elevation played an important role in Kauffman Stadium’s poor 
statistical showing. With a record of 62 wins and 100 losses, the Royals were one half of a game away 
from holding the worst record in the major league baseball in 2006. The Royals also posted a league 
worst 5.68 ERA at home. The overall Kauffman Stadium average for ERA was 5.17 indicating mainly the 
Royals struggled in the ERA category at Kauffman stadium. This would imply that the elevation may 
have less to do with Kauffman stadium’s high ERA and more to do with the poor pitching on the part of 
the Royals.  
 Baseball is different from other team sports in that each ballpark has its own set of unique 
characteristics.  These characteristics can either hinder or help pitchers.  The most obvious of these 
characteristics is that of the length of outfield fences.  However other factors may also play an important 
role. Stadiums such as McAfee Coliseum in Oakland, California and Dodger Stadium in Los Angeles, 
California have expansive foul territories which aid pitchers and hinder batters. Faster playing surfaces 
such as Astroturf® and Fieldturf® can make it much easier for ground balls to get through to the outfield 
for hits.  Weather conditions also vary greatly from ballpark to ballpark, with some teams playing indoors 
in a climate controlled environment, such as Minnesota Twins, and while others like the White Sox in 
Chicago battle the wind. Rather than trying to account for all the stadium factors separately, an overall 
ballpark factor was used. The overall ballpark factor is nested within the factor elevation.  
  It is also of interest to note that the American League has consistently higher run production over the 
National League, because the rules dictate that teams in the American League may have a designated 
hitter to hit in place of their pitcher, while teams in the National League do not have this luxury. A simple 
t-test comparing the means of both ERA and OBP for each league showed there was not a significant 
difference.  Thus, league was not included as a factor in the model.  
  The opposing team may be an important factor in the model shown in equation 1, as certain teams 
tend to have better offensive production than others. Unfortunately, those statistics were not available at 
the time of this study.  Therefore, opposing team offense was not considered as a factor. 
 

Results 
 Results were found using PROC GLM in SAS.  An ANOVA table for ERA and OBP was generated 
for the model shown in equation 1. The model using ERA as a dependent variable is shown in Table 2 
while the model using OBP is shown in Table 3. 
  The R2’s for the ERA and OBP models were 0.14 and 0.18 respectively, which seems to indicate that 
both models do not account for a large portion of variation for their respective dependent variables. 
However, low R2 values have been common in previous baseball studies. In the analysis performed by 
Schaffer and Heiny (2006), they stated, “Additional independent variables could be added, but most 
likely the randomness of baseball never can be accounted for completely. Players go through hot and cold 
streaks for reasons they do not even understand.”  The “hot and cold streaks” that Schaffer and Heiny  

Table 1.  Levels of Factor Elevation 

Level Elevation Range 
Number of 
Ballparks

1  under 100 ft 11 
2  between 100ft and 500ft 5 
3  between 500ft and 800ft 9 
4  between 800ft and 1,000ft 4 
5 over 1,100 ft 1
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(2006) refer to are independent 
of ballpark and elevation, but 
still contribute variability to the 
study. Previous studies have 
made similar conclusions 
regarding the randomness of 
baseball. Hofacker (1998) 
analyzed major league baseball 
data for the 1982 season. The 
study attempted to measure a 
baseball team’s offensive ability 
independent of opponent and 
ballpark. Hofacker used runs 
scored as a dependent variable, 
and opponent, park, league and 
home versus away as 
independent variables. The R2 for 
this study was 0.267. Hofacker 
defended his low R2 by stating, 
“While it is true that researchers 
in some fields might scoff at 
such a low R2, perhaps the better 
way to think about the current 
result is that it offers insight into 
just how stochastic baseball must 
be. Such considerations 
necessarily imply that the 
analysis presented be considered 
exploratory.” The purpose of this 
study is not to predict ERA or 
OBP for a pitcher, but rather to determine if elevation is a significant effect on pitching. 
  Tables 4 and 5 list each factor with its degrees of freedom, Type III sums of squares, mean squares, 
F-statistics and p-values for ERA and OBP, respectively. Elevation has a statistically significant 
contribution to both ERA and OBP. The p-value for ERA was 0.0199 and 0.0004 for OBP.  The 
compound symmetry assumption for this study was violated due to the hot and cold streaks that pitchers 
experience during the season.  Pitches thrown in a game are likely to be highly correlated, while pitches 
thrown in a different game will be less correlated. Regarding the compound symmetry assumption Neter 
et al. (1996) stated, “In repeated measures studies, the compound symmetry assumption will be violated, 
for instance, if repeated responses over time are more highly correlated for observations closer together 
than for observations further apart in time.” Neter et al. (1996, p. 1170) suggested using a more 
conservative critical value because the test becomes more liberal when the compound symmetry 
assumption has been violated. Even with this more conservative critical value, F(0.95; 1, 622) = 3.84, 
elevation still has a statistically significant effect on OBP. However, using the more conservative critical 
value for the ERA model shows elevation is no longer statistically significant effect. 
 Despite ERA no longer being significant, using the conservative degrees of freedom suggested by 
Neter et al., a post hoc test was still performed in order see if differences still existed between elevations 
assuming the compound symmetry assumption had not been violated. A post hoc test was also performed 
on the OBP model. Glass and Hopkins (1996) suggest using Student Newman-Keuls (SNK) due to its 
power and high degree of protection for the entire [omibus] null hypothesis.  The results from the SNK 
tests for ERA and OBP are shown in Tables 6 and 7 respectively. Groups with different SNK groupings 
(A versus B) are statistically different from each other. N represents the number of players who pitched at 
that particular elevation level. In addition, the means for ERA and OBP are shown for each level of 
Elevation in Tables 6 and 7. 

Table 2. ANOVA Table for ERA 

Source df 
Sums of 
Squares 

Mean 
Square F-value p-value 

Model 651 79,393.12 121.96 1.39 <.0001 
Error 5,625 494,360.76 87.89 
Corrected Total 6,276 573,753.88  

 
Table 3. ANOVA Table for OBP 

Source df 
Sums of 
Squares 

Mean 
Square F-value p-value 

Model 651 58.77 .09 1.95 <.0001 
Error 5,625 260.59 .05   
Corrected Total 6,276 319.36    

 
Table 4. Repeated Measures ANOVA Table for ERA 

Source df 
Sums of 
Squares 

Mean 
Square F-value p-value 

Elevation 4   1027.60 256.90 2.92 0.0199 
Park(Elevation) 25 2971.59 118.86 1.35 0.1127 
Player 622 74,424.28 119.65 1.36 <.0001 
Error 5,625 494,360.76 87.89   

 
Table 4. Repeated Measures ANOVA Table for OBP 

Source df 
Sums of 
Squares 

Mean 
Square F-value p-value 

Elevation 4 0.94 0.23 5.09 0.0004 
Park(Elevation) 25 2.38 0.09 2.05 0.0015 
Player 622 53.81 0.09 1.87 <.0001 
Error 5,625 260.59 0.05 
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 Table 6 shows that Coors Field, in elevation 5, is 
statistically different from ballparks located in the two lowest 
elevations, 1 and 2. It should be noted that as elevation 
increases, intuitively ERA increases  
too. By looking at the mean ERA per elevation, it would 
appear there are three relative groups. The two lowest 
elevations, 1 and 2, have a mean ERA near 4.35, while ERA 
for elevations 3 and 4 are near 4.55, and the highest level, 
Coors Field, is 4.93. The mean ERA for the Coors Field 
elevation is about 8.4% higher than the “middle elevations” 
and 13.3% higher that the “low elevations.” 
 The post hoc test for OBP showed that there is a 
statistically significant difference between the elevation of 
Coors Field and the other four levels of elevation. The OBP 
means for each level of elevation exhibit the same trait as 
ERA; as elevation level increases, so does OBP. Contrary to 
the findings of ERA, the post hoc test for OBP did not show three distinct groups, but rather two distinct 
groups, Coors Field versus the other four levels. The mean OBP for Coors Field is 4% higher than 
elevation 4, and 7.2% higher than elevation 1.   
 It should be noted that due to Coors Field being an numerical outlier in elevation, and the only 
ballpark in elevation category 5, the ballpark effect and elevation effect are confounded.   However, 
Coors Field is one of the largest ballparks in the Major Leagues. In fact, Coors Field has the second 
longest left field dimension, and third longest center and right field dimensions in Major League Baseball. 
Despite these large dimensions, the z-scores for Coors Field within each set of 30 left field, right field and 
center field dimensions were 1.70, 1.32 and 1.80 respectively; indicating Coors Field is not an outlier 
with respect to ballpark dimensions. Additionally, Coors Field has a relatively small foul territory, but is 
still similar to most other ballparks. The abnormally large foul territories of Dodger Stadium and Network 
Coliseum are the exception rather than the rule. 
 It would appear that Denver’s outlier status with regards to elevation is the only factor that makes 
Coors Field significantly different from the other ballparks. It is therefore reasonable to conclude the high 
elevation is the primary cause for the high ERA and OBP exhibited at Coors Field. 
 

Conclusions 
 The model used in this paper has demonstrated that elevation significantly impacts OBP, independent 
of ballpark and player. The model also showed that elevation marginally impacts ERA, but is consistent 
with the theory that ERA increases as the elevation increases. At Coors Field, ERA is approximately 
8.4% higher than the middle elevations between 500 and 1,100 feet, and 13.3% higher than the low 
elevations less than 500 feet. Differences in OBP showed Coors Field in “a league of its own”, with the 
other four elevations grouping close together at lower values. 
 Given that young Rockies prospect Jeff Francis has played his entire career at the with the Rockies, it 
may interest a team owner, manager, sports writer or fan to know how well he might do if he were traded 
to different team. If Francis was traded to a middle elevation team his home ERA of 4.30 in 2006 would 
be adjusted down to 3.94 and OBP would have to be adjusted from 0.339 to 0.323. This would give 
Francis an overall ERA of about 4.00 and an OBP of about 0.324 if he were to be traded to a middle 
elevation team. If he were to be traded to a low elevation team, his expected ERA and OBP would drop 
even further. His home ERA would now drop to 3.73, and his OBP would drop to 0.317. This would 
bring his overall ERA to a respectable 3.89 and his OBP to 0.321. 
 This study determined that the effect of elevation and ballpark are confounded in Denver. However 
an examination of the ERA and OBP effects of each ballpark versus elevation level and the dimensions of 
Coors Field with respect to the other ballparks rule out the ballpark effect explaining the high OBP and 
ERA experienced at Coors Field. In fact, elevation appears to be the only viable explanation. 
 The results seem to indicate that there may be other variables and factors (weather, opposing team 
batting average, etc) that may influence ERA and OBP. While additional independent variables may be 
added to the model to account for more error, most likely the model would only be improved marginally. 
The randomness of baseball can probably never be fully accounted for. Players go through hot and cold 

Table 6. ERA by Elevation. 
SNK Grouping Mean N Elevation
   A 4.9330 216 5 
   B   A 4.5800 828 4 
   B   A 4.5296 1870 3 
   B 4.3941 1037 2 
   B 4.3043 2326 1 
 
Table 6. ERA by Elevation. 
SNK Grouping Mean N Elevation
   A 0.342 216 5 
   B 0.329 828 4 
   B 0.325 1870 3 
   B 0.323 1037 2 
   B 0.319 2326 1 
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streaks throughout the season that even they cannot explain. Certainly, even some players may have an 
off season, or some may be partial to pitching at certain times during the day. 
 Future studies may want to examine the effect of the humidor used by the Rockies, and other teams, 
to see if it has an effect on the game. It may also be interesting to follow several Rockies players over the 
course of several years, in a longitudinal study, to see if their pitching or hitting statistics change over the 
course of their transition from the Rockies to a different team and vice-versa. Variables such as 
temperature, left versus right handed, and years in the league could also be on importance variables in 
future studies. 
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Appendix 1 
Statistic Definition 
G   Games Played 
GS   Games Started 
ERA   Earned Run Average 
W   Wins 
L   Losses 
SV   Saves 
IP   Innings Pitched 
H   Hits  
R   Runs 
ER Earned Runs 
BB   Bases on Balls (Walks) 
CG Complete Games 
SVO Save Opportunities 
HR Home Runs 
2B Doubles Given up 
3B Triples Given up 
OPAVG Opponent Batting Average  
OBP On-Base Percentage Against 
SLG Slugging Percentage 
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