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Comparing OLS and HLM Models and the Questions  
They Answer: Potential Concerns for Type VI Errors 

   David Newman     Isadore Newman      James Salzman 
Cleveland State University      Florida International University     Ohio University 
Hierarchical Linear Modeling (HLM) has become an important analytical tool in a number of fields of 
study and many of the educational journal articles published during the last decade have used this 
technique. In this study, the authors proposed that a clearer understanding of what HLM was truly testing 
could be facilitated if the researcher constructed multiple linear regression (MLR) models to reflect the 
research questions that the corresponding HLM was intending to test. The authors compared the results of 
HLM and MLR models on a sample data set, discussed the advantages and disadvantages of each 
technique, and provided some examples of the increased risk of committing Type VI errors in running an 
HLM model without understanding the underlying question that was being asked. Further issues that 
pertained to researchers’ obligations to differentiate between statistical analysis and research design were 
discussed in the areas of centering, interaction, and fixed, mixed, and randomized effects. 

ierarchical Linear Models (HLM), which are frequently referred to as multilevel models, are most 
appropriately and effectively used when variables tend to be nested within other variables. For 
example, individual students may be nested within classes and classes could be nested within 
schools. A number of researchers (Field, 2009; Kreft, 1996; Morris, 1995; Mundfrom & Schultz, 

2002; Raudenbush & Bryk, 2002; Tabachnick & Fidell, 2007) have indicated that HLM is superior to 
ordinary least squares (OLS/General Linear Models) because HLM theoretically produces appropriate 
error terms that control for potential dependency due to nesting effects, while OLS does not. An 
additional argument favoring the use of HLM is that it is a generalization of OLS, which better handles 
continuous variables that reflect randomized effect designs, and, therefore, HLM produces more accurate 
error terms and Type I error rates (Mundfrom & Schultz; Raudenbush, 2009; Raudenbush & Bryk). A 
good part of the cited advantages for HLM is related to the situations in which the intraclass correlations, 
which is the between group effect divided by the total effect, departs from zero with )/( 2

0000 σττρ += . If 
the correlation is zero, there seems to be less advantage to using HLM because there is no interclass 
correlation.  
 
 

Method 
 It is the contention of this paper that the stated advantage for using HLM instead of the traditional 
OLS/Multiple Linear Regression (MLR) models, is that the MLR models typically were not written to 
most appropriately reflect the research questions in nested designs. We believe this is frequently due to 
the failure to incorporate person vectors (McNeil, Newman & Kelly, 1996; Pedazur, 1982; Williams, 
1987). A person vector is binary coded so that if a dependent score comes from a particular unit, such as a 
person who is repeated, a school, or a district, etc., it is coded as 1 and coded as a 0 if it does not come 
from that unit. The person vector coding, thus, controls for the variability due to the unit. Without this 
type of coding, there tends to be a confounding or nesting effect that leads to an inconsistency between 
the research question and designing an appropriate model to test the question. We refer to this 
inconsistency as a Type VI Error (Newman, Fraas, Newman & Brown, 2002; Tracz, Nelson, Newman & 
Beltran, 2005; Tracz, Newman, Nelson, & Dellran, 2004). 
 
 

Results and Discussion 
OLS Models 
  The following examples were run to demonstrate how different models could be written in OLS/MLR 
to reflect different research questions. For example, if one were interested in determining if a treatment 
predicts Ohio Achievement Test (OAT) scores, the following three models could be written to test this 
question: 

H
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Table 1. Model 1:  OAT = a0u + a1 (Treatment) + Error 

 
This model would be an over simplification of the modeling of the question of interest if the treatment 
were nested within schools. The results of this model in Table 1 indicate that a1 = 2.209 with a p = .102; 
meaning the treatment was not statistically significant at alpha = .05. A more appropriate model to reflect 
the question of interest when treatment is nested would be: 
 

   Model 2:  OAT =  b01 + b37(School_1) + b38(School_2)+ b39(School_3) +  b69(School_34)+E 
  Model 3:  OAT = b0u + b1 (Treatment) + b2 (School 1) +  . . .  + bN (School N) + E  
 
Table 2. Model 2 & 3 Summary. 

 
 
The first model is simply testing to see if there is a relationship between people who had the treatment 
and the OAT scores. Testing the second model against Model 3 is considerably different in that it is 
testing to see if the treatment has an effect independent of school differences. Please note that b1 is now 
4.016 compared to a1 in Model 1, which is 2.209. As seen in Table 2, when Model 2 is tested against 
Model 3, there is a statistically significant difference (p = .012). By adding in the school vectors, the 
model more accurately reflects the question of interest. As one can see, the number of independent 
vectors has increased by the number of schools minus one (K-1) for both the full and restricted models. 
Table 3 shows that when the random nature and violation of independence of errors are accounted for, the 
fixed effect for treatment now becomes statistically significant with p =. 012 and a regression coefficient 
= 4.016.  
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Table 3. Models 2 & 3 Coefficients Table 

 
It is our contention that HLM has been frequently compared to MLR models that are often incorrectly 
written because they do not contain what we call “person vectors” or in the above case “school vectors.” 
If one looks at the HLM Level 1 and Level 2 models presented below, it is apparent that they are much 
more similar to Model 2 above (see the output below that reflects this). 
 
Multileveled Modeling 
  The Multileveled Models/Linear Mixed Models (LMM) reflect the same question that was tested by 
the regression models containing school vectors. In this case, the actual mixed model is created by 
substituting B0j with B0+u0j and B1j is replaced with y10, but the error u1j is not included since the 
differential treatment effects across schools are not being tested. This fourth set of models represents the 
LMM and the combined mixed model.  
 
  Model 4: LMM 
   Level 1 (Student):  OAT_9 = B0j+B1j(TXi)+rij  
   Level 2(School)    B0j =y00 +u0j 
          B1j =y10 +u1j 
 
  Mixed Model:    OAT_9 = y00+u0j+y10(TX)+rij  
 
  Table 4 displays the estimates of the overall goodness of fit for this model looking at the -2 Restricted 
Log Likelihood statistic. Assessing fit and comparing different multilevel models becomes necessary in 
calculating the chi-square statistic.   
 
χ2= (-2 Restricted Log Likelihoodold) (-2 Restricted Log LikelihoodNew) 
df= Number of Parametersold – Number of ParametersNew 
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Table 4. Goodness of Fit Estimates 

 
The other goodness of fit estimates (e.g., AIC, AICC, CAIC, BIC) all adjust for different model 
complexities such as the number of parameters in the model and the sample size.  
  The Type III Test of Fixed Effects gives the overall fixed effect for TX and schools. In this case, only 
TX is of interest because schools are considered to be random. It should be noted at this point that 
Treatment is a fixed effect. It is also possible to have Treatment as a random effect depending on how it is 
operationally defined. In this case, the student either received treatment or did not. As can be seen, the p-
value for the fixed effect of TX (p = 0.012) is the same as the p-value calculated when testing Model 2 
against Model 3. 
 
Table 5. Fixed Effects Coefficients 

 
  Table 6 displays the coefficients of the fixed effects. We were not interested in the fixed effects of 
schools because not all of the schools were included in this illustration. As one can see from Table 6, the 
partial regression coefficient for TX is = -4.0159, which is again the same as that in the regression model 
with school vectors.   
  As noted earlier, the question of interest is “Does treatment account for a significant proportion of 
unique variance in predicting OAT independent of school differences?” Students who received the 
treatment scored, on average, 4.0159 points higher on the OAT than their comparison group. Even though 
this is a small difference (R2

change=0.003), when either the LMM or regression is specified correctly, the 
power to detect these types of differences in nested design data becomes possible and equivalent. Type VI 
Error 
  A Type VI Error is a catchall concept that describes the inconstancy between the research question of 
interest and the statistical model (Newman et al., 2002; Tracz et al., 2005; Tracz et al., 2004). Too often 
these inconsistencies are overlooked leading researchers to make incorrect inferences. In addition to 
specifying the appropriate model, here are some other areas related to multilevel modeling that may be 
related to Type VI Errors. 
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Table 6. Fixed Effects Estimates 

 
 
Centering 
  Centering is used most frequently when running mixed models or HLM. It is simply subtracting the 
mean from each score so that the mean of the distribution becomes zero. The choice to center is not a 
simple mathematical or statistical decision. It should be based upon the researcher’s question of interest 
and/or theoretical position. There are three major decisions one has to make about centering:  1). Should 
one center?  2). If centering, should grand mean centering be used? 3). Should one use group mean 
centering? Grand mean centering is generally preferred over group mean centering (Burton, 1993; 
Hoffman & Gavin, 1998; Kreft, de Leeuw, & Aiken, 1995). Sarkisian (2007) takes the position that the 
original metric should never be used if the value of zero is not meaningful, and finds that there is a lack of 
precision in estimating the intercept in HLM when one does not center. According to Field (2009), 
centering is not an easy decision. It requires an understanding of the data and the analysis. Field also 
suggests centering may be a useful way to ameliorate the problem of multicollinearity between 
independent variables, especially when the independent variable does not have an interpretable zero 
value. Field points out that it is important to note that when using the group mean centering approach, the 
group mean should be considered a second level variable whenever group effects are not of interest. This 
situation is encountered frequently when an independent variable, such as time, is of interest. 
  If the researcher is interested in the relative position of the subject with regard to the treatment group 
mean, then group mean centering should be used. If, on the other hand, the researcher is interested in the 
absolute value of the independent variable (predictor variable), then grand mean centering should be used. 
When one does grand mean centering, the intercept becomes the adjusted grand mean. This adjustment 
obviously does not have any effect on the slopes. When group mean centering is used, the intercept is 
interpreted as the mean of each group. Group mean centering may change the meaning of the coefficient 
so that it becomes difficult to interpret because the mean values are subtracted from different sets of raw 
data. Some researchers will even center group mean binary variables; one needs to keep in mind that with 
group centered predictor variables, only person level effects are estimated. Choosing to center or not to 
center, and determining whether to use grand or group means, relates to Type VI Error because each 
decision will affect the statistical model that will differentially reflect the research question of interest.   
 
Interaction 
  The classical definition of interaction is the differential effect across an area of interest (non-equal 
slopes) over and above the main effect (or controlling for the main effect). If looking at HLM to see if the 
second level accounts for a significant proportion of variance, one is looking at a differential effect across 
the area of interest, but it is not over and above the main effects. In other words, only the multiplicative 
slope differences are being tested, but not the slope differences independent of the main effects. 
Comparing the first level to second level HLM models is very similar to traditional interaction, but 
because it does not include the main effects, the results could be different. 
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Adequacy of Sample Size 
  Another important issue that is too often overlooked when using HLM is the adequacy of the sample 
size, especially as it relates to the higher-level variables in a model. Kreft (1996) found that to have 
sufficient power one needs at least 30 groups with 30 subjects per group, or 60 groups with 25 replicates 
per group, or 150 groups having 5 replicates per group. Kreft’s simulation data suggests that the number 
of groups is more important than the number of observations for statistical power. This potential lack of 
power, from not having enough groups, has implications for detecting interaction between levels. Hox 
(1995) and Hox and Maas (2001) have similar findings related to adequacy of sample size. They found 
that N < 20 is insufficient at the higher levels, and if these higher-level variables are crucial to the 
structural model, then N should be > 100. These results are not consistent with the position taken by 
Raudenbush and Bryk (2002) who believe a Bayesian estimation approach allows for smaller N.   
 
Research Design (Fixed Effects and Randomized Effects) 
  One of the major issues related to HLM and OLS/MLR is that the researcher has to determine if the 
design consists of fixed, mixed, or random effects. It is important to know the nature of these effects so 
that one can select the appropriate error terms. If the correct error term is not selected, the researcher 
cannot determine the correct error rates for the tests of significance.     
  Fixed effects occur when the variables of interest are assumed to not be randomly selected and no 
generalizations are going to be made beyond the variables being tested.  For example, if there are three 
treatments that a researcher is interested in testing to see if they have a differential effect, then only those 
specific three treatments would be tested. This variable is fixed. In another example, imagine that a 
researcher is interested in the effects of a range of drug doses and randomly selects three doses to be 
representative of the entire range. Because the researcher wants to infer to the whole range of doses from 
which the samples are drawn, the three levels of the selected doses are considered to be random effects. In 
mixed effects, one must have at least two independent variables with at least one fixed and one random. 
  When building regression or hierarchical linear models, different error terms are used to test for 
statistical significance depending upon whether the variables are fixed or random. Being able to 
determine if the variables are fixed or random is important in testing models because they have different 
assumptions. In our opinion, one important issue here is conceptual; not statistical. As an example, 
assume a researcher is interested in having drug dosage as a continuous variable, and interested in 
generalizing to the whole range of dosages (i.e., think of this as a variable on the X axis of a graph). In 
this scenario, it would appear that dosage is a continuous variable. If, however, the researcher were to 
take drug dosage and was only interested in generalizing to three categories (i.e., small, medium, or large 
doses) based upon some predetermined decision rule, then the variable dosage would have changed from 
a continuous (random) variable to a categorical (fixed) variable. Obviously, with the fixed variable the 
researcher is specifically addressing whether there is a difference between the small, medium, and large 
dosage levels and not attempting to generalize to the range of doses. The robustness of violations to the 
underlying assumptions of the fixed and randomized models, as they relate to the accuracy of the tests of 
significance, is considerable. The fixed model, especially when the design is balanced, is more robust 
than the randomized model. 
 

Conclusion 
  The authors contend that there is nothing more important than understanding the relationship between 
the question of interest, the data, and the analysis. There is no computer program that is capable of doing 
the researcher’s thinking for him or her.  Therefore, it could be very misleading to use default options on 
computer programs or to use very sophisticated computer programs that have algorithms that are virtually 
black boxes and are too often not understood by the researcher. HLM is being widely used to analyze 
data, but we are concerned about how well these models are understood and appropriately interpreted. 
This concern is especially true when considering that stability is heavily based upon the number of 
replicates at the higher-order levels. 
  HLM modeling for the above example frequently takes into consideration the differential effect of 
treatment for different schools (a “type of interaction”). However, this question was not the one that was 
posed in the above OLS models. One could run models to reflect interaction, but that would go beyond 
the purpose of this paper. We have demonstrated that when models were written to reflect the question of 
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interest (“Was there an overall different effect due to treatment, independent of schools?”), the results of  
OLS and HLM were virtually identical. 
  To complicate matters, there is an option in HLM to run treatment as a fixed or random effect. If 
treatment is thought of as a random effect, (this choice would not make sense in the above example), and 
if HLM were run using treatment as a random effect, the results would be different from those obtained 
using OLS modeling. Additionally, various “experts” in HLM suggest different approaches for writing 
the HLM models in their reference books. These diverse approaches may produce dissimilar results (see 
Bickel, 2007; Field, 2009; Raudenbush & Bryk, 2002). The choice to use random or fixed effects, the 
type of centering selected, etc. needs to be contingent upon the researcher’s understanding of the data and 
the purpose of the research. While there are advantages to using HLM, researchers must be aware that it is 
not always the most efficacious procedure. One must select the method that will most accurately reflect 
the research question in the simplest way. This selection is analogous to the concept of parsimony.  
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Regression Commonality Analysis:  
Demonstration of an SPSS Solution 

Kim Nimon 
University of North Texas 

Multiple regression is a widely used technique to study complex interrelationships in social science 
research. In the face of multicollinearity, researchers encounter challenges when interpreting multiple 
linear regression results. Although beta weights and structure coefficients provide insight into the 
synthetic variable ( ŷ ) produced, they fall short when researchers want to fully report regression effects. 
Regression commonality analysis provides a level of interpretation of regression effects that cannot be 
revealed when only examining beta weights and structure coefficients. Importantly, commonality analysis 
provides a full accounting of regression effects which identifies the loci and effects of suppression and 
multicollinearity. Conducting regression commonality analysis without the aid of software is laborious 
and may be untenable, depending on the number of predictor variables. A software solution is presented 
for the multiple regression case. 

ultiple regression is a powerful technique for identifying underlying complex correlations 
among data in social science research. However, when multiple predictor variables are 
introduced into a regression model, the interpretation of the results is not always easy. It is often 
the case that predictor variables are multicollinear (i.e., have nonzero correlations with each 

other), thus increasing the complexity of the covariance structure and the interpretation of the results. 
Depending on the extent, researchers may see multicollinearity as a problem they need to "fix" before 
conducting multiple regression. However, Henson (2002) noted that multicollinearity is not a problem in 
multiple regression as long as researchers use appropriate methods to investigate their results. As noted by 
Nimon and Roberts (2010), some of these methods include, but are not limited to, the investigation of 
beta weights, structure coefficients, and commonality coefficients.  
 While analyzing beta weights is somewhat a de facto process when conducting multiple regression, 
Courville and Thompson (2001) demonstrated the ill effects of relying solely on beta weights to evaluate 
predictor importance. As they noted, beta weights are affected by the level of multicollinearity with other 
predictors and by themselves are not good indicators of predictor usefulness. Furthermore, researchers 
may miss the presence of suppressor variables if they neglect to analyze beta weights in concert with 
structure coefficients.  
 However, analyzing beta weights and structure coefficients may not provide sufficient information to 
fully interpret a regression effect since these coefficients do little to identify the loci and magnitude of 
multicollinearity and suppression. For example, a predictor (i.e., X1) with a high beta weight and a low 
structure coefficient indicates that X1 serves as a suppressor variable in the regression effect. However, 
without further analysis of the regression effect, it is not apparent which variable(s) is the target of 
suppression nor is the magnitude of the suppression effect clear.  
 By computing commonality coefficients, a predictor's contribution to a regression effect can be 
related to the other predictor variables in the model. Such information can be useful for uncovering 
complex relationships and for informing theory. For example, Siebold and McPhee (1979) discovered that 
cognition served as a suppressor variable in predicting the relationship between social affect and intent to 
get a pap test among minority women. As they noted, “a message aimed at social factors is likely to have 
maximum impact on intentions if it can be `purified' of cognitive relevance" (p. 365). Without analyzing 
commonality coefficients, this relationship would not have been revealed. An additional benefit of 
computing commonality coefficients is that they can be used to compute squared structure coefficients 
where, according to Nimon, Lewis, Kane, and Haynes (2008) “The benefit of employing commonality 
analysis in conjunction with the analysis of squared structure coefficients is that the researcher can 
determine how much variance each variable uniquely contributes and how much each shares, if any, with 
every other variable in the regression" (pp. 460-461). 
 

M
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Commonality Analysis 
  Commonality coefficients are produced through the process of commonality analysis1. Promoted in 
the 1960s as a method of partitioning variance (R2) (Mayeske et. al, 1969; Mood, 1969, 1971; Newton & 
Spurrell, 1967), commonality analysis provides a method to determine the variance accounted for by 
respective predictor variable sets (Onwuegbuzie & Daniel, 2003; Rowell, 1996) and helps researchers 
understand the contributions predictor variables make in a given regression model (Zientek & Thompson, 
2009). Commonality analysis has been applied across disciplines in social science research, including 
education (e.g., Zientek & Thompson, 2006), counseling (e.g., Gill, Barrio Minton, & Myers, 2010), 
human resource development (c.f., Nimon, Gavrilova, & Roberts, 2010), behavioral science (e.g., Sorice 
& Conner, 2010), and information science (e.g., Nimon & Gavrilova, 2010). Across these disciplines and 
others, data resulting from commonality analysis provide rich interpretation of the regression effect that 
advances theory and the application of research findings. As Siebold and McPhee (1979) stated: 
 

Advancement of theory and the useful application of research findings depend not only on 
establishing that a relationship exists among predictors and the criterion, but also upon 
determining the extent to which those independent variables, singly and in all combinations, 
share variance with the dependent variable. Only then can we fully know the relative 
importance of independent variables with regard to the dependent variable in question. (p. 355) 

 

  Commonality analysis partitions a regression effect into constituent, non-overlapping parts 
(Thompson, 2006). The partitioning process produces unique and common effects. Unique effects 
identify how much variance is unique to an observed variable, and common effects identify how much 
variance is common to two or more variables. Unique effects are analogous to squared semi-partial 
correlations between a predictor and dependent variable. Unique effects are also equivalent to the increase 
in R2 that occurs when a variable is included by itself in the last block of a hierarchical regression. 
Although hierarchical regression can be used to compute specific unique effects, it does not produce 
sufficient R2s to compute common effects. 
  Consider the hypothetical situation discussed by Hedges and Olkin (1981) in which two variables, X1 
and X2, are used to predict a variable X0. As depicted in Figure 1, the variance in X0 that is explained by 
X1 and X2 (R2

0.12) can be partitioned into three components: 
 

γ1 = unique effect of X1 to R2
0.12 

γ2 = unique effect of X2 to R2
0.12 

γ12 = common effect of X1 and X2 to R2
0.12. 

 

and computed as follows: 
γ1 = R2

0.12 - R2
0.2 

γ2 = R2
0.12 - R2

0.1 
γ12 = R2

0.1 + R2
0.2 - R2

0.12. 
 

  Had a hierarchical regression been conducted where X1 were entered in the first block followed by 
X2 in the second block, the resulting analyses would produce R2

0.1 and R2
0.12. While these R2s are 

sufficient to compute γ2, they are insufficient to compute γ1 and γ12. Although hierarchical regression is 
valuable in identifying the delta in R2 between variables sets, it does not provide sufficient R2s to fully 
partition a regression effect into constituent, non-overlapping parts. 
  Considering the prior example with only two predictor variables, the commonality analysis procedure 
is fairly straightforward. However, as the number of predictor variables increases, the process becomes 
more complicated. This is due, in large, to the fact that the number of commonality coefficients is 
exponentially related to the number of predictor variables. For example, the number of commonality 
coefficients for three, four, or five predictor variables is 7, 15, and 31, respectively. In addition, the 
formulas to compute commonality coefficients differ according to the number of predictors in the model. 
While complete sets of commonality formulas have been published supporting up to four predictor 
variables (e.g., Frederick, 1999), formulas to support models with more than four predictor variables must 
be derived. Mood's (1969) procedure allows researchers to calculate commonality coefficient formulas for 
any number of predictor variables. However, the procedure can be somewhat difficult to implement 
across a large number of coefficients. Nimon et al. (2008) summarized the procedure as follows: 
 

In Mood’s (1969) procedure, (1-x) was used to represent variables in the common variance 
subset and (x) was used to represent variables not in the common variance subset. By negating 



Nimon 

 
12                                                                                           Multiple Linear Regression Viewpoints, 2010, Vol. 36(1) 

the product of the variables in the subset and the variables not in the subset, deleting the -1 
resulting from the expansion of the product, and replacing x with R2, Mood noted that the 
formula for computing any commonality coefficient can be derived. (p. 459) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Venn diagram of the unique (γ1, γ2) and common (γ12) effects of R2

0.12. 
 
 

  For example, to compute the variance common to two independent variables (X1, X2) out of two (i.e., 
γ12), Mood’s procedure results in the following: 
 

     -(1 – X1)(1 – X2) = -(1 -X1 -X2 + X12) = -X12 + X1+ X2 = -R2
12+R2

1 + R2
2  

 

 Traditionally, the process of computing commonality coefficients has been a manual process2 
involving three steps: (1) developing the appropriate commonality coefficients formulae, (2) executing an 
all possible subsets (APS) regression, and (3) populating the commonality coefficient formulae with the 
appropriate R2 values from the APS regression. Without the aid of software, this process can be laborious 
and even untenable, depending on the number of predictor variables. 
 Through the work of Nimon et al. (2008), users of R have the opportunity to report commonality 
coefficients for any number of predictor variables by simply invoking a function from the yhat package 
(Nimon & Roberts, 2009). R is a free statistical programming language and environment for the Unix, 
Windows, and Mac families of operating systems (R Development Core Team, 2010). Despite R's 
growing popularity, researchers may prefer to conduct multiple regression using more traditional 
statistical software packages such as Statistical Package for the Social Sciences (SPSS), Statistical 
Analysis System (SAS), and SYSTAT. To provide commonality analysis functionality to SPSS users, the 
work of Nimon et al. (2008) was migrated to an SPSS script that conducts commonality analysis for any 
number of predictor variables.    
The SPSS script file can be downloaded from http://profnimon.com/commonality.sbs.  
 

SPSS Commonality Demonstration 
 To demonstrate the functionality of the SPSS script, the heuristic dataset from Thompson (2006, p. 
221) is employed in which three predictors (X4, X5, and X7) are regressed on a dependent variable Y. As 
depicted in Figures 2 to 5, the script file prompts the user for the: (1) SPSS data file, (2) output filename 
prefix, (3) dependent variable, and (4) independent variables. Due to limitations in the SPSS MATRIX 
command, all user input (data file name, output filename prefix, and variable names) must be eight 
characters or less. 

X1

X2 

γ1 =  R2
0.12 - R2

0.2 

γ12 = R2
0.1 + R2

0.2 - R2
0.12 

γ2 = R2
0.12 - R2

0.1 

X0 
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Figure 2. Screen Snapshot of Regression Commonality SPSS Script User Input – Step 1. 
 

 
Figure 3. Screen Snapshot of Regression Commonality SPSS Script User Input – Step 2. 
 

 
Figure 4. Screen Snapshot of Regression Commonality SPSS Script User Input – Step 3. 
 

 
Figure 5. Screen Snapshot of Regression Commonality SPSS Script User Input – Step 4. 
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  Using the information supplied, the script generates two SPSS data files - CommonalityMatrix.sav 
and CCByVariable.sav where both file names are prepended with the output file name prefix and are 
placed in the same directory as the input SPSS data file. CommonalityMatrix.sav contains the unique and 
common commonality coefficients as well as the percent of variance in the regression effect that each 
coefficient contributes. The individual entries in the table can be used to determine how much variance is 
explained by each effect as well as which coefficients contribute most to the regression effect. 
CCByVariable.sav provides another view of the commonality effects. The unique effect for each of the 
predictors is tabularized, as well as the total of all common effects for which the predictor is involved. 
The last column is the sum of the unique and common effect and is equivalent to the squared correlation 
between the predictor and dependent variable. As such, dividing the variance sum by the regression effect 
yields the percent variance explained by each variable, equivalent to a squared structure coefficient ( 2

sr ). 
  Tables 1 and 2, respectively, contain the contents of ExampleCommonalityMatrix.sav and 
ExampleCCByVariable.sav for the example regression model. Table 3 presents an example of how the 
commonality effects by variable can be displayed alongside traditional multiple regression output to add 
another layer of consideration when evaluating the importance of predictors. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 3. Regression Results for Heuristic Dataset 
Predictor 
(x) R R2 R2

adj β p Unique Common Total % of R2 ( 2
sr )

 .742 .547 .462  
X4    .584 .009 .251 -.019 .232 42.225% 
X5    .717 .005 .308 -.223 .084 15.321% 
X7    .329 .180 .056 -.025 .030 5.507% 
Note:. Unique = x’s unique effect. Common = Σ x’s common effects. Total = Unique + Common.  % of R2 
= Total/R2 
 

  As seen in Table 1, regressing X4, X5, and X7 on Y resulted in negative commonality coefficients. 
Negative commonality coefficients occur in the presence of suppression or when predictors affect each 
other in the opposite direction (Pedhazur, 1997). Negative commonality coefficients indicate that one 
variable actually confounds the predictive power of another (Beaton, 1973). While Frederick (1999) 
indicated that negative commonalities should be interpreted as zero, others have disagreed (e.g., Beaton; 
Capraro & Capraro, 2001; Pedhazur, 1997). Their magnitude indicate the power (i.e., variance explained) 
that is achieved by including the confounding variable (Capraro & Capraro, 2001). Consider the example 
from Capraro and Capraro that demonstrates this phenomenon: 
 

An Olympic track athlete must be fast and strong, therefore, a strong-fast athlete would be 
correlated with success at running track. However, one would believe the two variables (fast 
and strong) would be moderately negatively correlated, that is as much strength and mass 
increases, speed would decrease. The negative commonality between speed and strength would 
indicate a confounded variable. In this case, by knowing both the speed and strength one would 
expect to make better predictions of successful track running. Imagine just knowing the speed 

 Table 1. ExampleCommonalityMatrix 
Variables Coefficient % Total
Unique to  X4       0.251 45.925
Unique to  X5       0.308 56.274
Unique to  X7       0.056 10.199
Common to  X4 X5    -0.042 -7.738
Common to  X4 X7    0.156 28.465
Common to  X5 X7    -0.049 -8.947
Common to  X4 X5 X7 -0.132 -24.177
Total               0.547 100.000

 Table 2. ExampleCCbyVariable 
Variable Unique Common Total
X4         .251 -.019 .232 
 
X5         .308 -.223 .084 

 
X7         .056 -.025 .030 
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or strength of the athlete. A fast athlete may perform well in a short sprint but be severely 
impaired in a distance event. Conversely, a strong athlete may excel in endurance and persevere 
for distance, but lack the speed to win. The negative commonality in this case indicates that the 
power of both variables is greater when the other variable is also used. (pp. 6-7) 

 

  The commonality data in Table 1 indicate that the regression effect was confounded by all of the 
predictor variable combinations involving X5. Including X5 in the regression model increased X4's 
unique contribution by .042, X7's unique contribution by .049, and X4 and X5's common contribution by 
.132. Given its correlation with Y (r = .290), it appears that X5 served as a partial suppressor variable. 
Note that the magnitude of the change in R2 when X5 is dropped from the equation (.308) far surpasses its 
relationship with the dependent variable (.084). In total, suppression accounted for 40.87% (7.74% + 
8.95% + 24.18%) of the regression effect.  
  The predictor X5 was also the major contributor to the regression effect. Not only did it contribute 
40.87% of the regression through its role in suppressing variance in X4 and X7 that was irrelevant to 
predicting Y, it uniquely contributed 15.40% of the regression effect (56.27% - 40.87%). The other major 
contributor to the regression effect was the unique variance associated with the predictor X4. Excluding 
its relationship with X7, X4 uniquely contributed 38.17% of the regression effect. 
  Table 3 presents one format for reporting commonality data alongside traditional regression results. 
Such a table allows researchers to simultaneously consider beta weights, structure coefficients, unique 
effects, and common effects when interpreting regression effects and predictor importance.  For instance, 
since the sum of the squared structure coefficients (42.23% + 15.32% + 5.51%) in the example regression 
model is less than 100%, it is clear that the regression effect is confounded by suppression. Examining the 
unique and common effect identifies X5 as a suppressor variable and helps resolve the discrepancy 
between its large beta weight and small squared structure coefficient. One might also observe the role that 
X7 plays in the regression effect. Not only does it have a small beta weight and small structure 
coefficient, its unique effect indicates that it could be excluded from the regression model with only a 
small reduction in R2 (.547 - .056 = .491). 
 

Conclusion 
  From a didactic perspective, commonality analysis clarifies the roles that multicollinearity and 
suppression play in the relationship between standardized function and squared structure coefficients. In 
addition, it can be observed that commonality analysis subsumes the role of computing squared structure 
coefficients because the portion of the regression effect explained by each variable generated from the 
regression commonality analysis is identical to the squared structure coefficient generated from multiple 
linear regression. From a theoretical perspective, regression commonality analysis can provide important 
insights into variable relationships that may not be revealed by only examining beta weights and structure 
coefficients. Researchers and practitioners should consider employing one of the commonality analysis 
software solutions identified in this paper and others that may evolve (e.g., SAS, SYSTAT) when 
interpreting multiple linear regression results. 
 

Notes 
1. A complete discussion of regression commonality analysis is beyond the scope of this article; readers 
are referred to accessible treatments of the topic by Amado (2003), Mood (1971), Pedhazur (1997), 
Rowell (1996), Seibold and McPhee (1979), Thompson (2006), and Zientek and Thompson (2006). 
Commonality analysis as defined in this paper stems from the seminal works of Beaton (1973); Creager 
and Valentine (1962); Kempthorne (1957); Mayeske et al. (1969); Mood (1969); and Newton and 
Spurrell (1967). As defined by these authors, it is a R2 type variance partitioning analysis. The software 
embodiment of regression commonality analysis described in this paper is distinct and different than the 
commonality analysis software distributed by International Business Machines Corporation (2006) that 
identifies pairs of columns that have a significant number of common domain values. 
 

2. SAS software (SAS Institute Inc., 2008) and SYSTAT (2004) support APS regression, which is one of 
the steps in conducting regression commonality analysis. Also, a FORTRAN IV computer program to 
accomplish commonality analysis was introduced by Morris (1976). However, this program is now 
obsolete as it requires input job control cards. 
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A Confirmatory Factor Analysis of  
the Attitudes Toward Research Scale 

David A. Walker 
Northern Illinois University 

A confirmatory factor analysis (CFA) was used to examine if the developed five-factor structure of the 
Attitudes Toward Research scale was a proper model fit or if a different model more appropriately fit the 
sample data. The CFA conducted suggested that the three-factor model supported the sample data better 
than the one- or the five-factor structures, and numerous model fit indices comparison results indicated 
that the three-factor model was the more preferred model. The three-factor model was comprised of the 
latent factors: 1) research use, 2) negative attributes of research, and 3) positive attributes of research. 

 problem encountered by faculty, often derived from instructional experience or tacit professional 
expertise, with some students that have taken a course or courses in research methods is that 
years, or even a few semesters, after having been enrolled, they sometimes do not practice solid 
research design when engaged in the various phases of the master’s thesis and/or doctoral 

dissertation process. Beyond a lack of experience with research or time passage between courses and 
thesis or dissertation work, two leading indicators related to this limitation of research preparedness may 
be due to anxiety (Onwuegbuzie, 2003) affiliated with research methods-like courses and negative 
attitudes toward these types of courses (Onwuegbuzie, 1997; Wise, 1985). Further, this latent problem 
may be discernible earlier in research methods course(s) from enrolled students as constructs of their 
concerns pertaining to research’s lack of usefulness (i.e., misunderstandings of interpreting statistical 
findings or lack of job support for research use); a want of understanding, or only rudimentary, 
introductory awareness, concerning the importance of research in the graduate education process (i.e., 
seen as program-imposed, mandatory classes); deficient comprehension of the relevance of research in 
professional endeavors, or self-efficacy issues concerning ability and motivation to learn and perform 
research-related procedures (Henson, Hull, & Williams, 2010; Onwuegbuzie, DaRos, & Ryan, 1997; 
Pajares & Schunk, 2001; Ranis, 2003; Ravid & Leon, 1995). 
  A review of the scholarly literature indicates a dearth in the knowledge base concerning research related 
to education students’ attitudes toward research. To be sure, the literature has a wealth of research 
pertaining to students’ perspectives on statistics courses such as the courses’ level of difficulty, issues of 
student anxiety, and the validation of scales to measure said perceptions (cf. Cashin & Elmore, 1997; 
Kennedy & McCallister, 2001; Mills, 2004; Onwuegbuzie, 2004; Schau, Stevens, Dauphinee, & Del 
Vecchio, 1995). Further, there are studies to support attitudes toward research from professional 
perspectives such as nurses (Björkström & Hamrin, 2001) or administrators and faculty (Combs, 
Bustamante, & Wilson, 2007; Tang & Chamberlain, 1997), but very little data in the area of education 
students particularly in research methods courses (cf. Murtonen, 2005; Papanastasiou, 2005; Ranis, 2003; 
Richardson & Onwuegbuzie, 2002). 
 

Development and Dimensionality of the ATR 
   As a means to develop these latent constructs, one method may be derived via an instrument that 
measures education students’ attitudes toward research, which would include factors such as negativity or 
research usefulness. However, in the scholarly literature, there are very few of these instruments in 
circulation pertaining to this particular issue. One of the more readily available and employed protocols 
for this purpose, Papanastasiou’s (2005) “Attitudes Toward Research” (ATR) scale, has not endured a 
confirmatory examination of its five-factor structure to determine if it fits said structure or if different 
structure would better represent the ATR scale. 
  Originally, the ATR scale consisted of 56 questions based on a 1 (strongly disagree) to 7 (strongly 
agree) Likert-type scale. A principal components factor analysis with varimax rotation was conducted on 
all 56 indicators. Eleven factors were retained that accounted for 66.40% of the variance. Further analysis 
reduced the number of items on the ATR scale from 56 to 32, where items that “were not significantly 
related to the total score, or whose coefficient [via a score reliability analysis] was less than .50 were 
removed” (Papanastasiou, 2005, p. 18). Also, non-qualifying items that had factor loadings < .50 were 
deemed “insignificant” and dropped from the scale. A second factor analysis was conducted on the 
remaining 32 items of the scale. A five-factor solution was retained that accounted for 66.25% of the 
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variance. Thus, the final structure of the ATR scale consisted of 32 indicators that had five identified 
constructs: 1) usefulness of research in a career; 2) research anxiety; 3) positive attitudes toward research; 
4) research relevance to life; and 5) research difficulty. The score reliability estimates derived via 
Cronbach’s alpha (α) from the ATR’s five subscales were usefulness of research in a career (9 items, α = 
.92); research anxiety (8 items, α = .92); positive attitudes toward research (8 items, α = .93); research 
relevance to life (4 items, α = .77); and research difficulty (3 items, α = .71) (Papanastasiou, 2005). 
 

Methods 
Purpose 
   The purpose of this study was to use a confirmatory factor analysis (CFA) and various indicators of fit 
to examine how closely Papanastasiou’s (2005) five-factor model represented the sample data and also 
how multiple models’ fit indices compared to one another. Based on a sample of students from the U.S., 
this study examined if the reported five-factor structure of the ATR was a proper model fit or if a different 
model, in terms of interpretable factor structures and data fit, more appropriately fit the sample data. It 
was the proposition of the current research that a model consisting of an oblique three-factor model, 
where inter-related factors to the concept of research would be comprised of: 1) research use, 2) negative 
attributes of research, and 3) positive attributes of research.   
 
Model Examination 
   A one-factor model was created as a representation of the ATR scale as a uni-dimensional structure, 
where attitudes toward research were nested within one factor: attitudes. A five-factor model, as advanced 
in the literature by Papanastasiou (2005), was constructed that represented the 32-item ATR scale as a 
multi-dimensional structure consisting of the following independent yet correlated factors: usefulness of 
research in a career, research anxiety, positive attitudes toward research, research relevance to life, and 
research difficulty. 
  Finally, a three-factor model containing a total of 18 items and accounting for 56% of the variance was 
created from Papanastasiou’s 32-item five-factor model (see Table 1). Items that were found to be highly 
correlated or have large standard errors were deleted because they did not appear to add to the breadth of 
coverage to construct domains. For the three-factor model, the ATR scale was conceptualized as a multi-
dimensional structure comprised of three independent yet correlated components: research use, negative 
attributes of research, and positive attributes of research. 
 
Procedure and Participants 
   Two hundred four students in a graduate education research methods course at a large, state university 
located in the Midwest participated in the study. The ATR scale was completed by students during the 
14th or 15th week of a 16-week course in 8 sections of the course over one academic year. Participants 
responded to the ATR’s items based on a Likert-type scale ranging from 1 = Strongly Disagree to 7 = 
Strongly Agree. Only 2 out of the 204 completed questionnaires had missing data, where a respondent left 
1 question blank and another participant left 2 different questions, in comparison to the former 
respondent, without responses. Because of minimal missing data, and the apparent lack of a pattern in the 
few missing data observed, the mean was imputed for these two participants’ three missing data instances 
(cf. Baker & Siryk, 1999). 
   The sample, which was representative of the population of interest, was composed of 77.50% females 
and had an average age near 32 years (M = 31.95, SD = 8.46). The ethnic break-down of the sample was 
83.80% Caucasian, 10.80 Latino/a, 3.40% African American, 1.50% Asian, and .50% Native American, 
which was very representative of this university’s College of Education population of interest. Nearly all 
of the participants were seeking a master’s degree (97.50%), with an average of 20 credits completed 
toward the degree. There were 17 majors represented in the sample, with the top three areas drawing 
students from: educational administration (16.70%), literacy (14.20%), and counseling (12.30%). 
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Table 1. Items on the ATR scale 
Item    
1. Research makes me anxious       
2. Research should be taught to all students      
3. I enjoy research        
4. Research is interesting       
5. I like research        
6. I feel insecure concerning the analysis of research data     
7. Research scares me        
8. Research is useful for my career      
9. I find it difficult to understand the concepts of research     
10. I make many mistakes in research       
11. I have trouble with arithmetic       
12. I love research        
13. I am interested in research       
14. Research is connected to my field of study     
15. Most students benefit from research      
16. Research is stressful        
17. Research is very valuable       
18. Research makes me nervous       
19. I use research in my daily life       
20. The skills I have acquired in research will be helpful to me in the future   
21. Research is useful to every professional      
22. Knowledge from research is as useful as writing     
23. Research is irrelevant to my life      
24. Research should be indispensable in my professional training    
25. Research is complicated       
26. Research thinking does not apply to my personal life     
27. I will employ research approaches in my profession     
28. Research is difficult       
29. I am inclined to study the details of research     
30. Research acquired knowledge is as useful as arithmetic    
31. Research-oriented thinking plays an important role in everyday life   
32. Research is a complex subject    
Note: All 32 items comprised the five-factor model. Bold and gray signify the 18 items used in the three- 
          factor model 
 
Data Screening 
  Univariate outliers were checked via boxplots and histograms, which indicated that the data were 
normal in this regard. Multivariate outliers were checked using the Mahalanobis distance statistic. The 
largest Mahalanobis d-squared value, or the observation the furthest distance from the centroid, was 46.70 
with a probability value > .05 or a non-small probability of an unusual observation (i.e., outlier). Further, 
data were screened for instances of multicollinearity via analysis of tolerance (TOL) and variance 
inflation factor (VIF). Multicollinearity was not present as all TOL indices were > .10 and all VIF 
measures were < 3, which met noted cut-off points for these measures of > .10 and < 10, respectively 
(Belsley, Kuh, & Welsch, 1980; Hair, Anderson, Tatham, & Black, 1995). 
   Table 2 shows each item’s mean, standard deviation, skewness, and kurtosis. In terms of standard 
deviation, there was a range from .98 to 1.81. Skewness (≤ ⎪1.21⎪) and kurtosis (≤ ⎪1.69⎪) results showed 
that none of the items were > the recommended cut-off points of⎪3.00⎪and ⎪8.00⎪, respectively, and there 
was no univariate non-normality present (Kline, 1998). Mardia’s kurtosis value was used to check for 
multivariate normality. Mardia values as small as not > 3 and as large as not > 30 have been noted as a 
sign of multivariate kurtosis (Bentler & Wu, 1993; Newsom, 2005). The current study’s Mardia value 
was 43, which was an indication that possibly there was multivariate kurtosis affiliated with the data. To 
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extend beyond the Mardia test for instances of multivariate non-normality, a Bollen-Stein (1992) 
bootstrap technique of 2,000 iterations (cf. Nevitt & Hancock, 2001) was conducted in AMOS 7.0 
(Analysis of Moment Structures) (Arbuckle, 2006) to derive a p-value that was comparable to the p-value 
affiliated with the Satorra-Bentler (1994) chi-square adjustment used for model fit with data that exhibit 
non-normal tendencies. Thus, if the p-value from the Bollen-Stein bootstrap was > .05, we would fail to 
reject the model and determine that it indeed fit the data. Results indicated that the Bollen-Stein 
bootstrapped p-value was > .05 and the model appeared to fit the data. That is, the data comprising the 
models under study were robust in terms of a potential threat from multivariate non-normality. Thus, 
given the results from the various tests conducted pertaining to the normal distribution of the model’s 
data, maximum likelihood estimation (MLE) was used. 
 
Table 2. Three-factor model descriptive statistics 
Item M SD Skewness Kurtosis 
  1. Research makes me anxious  4.40 1.81 -0.33 -1.14
  3. I enjoy research 4.08 1.64 -0.30 -0.99
  8. Research is useful for my career 5.59 1.27 -1.21 1.69
  9. I find it difficult to understand the concepts of research  3.85 1.59 0.06 -0.99
10. I make many mistakes in research  4.00 1.36 0.04 -0.30
13. I am interested in research 4.59 1.47 -0.57 -0.44
14. Research is connected to my field of study 5.53 1.30 -1.14 1.10
15. Most students benefit from research 5.29 1.13 -0.63 0.47
17. Research is very valuable 5.85 0.98 -1.00 1.24
20. The skills I have acquired in research will be helpful 
 to me in the future 

5.46 1.26 -1.16 1.48

21. Research is useful to every professional 5.38 1.26 -0.87 0.26
22. Knowledge from research is as useful as writing 4.78 1.41 -0.49 -0.18
24. Research should be indispensable in my 
 professional training  

4.88 1.28 -0.32 -0.43

27. I will employ research approaches in my profession 5.24 1.25 -1.07 1.27
28. Research is difficult  4.90 1.44 -0.77 0.01
29. I am inclined to study the details of research 4.03 1.62 -0.18 -1.03
30. Research acquired knowledge is as useful as arithmetic 3.51 1.41 0.09 -0.74
31. Research-oriented thinking plays an important role 
 in everyday life 

4.21 1.56 -0.22 -1.03
 

Results and Discussion 
Model Fit Indices 
   Using MLE, a CFA was employed to specify the three models tested. Various indicators of fit were 
utilized to examine the multiple aspects that may encompass a model, to determine how closely a model 
represented the data, and also how multiple models’ fit indices compared to one another (cf. Hu & 
Bentler, 1999). As with guidelines provided for effect size measures (cf. Cohen, 1988), cut-off points 
used with indicators of the goodness- or the badness-of-fit for a model serve as suggestions and should be 
understood and evaluated as evidence of model fit, or lack thereof, within the context of other data 
presented. 
   In terms of sample data fit of a model’s covariance structure to the observed covariance structure, chi 
square (χ2) values that are < .05 signify that a model may be a bad fit for the data, whereas χ2 values > .05 
may render the model a good fit due to the two covariance structures not being statistically significantly 
different from each other. However, the χ2 statistic as a measure of fit is known to be sensitive to 
multivariate non-normality (e.g., skewness and kurtosis) and sample size (e.g., small samples < 200 may 
have χ2 values that are not statistically significant, which can lead to type II errors and large samples ≥ 
200 may produce statistically significant χ2 that can yield type I errors); all of which may cause 
uncertainty concerning the overall appropriateness of a study’s model based on this particular measure 
(Bentler, 1990; Browne & Mels, 1992; Cheung & Rensvold, 2002; Hu & Bentler, 1995). Because of these 
caveats, χ2 values were reported, but not given much weight in terms of model selection analysis. Another 
χ2–based test noted in the literature was more relied upon. The ratio of χ2 to degrees of freedom (χ2/df 
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ratio) was used to compare the relative fit of the three models, where as the χ2/df ratio decreased, the fit of 
a model was improved (Hoelter, 1983). It has been suggested that a χ2/df ratio of 2:1 signifies a good fit 
(Hair et al., 1995; Kline, 1998). 
   As incremental fit measures, the comparative fit index (CFI) and the Tucker-Lewis index (TLI) were 
employed. For both indices, the proposed model needed to compare very well to, or exceed, a null model 
per the cut-off point ≥ .90, which indicate reasonable fit of the model (Kline, 1998; Schumacker & 
Lomax, 1996). Finally, the root mean square error of approximation (RMSEA) and the standardized root 
mean square residual (SRMR) were used as absolute fit measures to assess the models under study. 
RMSEA scores of .05, .08, and, .10 have been suggested to represent the magnitude of population misfit, 
where values < .05 indicate close model fit and values between .05 and .08 indicate reasonable error 
(Browne & Cudeck, 1993; Hu & Bentler, 1998). For the SRMR, desired cut-off values have been noted at 
the levels of .05, .08, and, .10 as well (Garson, 2008). Typically, SRMR values ≤ .08 are preferred for 
model fit (Hu & Bentler, 1998). Finally, the Expected Cross Validation Index (ECVI) was used as a 
single sample estimate of cross-validation to assess how well the study’s three models “would generalize 
to other samples …. The model with the smallest ECVI indicates the model with the best fit.” (Hoekstra, 
Bartels, Cath, & Boomsma, 2008, p. 1158). 
 

One-Factor Model 
   Looking at Table 3, the one-factor model did not meet the suggested cut-off points (i.e., ≥ .90) for the 
CFI (.30) and the TLI (.25). For the rest of the fit indices, this model showed that it was a weak fit. The 
one-factor model had χ2 = 2699.70(464, p < .001) and a 5.82 χ2/df ratio. The χ2/df ratio was above the 
suggested 2:1 ratio. The SRMR (.58) and the RMSEA (.15) values were above the suggested cut-off 
points of ≤ .08. The ECVI was 13.930 and significantly higher than the other two models. Given these 
immoderate results, it was concluded that the one-factor model had invasive problems with model 
misspecification and did not fit the data. 
 

Five-Factor Model 
   The five-factor model had χ2 = 984.59(454, p < .01) and a 2.17 χ2/df ratio. The χ2/df ratio was above 
the suggested 2:1 ratio. Both the CFI (.83) and the TLI (.82) values were below the cut-off of ≥ .90. The 
RMSEA value of .08 was equal to the suggested value of ≤ .08. The SRMR value (.16) was above the 
suggested cut-off point of ≤ .08. The ECVI was 5.579 or over 200% higher than the three-factor model’s 
ECVI value. As can be seen in Table 3, these fit indices results suggested pervasive problems with model 
misspecification for the five-factor solution and indicated that this model did not fit the data adequately. 
 

Three-Factor Model 
   The three-factor model had χ2 = 247.05(132, p < .01) and a 1.87 χ2/df ratio. The χ2/df ratio was below 
the suggested 2:1 ratio. Both the CFI (.92) and the TLI (.91) values were above the cut-off of ≥ .90. The 
RMSEA value of .07 was below the suggested value of ≤ .08. The ECVI was 1.779 and substantially 
lower in value than the other two models, which indicated that the three-factor model’s degree of cross-
validation, or ability to replicate the current sample data to another sample, was more stable due to its 
lesser extent of model misspecification (Bandalos, 1993). Thus, the results from Table 3 suggested that 
the three-factor model fit the data acceptably and should be pursued further with the current CFA 
analysis. Additionally, all three of the latent factors were moderately to highly inter-correlated: factors 1 
and 2 (rxy = .35), 2 and 3 (ryz = .57), and 1 and 3 (rxz = .74). The fact that each factor was not markedly 
correlated with one another, or r xx > .85, suggested discriminant validity evidence where the model’s 
subscales measured three independent elements of attitudes toward research (Kline, 1998). However, the 
SRMR value of .13 was above the suggested cut-off point of ≤ .08. This last result may be an indicator of 
potential model misspecification, which will be analyzed further. 
 

Standardized Residuals and Modification Indices 
   Although the three-factor model was a reasonably good estimation of misfit to the population 
correlation matrix, it did have some error noted previously. Thus, because the model’s SRMR of .13 was  
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Table 3. Fit indices 
Model             χ2(df)     χ2/df   CFI    TLI   SRMR   RMSEA   (90% CI)    ECVI     
One-Factor    2669.70(464)  5.82    0.30   0.25     0.58     0.15     (0.15,0 .16)  13.930  
Three-Factor    247.05(132)   1.87    0.92   0.91     0.13     0.07     (0.05, 0.08)     1.779 
Five-Factor   984.59(454)   2.17    0.83   0.82     0.16     0.08     (0.07, 0.08)      5.579  
Note: χ2 = chi-square, df = degrees of freedom, χ2/df = ratio of χ2 to df, CFI = comparative fit index, TLI 
=  Tucker-Lewis index, SRMR = standardized root mean square residual, RMSEA = root mean square 
error of approximation with 90% confidence intervals, ECVI = Expected Cross Validation Index 
 
Table 4. Score reliability for the three-factor model 
Factor          Research Use   Negative Attributes     Positive Attributes 
# Items      10        4        4 
Cronbach’s α  0.88    0.81   0.82 
90% CI α       (0.85, 0.90)          (0.74, 0.87)         (0.78, 0.86) 
α2        0.77           0.66   0.67 
Note: α2 = variance accounted for by a factor 
 
above the recommended value of ≤ .08, standardized residuals were reviewed to determine if there was 
model misspecification (cf. Fairchild & Finney, 2006). The literature has recommendations for cut-off 
values concerning standardized residual ranging from > ⎪3⎪ to as large as > ⎪10⎪(Byrne, 1998; Garson, 
2008), which may indicate that a model’s covariance structure is different from the observed covariance 
structure and, hence, model misfit. For the three-factor model, there were 0 standardized residuals > ⎪10⎪ 
and 0 > ⎪3⎪. In fact, the largest standardized residual was 2.67. Overall, the data derived from this 
analysis suggested that out of the 153 possible standardized residuals, 0% were identified as possible 
explanations for potential model misspecification and a plausible reason why the SRMR value did not 
meet the cut-off of ≤ .08. 
   Another measure for examining model misspecification is MI (modification indices) (cf. Fairchild & 
Finney, 2006). Parameters with high MIs > 100 have been noted as potential areas for structure misfit 
leading to inflated model χ2 values (Garson, 2008). The three-factor model did not have MIs > 100. The 
largest decrease in model χ2 = 14.77 was between items 21 (Research is useful to every professional) and 
22 (Knowledge from research is as useful as writing). To ameliorate model misfit problems by correlating 
error terms between items ex post facto that may be contributing to model misspecification, however, has 
been a cautioned practice in the literature (Jöreskog & Sörbom, 1989; MacCallum, Roznowski, & 
Necowitz, 1992) and was not performed in this study due to the lack of a theoretical foundation for said 
application. 
 
Reliability 
   Score reliability was conducted for the three-factor model with 90% confidence intervals (CI) (cf. Fan 
& Thompson, 2001). A recommended cut-off value for score reliability for survey research is α ≥ .80 
(Henson, 2001; Nunnally, 1978). Table 4 indicated that all of the ATR’s subscales were > .80; research 
use (α = .88), negative attributes of research (α = .81), and positive attributes of research (α = .82). 
Further, the score reliability for the subscales signified that there was high internal consistency and the 
items that comprised each latent factor shared a large percentage of the variance ranging from .66 to .77. 
  Further, Table 5 shows communalities (h2), which are the proportion of each item explained by a latent 
factor (i.e., akin to R2). The model’s communalities ranged from .21 to .73 with a median of .43. The 
research use latent factor had h2 values ranging from .32 to .58 with a median of .43. The negative factor 
had h2 values ranging from .21 to .60 with a median of .37. The positive factor had h2 values ranging from 
.30 to .73 with a median of .61. Hair et al. (1995) recommended .50 as the cut-off point for this variance 
accounted for measure, which in terms of average was met by one of the model’s latent factors (i.e., 
positive) and closely by a second (i.e., research use). Individually, item 13 (i.e., I am interested in 
research) had the highest h2 value = .73 and item 10 had the lowest h2 = .21; meaning this variable had a 
substantial amount of standardized error variance affiliated with it that was unexplained by the negative 
attributes latent factor (i.e., 79% or 1.00 - .21). 
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Table 5. Three-factor model pattern and structure coefficients and variance accounted for measure 
Item      Factor      P   S         h2  

 

         Factor: Research Use 
8.   Research is useful for my career      0.62 0.62     0.40 
14. Research is connected to my field of study     0.66 0.66  0.43 
15. Most students benefit from research      0.69 0.69  0.48 
17. Research is very valuable       0.57 0.57  0.32 
20. The skills I have acquired in research will be helpful  to me in the future 0.76 0.76  0.58 
21. Research is useful to every professional     0.66 0.66  0.44 
22. Knowledge from research is as useful as writing    0.58 0.58  0.34 
24. Research should be indispensable in my professional training   0.65 0.65  0.43 
27. I will employ research approaches in my profession    0.64 0.64  0.41 
31. Research-oriented thinking plays an important role in everyday life  0.65 0.65  0.43 

 

        Factor: Negative Attributes of Research 
1.   Research makes me anxious        0.78 0.78  0.60 
9.   I find it difficult to understand the concepts of research    0.58 0.58  0.34 
10. I make many mistakes in research       0.46* 0.46  0.21 
28. Research is difficult         0.63 0.63  0.40 

 

      Factor: Positive Attributes of Research 
3.   I enjoy research        0.77 0.77  0.59 
13. I am interested in research       0.85 0.85  0.73 
29. I am inclined to study the details of research     0.55 0.55  0.30 
30. Research acquired knowledge is as useful as arithmetic   0.79 0.79  0.62 
Note: P = pattern coefficient, S = structure coefficient, h2 = variance accounted for, * = did not reach a 
coefficient level ≥ .50 for item salience 
 

Conclusions 
   The CFA conducted suggested that the three-factor model supported the sample data better than the 
one- or the five-factor structures, and numerous model fit indices comparison results indicated that the 
three-factor model was the more preferred model. The three-factor model displayed good model fit in all 
indices examined, except for the SRMR value of .13, which was above the suggested value of ≤ .08. 
Because the SRMR was above the desired cut-off value, other analyses were conducted to determine if 
this result was an indication of potential model misspecification. Analyses via standardized residuals, MI, 
pattern/structure coefficients, and standardized error variance indicated that item 10, related to the 
negative attributes latent factor, showed some indicators, but not all conducted in the aforementioned 
analyses, of possible rewriting to align closer with its current factor or represented a fourth, external 
domain, where more items of its ilk should be added to have factor manifestation (cf. Fairchild & Finney, 
2006; Hertel, 2002).  
   There were limitations affiliated with the current study. The original ATR scale was investigated via a 
sample of undergraduate students in education from Cyprus. The current model used participants from the 
U.S. who were graduate students in education. Also, the U.S. sample spanned 17 majors within education, 
where the Cyprian sample contained two majors. On two levels, there may be some measurement 
variance between the participants from the two different countries who may have interpreted the scale’s 
items and latent constructs differently, as well as educational level measurement variance between 
undergraduate and graduate students and possibly by major.  
   In terms of future research, the use of the ATR scale’s potential predictive ability to forecast earlier in 
the graduate research process students’ attitudes toward research may be of assistance to divert possible 
problems later on during thesis or dissertation work. Further, the ATR scale should be employed to 
samples from other countries to test for its equivalence in different contexts and student groupings (e.g., 
undergraduate/graduate, education/humanities) and also to examine its properties of measurement 
invariance. 
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Selecting Cluster Results by Classification Accuracy 
    Mary G. Lieberman          John D. Morris 

Florida Atlantic University 
Cross-validated predictive discriminant analysis was used to illustrate comparison of cluster solutions by 
classifying subjects into candidate clusters. This technique was illustrated for both selection of the 
number of clusters within a clustering algorithm and the selection of a clustering algorithm. Other 
applications to demonstrate and judge the adequacy of potential clustering results, and to assess the 
accuracy of contrasting clustering algorithms, are suggested. 

he purpose of this study was to investigate and demonstrate a method by which one could aid 
decisions regarding cluster adequacy by using classification accuracy. Examples include decisions 
regarding cluster number and algorithm, although other uses are proposed. The thorny problem of 
how many clusters, how large they should be, and who should belong to them in cluster analysis is 

parallel to the same concerns in factor analysis. Indeed, the origins of cluster analysis in “inverted” or 
transformed factor analysis (i.e., grouping subjects rather than variables) points to this theoretical 
similarity. Loosely speaking, cluster analysis is a class of techniques that are used to determine whether 
subjects tend to group together in respect to their scores on variables in multivariate space (see 
Anderberg, 1973 for an introduction, but distinguished from early factor usage by Harman, 1967). A 
distinction is necessary between the cluster analysis process of creating groups of subjects based on their 
statistical “likeness,” and the process of classifying subjects into groups that are known a priori in what is 
typically called predictive discriminant analysis (viz., Huberty, 1994 for a complete description); or 
classification analysis; or, switching mathematical models, logistic regression. In the former method, the 
objective is to decide if there is any defensible “natural” grouping of subjects in respect to the subjects’ 
score vectors; in the latter procedure, interest is in ascertaining the accuracy with which one can classify 
subjects a priori into known groups conditional on their score vectors. If there is such a grouping, or 
“clustering,” the researcher must decide on the number of clusters, the size of the clusters, and who 
belongs to those clusters. As in factor analysis, a variety of quantitative aids have been developed to help 
make decisions regarding the clusters resultant from a cluster analysis, but also, as could be argued in 
factor analysis, the decision is still primarily subjective. That is, the aids merely offer quantitative indices 
about which subjective decision can be made.   
  We proffer a more objective, and what we believe to be more meaningful, criterion of the merit of 
any particular clustering result, and also an inferential way of comparing the merit of candidate clustering 
results in respect to this criterion. So, the thrust herein is not primarily about candidate cluster analyses, 
nor a comparison among clustering algorithms, but regards a recommendation for a criterion to be used in 
judging the of adequacy of cluster solutions, from whatever algorithm and dimensionality decision, and 
for a method of comparing alternate clustering solutions on this criterion. 
By definition, clustering algorithms function based upon some variant of the notion of similarity, or 
distance, calculated between each case and every other case, and then grouping the cases that have the 
greatest similarity, or the least distance, into clusters. Differing results obtained based on the type of 
distance or similarity indices used (i.e., correlation or a Euclidian or non-Euclidean scale preserving 
metric), the clustering algorithm, and even holding these constant, upon decisions regarding such issues 
as number of clusters. Thus, classification can aid in this decision (see Huberty, DiStefano, & Kamphaus, 
1997 and Lieberman, Morris, & Huberty, 2001 for a description of the steps in a cluster analysis and the 
use of classification, and other methods, in the validation of clusters).  
 

Method 
 What we propose is to judge the adequacy of any potential clustering result by the accuracy with 
which one can classify the subjects into the groups derived by the cluster analysis. Such classification can 
be accomplished via predictive discriminant analysis, logistic regression, or other methods. Therefore, in 
this case, one is treating the groups derived from the cluster analysis as if they were “known.” This can be 
done for any clustering solution as a validation step, but, as well, candidate clustering solutions can be 
compared -- whether it is simply a question of how many clusters one should retain within a clustering 
algorithm, across different clustering algorithms, both, or other differing clustering method attributes. 
Candidate cluster results can be compared on the classification accuracy obtained across all groups (or 
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clusters), or by separate groups (or clusters), though the total group accuracy seems of most relevance. 
These accuracies can be compared for classification of the calibration sample, or for cross-validated 
estimates of classification accuracy, as in the “leave-one-out” procedure that is popular in predictive 
discriminant analysis (Huberty, 1994).  Moreover, one could elect to use a linear classification function 
(assuming equal group – or cluster – covariance matrices), or a quadratic function (where covariance 
matrices are not assumed equal). Prior probabilities are considered to be of no relevance in this 
application in which the “groups” are the product of a cluster analysis. Furthermore, the uncritical use of 
unequal prior probabilities has been questioned (Meshbane & Morris, 1995a). Nonetheless, this stand is 
potentially debatable and the algorithm easily accommodates use of unequal prior probabilities if the 
researcher wishes. Moreover, the relative accuracy resulting from the different clustering structures can be 
contrasted inferentially using McNemar’s contrast for correlated proportions in the same way as has been 
suggested to compare full and reduced classification models in predictive discriminant analysis (Morris & 
Huberty, 1995a) and linear and quadratic models (Meshbane & Morris, 1995b). 
 

Results and Discussion 
Example 1: Comparison of Number of Clusters 
  An example data set, taken from George and Mallery (1999), was used to illustrate the method herein. 
The research question addressed in that example involved clustering 21 VCRs (videocassette recorders) 
based on a variety of characteristics including: price, an index of picture quality, an index of 
programmability, two indices of reception, three audio reception indices, three indices regarding remote 
quality, indices regarding events, days of programmability, features, and “extras.” In this case, the method 
selected by the authors was a hierarchical/agglomerative cluster analysis using Euclidean distances. 
Perusal of the results led the authors to a subjective decision that three clusters most adequately 
represented the data.  
  To illustrate the method that we propose, we analyzed the same data with the same procedure using 
the same software (Statistical Package for the Social Sciences), but selected a two cluster solution. We 
then performed a leave-one-out type cross-validated discriminant analysis classifying the subjects 
alternatively into the two- or three- cluster solutions. We then contrasted the total-group hit rate for the 
two solutions using the McNemar statistic. The McNemar contrast for correlated proportions requires a 
joint frequency distribution; as applied to this situation, a joint frequency distribution of hits and misses 
for the two-cluster and three-cluster solutions. Table 1 shows that, out of 21 cases, 6 were correctly 
classified by the two cluster solution that were incorrectly classified by the original three cluster solution 
with 15 subjects correctly classified by both solutions. Both the z, or exact binomial test, could be 
considered statistically significant (p < .05) in this case, with the alternate two-cluster arrangement 
manifesting superior classification results. Increased parsimony and accuracy was achieved in respect to 
the originally posited three cluster solution. 
 
Table 1. Contrast of two and three cluster classification performance 
 

        Three Cluster    
        Miss   Hit    
  Two Cluster Hit        6    15   21  
     Miss       0      0      0  
                       6    15 
 

            McNemar z = 2.45 p = 0.014 
                 Exact Binomial  p =  0.031    
 
Example 2: Comparison of Clustering Algorithms 
  As was mentioned, an alternative application of the method is to judge the adequacy of the clustering 
algorithm based on classification accuracy. For this same data set, a Two-Step and k-Means clustering 
algorithm (both with two groups) were compared (see Table 2). Note, that although two groups were used 
in both algorithms, different cases belonged to the clusters according to the result of the clustering 
algorithm. One can see that the k-Means algorithm provided clusters for which classification accuracy 
might be considered statistically significantly (p < .05) more accurate than that from the Two-Step 
algorithm. 
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Table 2. Contrast of two-step and k-means classification performance 
 

        Two-Step     
        Miss   Hit    
   k-Means  Hit        7    14   21 
       Miss        0       0      0  
             7    14 
 

            McNemar z = 2.65 p = 0.008 
                 Exact Binomial  p =  0.016     
 

Conclusion 
  We suggest that serious consideration be given to the criterion of classification accuracy afforded by 
a cluster solution in decisions regarding cluster results. Moreover, the technique is equally applicable in 
contrasting the cluster results (if different) from other clustering algorithms, the same algorithm with 
different variables (in this case there are interesting possibilities for addressing full versus restricted 
model questions), or any of a variety of methodological or subjective alternatives that give different 
cluster results. 
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