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Demonstration of How Score Reliability is Integrated  
Into SEM and How Reliability Affects All Statistical Analyses 

            Z. Ebrar Yetkiner                  Bruce Thompson 
           Texas A & M University       Texas A & M University – Baylor College of 
Medicine 

SEM is a generalization of multiple regression within the General Linear Model (GLM). The purpose of 
the present paper is to explain and illustrate (a) how score reliability estimation is integrated into 
structural equation modeling (SEM) and (b) how score reliability affects all statistical analyses within the 
GLM. A heuristic SEM model using the Holzinger and Swineford (1939) data is utilized for these 
purposes. This introductory tutorial includes the necessary data files and software syntaxes so that the 
interested reader can readily replicate and further explore these important foundational statistics 
concepts. 

tructural equation modeling (SEM) is a marriage of the multiple regression path analytic modeling 
promulgated by Sewell Wright (1921, 1934) in the 1920s with quantitative methods that estimate 
the psychometric reliabilities of scores. SEM allows for the evaluation of rival causal path 
directions and both direct and indirect effects. As such, SEM is an extension of multiple regression 

as the General Linear Model (see Cohen, 1968; Zientek & Thompson, 2009). 
  Quantitative researchers frequently speak of "error," and the importance of minimizing "error" within 
studies. However, there are three distinct types of error that are potentially at play within statistical 
analyses. For purposes of clarity perhaps the generic term "error" should be abandoned in favor of the 
more precise clear specification of exactly which error type is being considered in any given instance. 
  First, sampling error is any feature of sampled data that misrepresent in any way the dynamics in the 
population from which the sampled data were drawn (Thompson, 2006a). Every sample necessarily is 
"fluky" to some degree. Only the population has no flukiness in representing itself. As the statistical 
cliché states, "Samples are like people, and every single one is individual or idiosyncratic, and some are 
very idiosyncratic!" We can see sampling error at work if we draw repeated samples of a given size from 
a population, compute whatever statistic interests us (e.g., the mean, the median, the Huber estimate, the 
Pearson r), and then plot these estimates as a sampling distribution. 
  And we can compute the standard deviation of the sampling distribution (i.e., the standard error of 
the statistic, such as the SEM or the SEr) to quantify how much idiosyncracy we expect, on average, for a 
given statistic computed for samples of a given sample size. Sampling errors for all statistics tend to get 
larger as sample sizes get smaller. 
 Sampling error tends to inflate the magnitudes of many of the effect sizes (e.g., r

2
, R

2
, η

2
; see 

Thompson, 2006b, 2007) that today are the primary vehicles for interpreting quantitative research results 
(Wilkinson & American Psychological Association [APA] Task Force on Statistical Inference, 1999). 
However, effect size estimates can be corrected for sampling error influences by subtracting out of the 
initial unadjusted estimates the estimated amounts of sampling error (e.g., adjusted r

2
, adjusted R

2
, ω

2
; 

see Wang & Thompson, 2007). Thus, quantifying the likely amount of sampling error becomes important 
to the endeavor of correcting effect size estimates so that our effect size estimates are more accurate. 
  Second, model specification error "occurs when (a) predictor variables that should not be used are 
included in the model, or (b) necessary predictor variables are omitted, or (c) the incorrect analysis is 
used (e.g., a linear form of relationships is modeled when relationships are curvilinear or logistic)" 
(Thompson, 2006a, p. 247). Every statistical analysis tests the fit of data to a model (Zientek & 
Thompson, 2009), and indeed effect sizes can be conceptualized as quantifying fit (Thompson, 2006a). 
Thus, in a sense, the Mean SquareERROR or 1 - some effect sizes (e.g., 1 - either r

2
 or ω

2
 or the SEM NFI 

or CFI fit statistic) can be conceptualized as quantifying the degree of model misspecification in an 
analysis. 
  Of course, when we interpret these model misspecification estimates, we must remember that we do 
not expect most models to be perfectly specified. In fact, we typically develop theory to explain certain 
phenomena, but we want theory to be simple. Because theories are developed to be parsimonious (i.e., to 
oversimplify reality, but still be useful), we usually expect theory to be imperfect or to some degree 
untrue. Thus, we usually do not expect actual data to perfectly fit models. 

S 
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  Third, measurement error is the error arising in scores because all scores inherently are imperfectly 
measured. As explained by Thompson (2003b), 

[M]any of us begin our day by stepping on a scale to measure our weight. Some days when 
you step on your bathroom scale you may not be happy with the resulting score. On some of 
these occasions, you may decide to step off the scale and immediately step back on to obtain 
another estimate. If the second score is half a pound lighter, you may irrationally feel 
somewhat happier, or if the second score is slightly higher than the first, you may feel 
somewhat less happy. 
 But if your second weight measurement yields a score 25 pounds lighter than the initial 
measurement, rather than feeling happy, you may instead feel puzzled or perplexed. If you 
then measure your weight a third time, and the resulting score is 40 pounds heavier, you 
probably will question the integrity of all the scores produced by your scale. It has begun to 
appear that your scale is exclusively producing randomly fluctuating scores. 
 In essence, your scale measures "nothing." That is, measurement protocols measure 
"nothing" when the scores they produce are completely unrelated to any and all systematic or 
nonrandom dynamics... 
 When measurements yield scores measuring "nothing," the scores are said to be 
"unreliable." At the other extreme, if the measurement yielded scores with no elements 
whatsoever of random fluctuation, the scores would be described as perfectly reliable. The 
idea of evaluating the psychometric integrity of scores as regards these influences is not new. 
Spearman (1904, 1910) articulated the original conceptualizations of "reliability." (p. 4) 

  Measurement error damages the results from quantitative studies. Measurement error attenuates both 
the magnitudes of effect sizes and power against Type II errors. For example, Shaw, Kopriva, and Tracz 
(1993) found that statistical power against Type II error drops precipitously with lower score reliability. 
This is why computing score reliability in a quantitative study before any other statistical analyses are 
conducted is so important when using classical statistical analyses (e.g., t test, Pearson r, ANOVA, 
multiple regression, MANOVA, descriptive discriminant analysis, canonical correlation analysis). 
  As the APA Task Force on Statistical Inference emphasized so strongly, 

It is important to remember that a test is not reliable or unreliable. Reliability is a property of 
the scores on a test for a particular population of examinees. Thus, authors should provide 
reliability coefficients of the scores for the data being analyzed even when the focus of their 
research is not psychometric. Interpreting the size of observed effects requires an assessment 
of the reliability of the scores. (Wilkinson & APA Task Force on Statistical Inference, 1999, 
p. 596) 

  Thompson and Vacha-Haase (2000), in their article "Psychometrics is datametrics: The test is not 
reliable," argued strongly that tests are not themselves reliable, and instead reliability is a property of 
scores, and score reliability for a given measure may fluctuate over samples or time. This is exactly why 
Vacha-Haase (1998) invented Reliability Generalization (RG) as a measurement meta-analytic method to 
explore (a) typical reliability of scores from a given measure over administrations, (b) the homogeneity 
or heterogeneity of score reliabilities for a measure over administrations, and (c) the design or sample 
features that predict variation in score reliabilities for a measure over administrations (see Henson & 
Thompson, 2002). 
  However, even today too few researchers realize that reliability is not a property of tests themselves, 
and then presume that the reliability reported for scores described in test manuals are the reliabilities for 
any subsequent administrations of a given measure. As Thompson (2006a) noted, "Unfortunately, too 
many researchers incorrectly presume that tests are reliable, and (therefore) rarely check the reliabilities 
of the scores actually being analyzed" (p. 356). 
  Because poor score reliability inherently compromises quantitative study results, every quantitative 
report ought to include an analysis of the score reliabilities of the data actually being analyzed in the 
study. Sadly, decades ago in his empirical study of quantitative research reporting practices, Willson 
(1980) noted that only 37% of the articles he studied explicitly provided reliability coefficients for the 
data being analyzed, and he concluded "that reliability... is unreported in... [so much published research] 
is... inexcusable at this late date" (p. 9). 
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  Two decades later, more contemporary reporting situation remains unsatisfactory. In their 
measurement mega-metaanalysis of prior RG studies, Vacha-Haase, Henson, and Caruso (2002) reported 
that, of the thousands of journal articles reviewed in prior RG studies, only 24.4% of these thousands of 
articles cited reliability coefficients for the data actually being analyzed, and a stunning 56.2% of the 
thousands of journal articles reviewed contained no mention whatsoever of reliability! 

 

General Linear Model (GLM) 
  The General Linear Model (GLM) is the concept that "all analytic methods are correlational ... and 
yield variance-accounted-for effect sizes analogous to r

2
 (e.g., R

2
, η

2
, ω

2
)" (Thompson, 2000, p. 263). As 

Graham (2008) explained, 

The vast majority of parametric statistical procedures in common use are part of [a single 
analytic family called] the General Linear Model (GLM), including the t test, analysis of 
variance (ANOVA), multiple regression, descriptive discriminant analysis (DDA), 
multivariate analysis of variance (MANOVA), canonical correlation analysis (CCA), and 
structural equation modeling (SEM). Moreover, these procedures are hierarchical [italics 
added], in that some procedures are special cases of others. (p. 485) 

  In 1968, Jacob Cohen explained that multiple regression analysis subsumes all univariate parametric 
statistical analyses (e.g., t tests, ANOVA, ANCOVA, Pearson r) as special cases. In 1978, Knapp showed 
that all commonly utilized univariate and multivariate analyses (e.g., Hotelling's T

2
, MANOVA, 

MANCOVA, descriptive discriminant analysis) are special cases of canonical correlation analysis 
(CCA). Thompson (1984, 1991) and Zientek and Thompson (2009) provide more detail on CCA and the 
GLM. 
  These traditional univariate and multivariate parametric analyses dominated quantitative research 
reports for many years (Willson, 1980), and remain common (Kieffer, Reese & Thompson, 2001). But 
none of these analyses (e.g., t tests, ANOVA, ANCOVA, Pearson r, Hotelling's T

2
, MANOVA, 

MANCOVA, descriptive discriminant analysis) incorporate estimates of or adjustments for measurement 
error within the scores being analyzed. In effect, traditional statistical analyses presume perfect or near-
perfect score reliability. 
  More recently, a modern statistical analysis today called structural equation modeling (SEM; see 
Thompson, 2000, for an accessible introduction) has been developed and popularized in various software 
packages, such as AMOS (Arbuckle, 2007). In 1981, Bagozzi, Fornell, and Larcker demonstrated that 
structural equation modeling (SEM) is an even more general case of the GLM (see Fan, 1997 for a 
cogent explanation). 
  Even though SEM is the broadest case of the GLM, and subsumes CCA and classical parametric 
analyses as special cases, unlike CCA and multiple regression and the other classical analyses, SEM does 
estimate and make adjustments for score reliability estimates as part of the statistical analysis. In other 
words, SEM is both simultaneously a statistical and a measurement analysis. 
 It is important to note that there are various sources of measurement error (e.g., multiple raters, 
administrations, or test versions) that can result in unreliable scores. Cronbach, Gleser, Nanda, and 
Rajaratnam (1972) developed Generalizability Theory, which analyzes various measurement errors 
simultaneously, as a way to quantify each of the numerous sources of measurement error, and their 
interactions with each other (Thompson, 2003a). SEM is powerful also in that it can account for multiple 
sources of measurement error that can be modeled within the analysis (DeShon, 1998, p. 412). However, 
even some experienced SEM researchers may not fully grasp exactly where and how score reliability is 
estimated within SEM. 
 

Purposes of the Present Paper 
  The present paper was written as a tutorial to achieve two purposes. First, the paper explicates exactly 
where and how score reliability is estimated within SEM. Second, the paper illustrates exactly how 
changes in score reliability estimates can impact all the estimates in a given quantitative analysis within 
the GLM. 
  We use actual data, and provide the relevant AMOS computer program syntax files, to enable the 
interested reader to replicate our results, or to explore the impacts of using even more alternative 
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reliability estimates on the parameter estimates within the model. We encourage readers to make use of 
these syntax files, so that understanding of how reliability affects results with the GLM will be real and 
concrete. 
  We do not make any claim that statisticians are unaware that measurement error is estimated as part of 
structural equation modeling. However, applied researchers may not fully understand exactly where and 
how reliability is estimated as part of SEM, or how reliability may impact parameter estimates with the 
GLM. The present tutorial may prove useful in introducing students to these important foundational 
concepts. 

 

Illustrative Data 
  Real data are often used to provide concrete examples in books and journal articles. One dataset 
widely used in the social sciences in heuristic examples are the iris flower data reported and used by Sir 
Ronald Fisher (1936) in his explication of discriminant analysis. 
  A second dataset (Holzinger & Swineford, 1939, pp. 81-91) has been even more widely used in 
journal articles and textbooks as heuristic data and involves scores of 301 children from two Chicago 
schools on several dozen tests. These data are widely available on the internet. For example, the data can 
be retrieved at:   http://people.tamu.edu/~bthompson/datasets or  
            http://www.psych.yorku.ca/friendly/lab/files/psy6140/data/psych24r.sas 

   Here, scores on six tests from the Holzinger and Swineford (1939) data were used: 
Variable 
Name   SPSS Variable Label 
  T1    VISUAL PERCEPTION TEST FROM SPEARMAN VPT, PART III 
  T2    CUBES, SIMPLIFICATION OF BRIGHAM'S SPATIAL RELATIONS TEST 
  T3    PAPER SHAPES THAT CAN BE COMBINED TO FORM A TARGET 
  T6    PARAGRAPH COMPREHENSION TEST 
  T7    SENTENCE COMPLETION TEST 
  T9    WORD MEANING TEST 

  The first three variables were modeled as measuring Spatial Ability, and the last three variables were 
modeled as measuring Verbal Ability. The interested reader can replicate the analyses reported here 
using the data reported in Appendix A and the four AMOS syntax files reported in Appendices B through 
E. 

http://www.psych.yorku.ca/friendly/lab/files/psy6140/data/psych24r.sas
http://people.tamu.edu/~bthompson/datasets
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Results 
  We conducted four analyses of the six variables using a single model, but with different estimates of 
score reliabilities within the models (i.e., near perfect score reliability, near zero score reliability, score 
reliability estimated using the actual data, and score reliability estimated using previously published 
reliability coefficients). Our simple model focused on estimating the correlation between the latent 
Spatial Ability and Verbal Ability variables. For example, Figure 1 presents the Input Model used in 
AMOS to declare what model we were testing and what parameters we wanted estimated in the analysis. 
   Figure 1 declared that scores on the underlying Spatial Ability latent variable were one cause (i.e., the 
one-headed arrows go from Spatial Ability to T1, T2, and T3) of the scores observed on the variables T1, 
T2, and T3, and that scores on the underlying Verbal Ability latent variable were one cause of the scores 
observed on the variables T6, T7, and T9. Drawing the 
two-headed arrow between Spatial Ability and Verbal 
Ability declares that we are modeling that these two 
latent variables are correlated, and that we want AMOS 
to estimate this Pearson r. 
  The Figure 1 Input Model also declares that the factor 
pattern coefficient (Thompson, 2004) between T1 and 
Spatial Ability is 1.0, because the one-headed arrow 
between T1 and Spatial Ability has a 1.0 typed on the 
Input Model, and the factor pattern coefficient between 
T9 and Verbal Ability also is 1.0. This is one way out of 
many to "identify" the model (see Thompson, 2004), 
which means to set a scale or metric on the latent 
construct so that each factor pattern coefficient has only 
one mathematically correct value. 
  Think of wanting to measure Height of three people 
(i.e., Deborah, Wendy, or Carol). We can measure 
Height in infinitely many metrics. But we must have 
some (any) metric. We can measure in inches, feet, 
centimeters, meters, and so forth. We can even invent a 
completely new metric, as long as our new ruler remains 
at least intervally-scaled. Or, we can measure in the 
metric of the people. For example, we can say that we 
want to measure Height in multiples of 1 Deborah, or half a Deborah. Then, if Wendy is 0.8 as tall as 
Deborah, Wendy's Height would be 0.8 Deborahs (or 1.6 Deborahs if we are measuring in the metric of 
half a Deborah). Similarly, if Carol is 1.1 times as tall as Deborah, Carol's height would 1.1 Deborahs (or 
2.2 Deborahs if we are measuring in the metric of half a Deborah). Thus, the Figure 1 Input Model 
declares that we are measuring Spatial Ability in the metric of T1, and we are measuring Verbal Ability 
in the metric of T9. 
  The Input Model also declares that each of the six measured variables is measured without perfect 
reliability, because scores on each measured variable in addition to being caused by a latent variable 
(either Spatial Ability or Verbal Ability), are also caused by an error variance (i.e., the Figure 1 circles 
whose names all begin with "e", such as "e1"). Six error variances (i.e., one for each of the six measured 
variables) are estimated in the Figure 1 Input Model. 
   If (i.e., if and only if) a model is correctly specified (i.e., there is no model specification error), the 
error variances are measurement error variances (i.e., VERROR). So, if the model is correctly specified, the 
reliability coefficient (rXX) of the measured variable would be: 

rXX = VRELIABLE / VOBSERVED = [VOBSERVED - VERROR] / VOBSERVED, 

where VRELIABLE is the variance of the reliable or true score component of the observed scores, and 
VOBSERVED is the variance of the observed scores on a given variable. 

 
Figure 1. AMOS Input Model with Error 
Variances Estimated from the Data 
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 For example, as reported in Appendix A, the standard deviation (SD) of the 301 scores on the measured 
variable T1 was 7.00. Thus, the observed variance of T1 was VOBSERVED = 7.00

2
 = 49.00. If the VERROR of 

T1 was 0.0. the estimated reliability of the 301 T1 scores would be: 

[49.00 - 0.0] / 49.00 = 1.00 or 100%. 

Because (a) we can compute and thus know the VOBSERVED for each measured variable, and (b) the SEM 
program will output the error variances for models having error terms (as do all six of the measured 
variables in Figure 1), in effect we are estimating the 
score reliabilities of our measured variables when we are 
estimating the error variances of our measured variables, 
even when the reliability calculations are not routinely 
provided in our outputs! 
  In AMOS we can also fix the error variances of 
measured variables to be particular numbers. Of course, 
logically we cannot fix any error variances to be negative, 
because variances are always squared values, and thus 
mathematically cannot be negative. We also cannot 
logically set the error variance of a measured variable to 
be larger than VOBSERVED, because doing so would assert 
the impossibility that more than the total observed 
variance in the scores of a measured variable was due to 
measurement error. 
  Figure 2 presents an Input Model in which all six error 
variances were set (and thus not estimated in the Output 
Model) equal to 0.01. Thus, in this model, the measured 
variables were 
asserted as having been measured with almost perfect 
reliability. Of course, the reliability coefficients for the 
six measured variables were not set to be equal, because 
even though VERROR's were all set to equal 0.01, the 
VOBSERVED's for the six measured variables were all different. For example, the reliability of T1 was set 
equal to: 

[49.00 - 0.01] / 49.00 = 48.99 / 49.00 = 0.999796, 

while the reliability of T3 was set equal to: 

[2.83
2
 - 0.01] / 2.83

2
 = [8.01 - 0.01] / 8.01 = 8.00 / 8.01 = 0.998752 

 
Figure 2. AMOS Input Model with 
Assumed Near Perfect Score Reliabilities 
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Model #1 of 4: Near Perfect Score Reliability 

  To illustrate for these data the results when score 

reliabilities were nearly perfect, the six error 

variances (i.e., the measurement error variances iff 

the model is presumed to be correctly specified) 

were all set in the Input Model to be near zero. 

Specifically, the six error variances for T1, T2, T3, 

T6, T7 and T9 were all constrained to equal 0.01. 

Figure 2 is the Input Model for this analysis. 

  Figure 3 presents the Output Model parameter 

estimates for the standardized model. The interested 

reader can reproduce these results by applying the 

Appendix B AMOS syntax commands to the 

Appendix A data file.  For this analysis, the Output 

Model estimated correlation between Spatial Ability and 
Verbal Ability was 0.38. The four unconstrained factor 
pattern coefficients were 1.00 and 1.00 for T2 and T3 on 
Spatial Ability, respectively, and 1.00 and 1.00 for T6 
and T7 on Verbal Ability, respectively. In this model, 
declaring the measured variables to have perfect or near 
perfect score reliability inescapably means that therefore 
the observed scores on the measured variables can only 
be due to the underlying Spatial Ability and Verbal 
Ability constructs, and thus these factor pattern 
coefficients are all unavoidably estimated to be 1.00's.  

 

Model #2 of 4: Zero or Near Zero Score Reliability 
  To illustrate for these data the results when score 
reliabilities were perfectly unreliable, the six error 
variances (i.e., the measurement error variances iff the 
model is presumed to be correctly specified) were all set 
in the Input Model to equal the observed variances of 
each measured variable. For example, as reported in 
Appendix A, the standard deviation (SD) of the 301 
scores on the measured variable T1 was 7.004593, and in 
this analysis the Input Model error variance for T1 was 
set equal to 7.004593

2
, or 49.064319. Similarly, the 

standard deviation (SD) of the 301 scores on the 
measured variable T2 was 4.709802, and in this analysis 
the Input Model error variance of T2 was set equal to 
4.709802

2
, or 22.182237. 

  Figure 4 presents the Output Model parameter 
estimates for the standardized model. The interested 
reader can reproduce these results by applying the 
Appendix C AMOS syntax commands to the Appendix A data file. For this analysis, the Output Model 
estimated correlation between Spatial Ability and Verbal Ability was 0.80. The four unconstrained factor 
pattern coefficients were 0.34 and 0.39 for T2 and T3 on Spatial Ability, respectively, and 0.57 and 0.56 
for T6 and T7 on Verbal Ability, respectively. 

 

Model #3 of 4: Score Reliability Estimated Within the Analysis 
  To illustrate for these data the results when score reliabilities were estimated within the analysis, the 
six error variances (i.e., the measurement error variances if the model is presumed to be correctly 
specified) in the Input Model were all freed to be estimated. Figure 1 is the Input Model for this analysis.  

 
Figure 3. AMOS Output Model with 
Assumed Near Perfect Score Reliabilities 

 
Figure 4. AMOS Output Model with 

Assumed Near Zero Score Reliabilities. 
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Figure 5 presents the Output Model parameter estimates 
for the standardized model. The interested reader can 
reproduce these results by applying the Appendix D 
AMOS syntax commands to the Appendix A data file. For 
this analysis, the Output Model estimated correlation 
between Spatial Ability and Verbal Ability was 0.52. The 
four unconstrained factor pattern coefficients were 0.41 
and 0.50 for T2 and T3 on Spatial Ability, respectively, 
and 0.85 and 0.85 for T6 and T7 on Verbal Ability, 
respectively. 
 

Model #4 of 4: Using Previously Reported Reliabilities 
  To illustrate for these data the results when score 
reliabilities from prior research reports are used in the 
analysis, the six error variances (i.e., the measurement 
error variances iff the model is presumed to be correctly 
specified) in the Input Model were all constrained to 
reflect previously reported (Harman, 1976) Cronbach's 
alpha coefficients for the six variables: 0.756, 0.568, 
0.544, 0.651, 0.754, and 0.870, respectively. Specifically, 
input error variances were constrained to equal the 
observed variance for a given variable times (1 - the 
previously reported Cronbach's alpha) for that variable. 
Thus, for example, the error variance for T1 in this 
analysis was set equal to (1 - 0.756) times 49.064, or 
11.972. Our use of Cronbach's alpha in this illustration 
should not be taken to mean that the type of reliability 
estimated within SEM is necessarily alpha, or that SEM is 
limited to estimating only reliabilities that assume (a) 
measures are "tau-equivalent" and (b) errors are 
uncorrelated. 
 Figure 6 presents the Output Model parameter estimates 
for the standardized model. The interested reader can 
reproduce these results by applying the Appendix E 
AMOS syntax commands to the Appendix A data file. For 
this analysis, the Output Model estimated correlation 
between Spatial Ability and Verbal Ability was 0.46. The 
four unconstrained factor pattern coefficients were 0.59 
and 0.62 for T2 and T3 on Spatial Ability, respectively, 
and 0.81 and 0.86 for T6 and T7 on Verbal Ability, 
respectively. 
 
 
 

Discussion 
  The purposes of the present paper were to (a) explicate exactly where and how score reliability is 
estimated within structural equation modeling (SEM), and (b) illustrate exactly how changes in score 
reliability estimates can impact all the estimates in a given analysis. First, with respect to our first 
objective, we have noted that we are estimating the score reliabilities of our measured variables when we 
are estimating the error variances of our measured variables, even when the reliability calculations are 
not routinely provided in our outputs! Within the GLM, these estimates of error variances are only made 
within SEM. 
  Second, with respect to demonstrating the impacts of score reliabilities on all the parameters within 
our statistical analyses, whatever these analyses may be, clearly the estimated correlation coefficients 

 
Figure 5. AMOS Output Model with Error 
Variances Estimated from the Data 

 
Figure 6. AMOS Output Model Using 
Previously Published Error Variances. 
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between Spatial Ability and Verbal Ability as well as the four estimated factor pattern coefficients (i.e., 
T2 and T3 on Spatial Ability, and T6 and T7 on Verbal Ability) all differed across the four sets of 
reliability estimates. For example, across the four analyses the interfactor correlation coefficients were 
estimated as 0.38, 0.80, 0.52, and 0.46, respectively. 
  The largest estimate of the correlation between the Spatial Ability and Verbal Ability factors (i.e., r = 
0.80) occurred for the model in which the analysis (i.e., #2) assumed that all six score reliabilities were 
near zero. In effect, the analysis therefore inflated the estimated factor correlation from the estimate that 
would have occurred had better score reliability been presumed. 
  This correction is analogous to the classical correction of a correlation coefficient for imperfect score 
reliability (Spearman, 1910): 

rX'Y' = rXY / [rXX (rYY)]
.5
 

where rXY is the uncorrected correlation coefficient between X and Y, rXX is the reliability coefficient for 
the X scores, rYY is the reliability coefficient for the Y scores, and rX'Y' is the correlation coefficient 
corrected for imperfect score reliability. For example, for rT1xT2 = 0.297, rT1xT1 = 0.756, and rT2xT2 = 0.568, 
we obtain rX'Y': 
                          0.297 / [0.756 (0.568)]

.5 

                          0.297 / [0.429]
.5
 

                          0.297 / 0.655 = 0.454. 

  In closing, we summarize our arguments by stating the following precepts: 
   1. Score reliability affects our estimates in all statistical analyses within the GLM (i.e., SEM and 

the analyses subsumed by SEM), whether these reliabilities are estimated within statistical analyses, 
which they are not in t tests, ANOVA, ANCOVA, Pearson r, Hotelling's T

2
, MANOVA, 

MANCOVA, descriptive discriminant analysis, or CCA, or are estimated with SEM analyses. Even 
in SEM, score reliability estimates do affect our overall fit statistics, and so the quality of our 
measurement error estimates is important even in SEM. 

   2. Score reliabilities should be computed for the data in hand whenever GLM methods other than 
SEM are being used, so that measured variables with poor reliabilities can be excluded from 
analyses, even though roughly only one-third of published articles report reliabilities for the scores 
being analyzed (Vacha-Haase, Henson & Caruso, 2002; Willson, 1980), and more than half the 
published articles never even mention score reliability! 
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APPENDIX A 
 
 ASCII Text Data File ("H_S.TXT") for the Models Tested 
 
rowtype_,varname_,T1,T2,T3,T6,T7,T9 
n, 301, 301, 301, 301, 301, 301 
corr,T1,1.000 
corr,T2, 0.297346,  1.000 
corr,T3, 0.365293,  0.237982,  1.000 
corr,T6, 0.372706,  0.152930,  0.211914,  1.000 
corr,T7, 0.293444, 0.139387, 0.173404, 0.733170,  1.000 
corr,T9, 0.356770, 0.192532, 0.238544, 0.704480,  0.719956,  1.000 
stddev,, 7.004593, 4.709802, 2.830302, 3.492349, 5.161889, 7.669222 
mean,, 29.614618, 24.352159, 14.229236, 9.182724, 17.362126, 15.299003 

 

                        APPENDIX B 
 
Syntax for the Model Where Error Variances = 0.01 
 
Sub Main 
Dim sem As New AmosEngine 
 
sem.TextOutput 
sem.Standardized 
sem.Smc 
sem.Mods 
 
sem.BeginGroup "H_S.TXT" 
 
sem.Structure "T1 =   (1) spatial + (1) e1" 
sem.Structure "T2 =       spatial + (1) e2" 
sem.Structure "T3 =       spatial + (1) e3" 
sem.Structure "T6 =       verbal  + (1) e4" 
sem.Structure "T7 =       verbal  + (1) e5" 
sem.Structure "T9 =   (1) verbal  + (1) e6" 
sem.Structure "spatial <--> verbal" 
sem.Structure "e1 (0.01)" 
sem.Structure "e2 (0.01)" 
sem.Structure "e3 (0.01)" 
sem.Structure "e4 (0.01)" 
sem.Structure "e5 (0.01)" 
sem.Structure "e6 (0.01)" 
 
End Sub 
 
 
 
 

                      APPENDIX C 
 
Syntax for the Model Where Error Variances are 
Set Equal 
to the Total Variances of Observed Variables 
 
Sub Main 
Dim sem As New AmosEngine 
 
sem.TextOutput 
sem.Standardized 
sem.Smc 
sem.Mods 
 
sem.BeginGroup "H_S.TXT" 
 
sem.Structure "T1 =   (1) spatial + (1) e1" 
sem.Structure "T2 =       spatial + (1) e2" 
sem.Structure "T3 =       spatial + (1) e3" 
sem.Structure "T6 =       verbal  + (1) e4" 
sem.Structure "T7 =       verbal  + (1) e5" 
sem.Structure "T9 =   (1) verbal  + (1) e6" 
sem.Structure "spatial <--> verbal" 
sem.Structure "e1 (49.06431894)" 
sem.Structure "e2 (22.18223699)" 
sem.Structure "e3 (8.010609081)" 
sem.Structure "e4 (12.19650055)" 
sem.Structure "e5 (26.64509413)" 
sem.Structure "e6 (58.81696567)" 
 
End Sub 
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                 APPENDIX D 
 
Syntax for the Model Where Error Variances  
are Set Free to be Estimated in the Analysis 
 
Sub Main 
Dim sem As New AmosEngine 
 
sem.TextOutput 
sem.Standardized 
sem.Smc 
sem.Mods 
 
sem.BeginGroup "H_S.TXT" 
 
sem.Structure "T1 =   (1) spatial + (1) e1" 
sem.Structure "T2 =       spatial + (1) e2" 
sem.Structure "T3 =       spatial + (1) e3" 
sem.Structure "T6 =       verbal  + (1) e4" 
sem.Structure "T7 =       verbal  + (1) e5" 
sem.Structure "T9 =   (1) verbal  + (1) e6" 
sem.Structure "spatial <--> verbal" 
 
End Sub 
 
sem.Structure "e6 (7.646205537)" 
 
End Sub 
 

 

                            APPENDIX E 
 
Syntax for the Model Where Error Variances are Set Equal to 
(1 - Cronbach's Alpha) * Total Variances of Observed Variables 
 
 
Sub Main 
Dim sem As New AmosEngine 
 
sem.TextOutput 
sem.Standardized 
sem.Smc 
sem.Mods 
 
sem.BeginGroup "H_S.TXT" 
 
sem.Structure "T1 =   (1) spatial + (1) e1" 
sem.Structure "T2 =       spatial + (1) e2" 
sem.Structure "T3 =       spatial + (1) e3" 
sem.Structure "T6 =       verbal  + (1) e4" 
sem.Structure "T7 =       verbal  + (1) e5" 
sem.Structure "T9 =   (1) verbal  + (1) e6" 
sem.Structure "spatial <--> verbal" 
sem.Structure "e1 (11.97169382)" 
sem.Structure "e2 (9.582726379)" 
sem.Structure "e3 (3.652837741)" 
sem.Structure "e4 (4.256578693)" 
sem.Structure "e5 (6.554693156)" 
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Prediction Accuracy: A Monte Carlo Comparison  
of Several Methods in the Continuous Variable Case 

Holmes Finch                 Jocelyn Holden 
Ball State University 

Ordinary least squares (OLS) regression is by far the most popular method for prediction that is used in 
the social sciences.  While this approach can provide accurate prediction in many contexts, it may not be 
optimal in every case, particularly for modeling non-linear relationships, unless the user already has a 
sense for what these are likely to be and includes them in the analysis.  On the other hand, a number of 
alternative methods have emerged in the last 20 years that may prove to be more useful in certain 
circumstances.  The current simulation study sought to investigate the relative performance of OLS with 
several of these alternatives for predicting a continuous outcome variable for linear and non-linear 
relationships.  The results demonstrated that for standard linear relationships, and those with a single 
interaction, OLS provides relatively accurate predictions, although it is rarely the optimal method.  On 
the other hand, for more complex relationships, OLS does not perform as well as several modeling 
alternatives.  The discussion provides researchers with some guidance regarding which methods might be 
optimal to use under varying conditions. 

rdinary least squares regression (OLS) has historically been the method employed when 
prediction is the goal of a study. In 1977, Hill and Holland stated “With the advent of modern 
computers, not only are complex regression analyses common, they are routinely done in many 

fields, and this increase in the use of regression has produced a need for refinements in this technology 
which will alert users to possible problems,” (Hill & Holland, 1977, p. 828). 
This statement remains accurate some 30 years later.  A review of the PsycInfo database for articles 
published in the last 10 years shows that when prediction is the goal of a social science study, OLS is by 
far the most popular method of choice.  The OLS model takes the form: 

                         



Yi  0   j x j

j1

J

                              (1) 

where β0 = the model intercept and βj = slope relating variable xj to Yi. The model coefficients are 
determined using the least squares criteria, which seeks to minimize the sum of the squared residuals.  
While OLS has a linear form by default, if the researcher believes that there exist interactions among the 
independent variables, and/or non-linear relationships between individual x’s and the response, these can 
be built into the model explicitly.  This does require, however, that the user have some predetermined 
notion as to the nature of these non-linear terms. 
   Although OLS continues to be the most common method of prediction, investigation of alternative 
prediction tools is not new. Over the last 30 years, many different techniques have been proposed and 
compared with OLS in search of a more powerful, more accurate (Dempster, Schatzoff, & Wermuth, 
1977; Park & Kim, 1997) or more robust (Hill & Holland, 1977; Hussain & Sprent, 1983) model.  Early 
conceptualizations of the problem lead to developments in estimation and modeling of nonparametric 
regression techniques (Hussain & Sprent, 1977; Park & Kim, 1997).  Others have argued that use of 
simpler models incorporating clinical judgment, correlation coefficients, or unit weights rather than OLS 
regression weights can improve the accuracy and generalizability of prediction models (Dana & Dawes, 
2004; Dawes, 1979; Dawes & Corrigan, 1977; Waller & Jones, 2009).   
  More recent advances in prediction modeling have introduced new methods not based on linear 
models at all, but rather incorporating (automatically in some cases) more complex non-linear 
relationships between dependent and independent variables.  In particular, models such as neural 
networks (NNET), Classification and Regression Trees (CART), Generalized Additive Models (GAMs), 
Multivariate Adaptive Regression Splines (MARS), and boosting (Kuhnert, Mengersen, & Tesar, 2003) 
are increasing in popularity, especially in the fields of Ecology, Business, and Medicine.  These newer 
methods provide more flexible alternatives to OLS by automatically identifying more complex model 
forms to fit the response variable, which are not easily incorporated into standard linear regression 
methodologies.  Despite their use in a variety of disciplines, however, they are seldom seen in social 
science research.  The goal of the current Monte Carlo study was to compare the relative ability of 
several of these alternatives for model prediction with the standard OLS methodology under a variety of 

O 
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data conditions.  The manuscript begins with a description of the prediction methods to be studied here, 
which were selected because of their successful use in other areas.  Next, the methodology of this study 
is described, followed by the Monte Carlo results.  Finally, we discuss the results of this study and 
provide recommendations for practice. 
 

Model Descriptions 

Classification and Regression Trees (CART) 
   CART (Breiman, Friedman, Olshen, & Stone, 1984; Williams, Lee, Fisher, & Dickerman, 1999) 
arrives at predicted values for Y given a set of predictors by iteratively dividing individual members of 
the sample into ever more homogeneous groups, or nodes, based on values of the predictor variables.  It 
can be thought of as a nonparametric approach in that there are no assumptions regarding the underlying 
population from which the sample is drawn nor the form of the model linking the dependent and 
independent variables.  CART begins by placing all subjects into one node, and then searches the set of 
predictors to find the value of one of those by which it can divide the observations into two new nodes, 
whose values on Y are as homogeneous as possible.  For each of these new nodes, the predictors are once 
again searched for the optimal split by which the subjects can be further divided into ever more 
homogeneous nodes, where homogeneity is always based on similarity of values on Y.  This division of 
the data continues until a predetermined stopping point is reached, when further splits do not appreciably 
reduce the heterogeneity of the resulting nodes.  At this point, the tree is complete and values of Y for 
new observations can be obtained using the splits developed with this training sample. 
 

Neural Networks (NNET) 
   Another prediction method included in this study is Neural Networks (NNET) (e.g., Marshall & 
English, 2000).  See Garson (1998) for a more thorough description of the method designed especially 
for social scientists.  As with CART, NNETs have not been used extensively in the social sciences, and 
yet would seem to offer some potential advantages over OLS in certain circumstances. NNETs find 
relationships between Y and a set of predictor variables by using a search algorithm that examines a large 
number of subsets of the predictors, and interactions among them, in conjunction with various weights.  
These interactions and higher order versions of the predictor variables are selected so as to minimize the 
common least squares criterion briefly described above in the context of OLS, and may involve multiple 
weights applied to virtually any combination of the predictors.  In order to reduce the likelihood of 
finding locally optimal results that will not generalize beyond the original (training) sample, random 
changes to the subsets not based on model fit are also made.  This method of ascertaining fit is known as 
back-propagation, where the difference between actual and predicted outputs is used to find optimal 
weight values.  This is one of the most commonly used approaches in NNET applications (Garson, 1998). 
There are a number of NNET models available for use.  Perhaps the most common of these (and the one 
utilized in this study) is the feed-forward back propagation network with one hidden layer. This 
particular NNET architecture uses the least squares minimization method e in order to obtain weights for 
the inputs, or predictor variables, and includes what is known as a hidden layer, which is analogous to 
one or more interactions in the more familiar regression context (Garson, 1998). It should be noted, 
however, that nodes in this hidden layer can be much more complicated than the interactions one might 
see in a standard linear model, involving complex combinations of the weighted predictor variables 
(Schumacher, Robner & Vach, 1996).  Finally, the inputs and hidden nodes are used in conjunction with 
the weights in order to obtain the predicted value of Y. 
   One of the purported strengths of the NNET approach is that it can identify complex interactions 
among the predictor variables in the hidden layer that other approaches may ignore (Marshall & English, 
2000).  For example, whereas in regression it is common to express the interaction of two predictors as 
their product, or to square or cube a single variable if the relationship with the response is believed not to 
be linear, a NNET will create hidden nodes as weighted products of perhaps several variables, thus 
allowing the hidden nodes to be influenced by the predictors in varying degrees.   
A potential problem with using NNET’s is the possibility of substantial overfitting of the data 
(Schumacher, Robner, & Vach, 1996).  In other words, the weights selected for each variable and each 
hidden layer may be so closely linked to the original, or training sample that the results are non-
generalizable to a wider population.  Overfitting is typically identified through the use of cross-validation 
of results obtained with the training sample (i.e., applying the weights as identified by the training sample 
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to a second sample ostensibly drawn from the same population). In order to combat this problem, most 
NNET models apply what is called decay, or weight decay, which penalizes (i.e., reduces) the largest 
weights found in the original NNET analysis, in effect assuming that very large weights are at least 
partially driven by random variation unique to the observed data.  
 

Multivariate Adaptive Regression Splines (MARS) 
  The MARS model is an extension of the linear regression model in which non-linear relationships and 
interactions are modeled automatically. It takes the form: 

                         f(x) = β0 + βm hm(x)                             (2) 

where β0 = the model intercept and βm = coefficient and hm(x) = function of the independent variable x 
from a set of basis functions. These basis functions (sometimes known as hinge functions) are piecewise 
linear and expressed as max(0, x-t) and max (t-x,0), where t is the knot, or the location where the 
relationship between a predictor and Y changes direction (Hastie, Tibshirani, & Friedman, 2001). For a 
given hm(x), the model coefficients are estimated through ordinary least squares, minimizing the residual 
sum of squares. 
  MARS begins building a predictive model using a forward stepwise methodology, in which the first 
step involves the inclusion only of β0. The algorithm then proceeds to add a basis function to the model in 
each step, selecting the hm(x) that provides the greatest reduction in the sum of squared residuals.  At 
each step, the newly added basis function will include a term already in the model multiplied by a new 
hinge function.  When deciding which new basis function to add to the existing model, MARS searches 
across all terms currently in the model, all of the independent variables included in the analysis and each 
possible value for the independent variables, in order to select the knot for the new basis function.  The 
model building continues until the change in sum of squared residuals becomes very small when a new 
term is entered, or until a maximum model size (set by the user) is reached. 
  As with NNET, the MARS model will likely be overfit to the data.  Therefore, a stepwise backward 
deletion procedure is included, in which the least important (from a statistical sense) term is removed at 
each step.  In order to identify the optimal subset of model terms, the Generalized Cross-Validation 
(GCV) criterion is minimized.  The GCV is a function of the sum of squared residuals, adjusted by the 
number of parameters in the model and the sample size. 
  The primary advantage of the MARS model building strategy is its ability to work well locally in the 
function space (Hastie, Tibshirani, & Friedman, 2001).  Specifically, the use of the basis functions 
described above allows for the modeling of interactions only in the range of data for which two such 
functions have a non-zero value.  Thus, unlike the more general polynomial terms in regression, the 
entire data space is not required to take a common non-linear functional form.   
 

Generalized Additive Models (GAM) 

  GAM’s are a class of very flexible models that allow for the linking of Y with one or more 
independent variables, using a wide variety of smoothing functions.  The GAM itself takes the form: 

                            

 

Y  0  f j x j 
j1

p



w h e r e

0  M o d e l  i n t e r c e p t

f j x j S m o o t h i n g  f u n c t i o n  f o r  i n d e p e n d e n t  v a r i a b l e  x j

                           (3) 

where β0 = the model intercept and fj(xj) = a smoothing function for independent variable xj. Each of the 
functions is fit using a scatterplot smoothing technique such as cubic splines or a Kernel smoother, with 
the goal of minimizing the penalized sum of squares criterion to identify the optimal GAM for a given 
problem.  The penalized sum of squares (PSS) is based on the standard sum of squares (i.e. the difference 
between the actual and predicted values of the response variable), with a penalty for model complexity 
applied. 
  The GAM algorithm works in an iterative fashion, beginning with the setting of β0 to the mean of Y.  
Subsequently, a smoothing function is applied to each of the independent variables in turn, minimizing 
the PSS.  The iterative process continues until the smoothing functions stabilize, at which point final 
model parameter estimates are obtained.  The most common smoothing function used with GAM’s (and 
the one used in this study) is the cubic spline (Simonoff, 1996). As is the case for several of the methods 
described in this paper, overfitting of the data can be a problem with GAMs.  Therefore, it is 
recommended that the number of smoothing parameters be kept relatively small, and that cross-validation 
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be used to ensure that the resulting model is generalizable to other samples from the target population 
(Wood, 2006). 

 

Boosting (BOOST) 
  Boosting refers to a collection of machine learning algorithms that attempt to improve prediction of Y 
by combining the predictions from a set of weak predictor variables in order to obtain a single strong 
prediction (Freund & Schapire, 1997). These ideas were first introduced by Tukey (1977) in a method he 
referred to as “twicing,” and subsequently other researchers have expanded on this idea. Boosting was 
originally developed for use in predicting a dichotomous outcome variable, but has since been 
generalized to the regression context with continuous responses (see Buhlmann & Hothorn, 2007 for a 
discussion of this history). Of these extensions, one of the more popular for use in the regression context 
with a continuous outcome is L2 boosting, which consists of 5 steps: 

1) Initialize the function linking the response with the predictors using (typically) OLS. 

2) Compute residuals from step 1, 



Ui Yi 
ˆ F m xi  where 



ˆ F m xi  is the regression function 

obtained in 1) applied to the predictor variables xi at iteration m.   
3) Fit the residuals Ui using the independent variables xi with OLS. 

4) Use the fitted values obtained in 3), denoted 



ˆ f m1 , to update the original fit 



ˆ F m xi  to 

obtain 



 ̂F m1
 ̂F m

 ̂f m1. 

5) Repeat steps 1 through 4 until the final iteration is reached.  
 

The number of iterations to be used with the boosting algorithm is essentially a tuning parameter.  A 
variety of approaches for determining when to stop the boosting algorithm have been recommended, with 
perhaps the most recent (Buhlmann & Hothorn, 2007) being the use of the minimum value for Akaike’s 
Information Criterion (AIC).  Therefore, a researcher may elect to use a large number of m iterations, and 
then review the resultant AIC values, selecting the model that corresponds with the smallest of these, 
which was the approach used in the current study. 
   L2 boosting will typically lead to complex model forms as the number of iterations (and thus residual 
functions) increases.  For this reason, it is generally recommended that the original regression model used 
to predict Y be fairly simple, consisting of a relatively small number of predictor terms (Buhlmann & Yu, 
2003).  Finally, it should be noted that while linear regression is quite often the model to which the 
boosting algorithm is applied, it is entirely possible to use smoothing splines or other functions to relate 
the response variable to the predictors and then apply the boosting algorithm (Buhlmann & Hothorn, 
2007). 
 

Correlation weights (CORR) 
  An alternative approach to deriving prediction equations that has been suggested is the use of weights 
based on the zero order correlation coefficients between the individual standardized predictors and the 
standardized Y (Dana & Dawes, 2004).  Using this approach, the model for predicting Y with three 
predictors, x1, x2, x3 would be expressed as: 

                            Yi = rx1Y(x1) + rx2Y(x2) + rx3Y(x3)                             (4) 

where rxjY =  Pearson correlation relating xj to Y. Dana and Dawes (2004) note that both Mark (1966) and 
Goldberg (1972) reported positive results when using these correlations as opposed to the standard OLS 
regression weights. 
 

Previous comparisons of prediction methods 
  There has been some work examining the ability of these various methods to accurately predict 
outcome variables, both categorical and continuous, although none of these prior studies have 
simultaneously compared all of these methods with one another.  Much of this work has involved 
comparing two or three of these methods with one another using a single set of real data for which the 
actual population parameter values are not known.  In terms of the prediction of dichotomous outcomes, 
MARS (Munoz & Felicisimo 2004) and neural networks (Finch & Schneider, 2007; Reibnegger, Weiss, 
Werner-Felmayer, Judmaier, & Wachter, 1991) have been found to achieve higher prediction accuracy 
than other more common techniques (logistic regression, discriminant function analysis, principle 
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components regression).  In terms of prediction of continuous outcomes, again, MARS (Moisen & 
Frescino, 2002), and neural networks (Nguyen & Cripps, 2001; Razi & Athappilly, 2005; Smith & 
Mason; 1997) have been found to demonstrate better sensitivity and accuracy than OLS when the 
underlying model was non-linear.  In addition GAM (Moisen & Frescino, 2002) and CART models (Lee 
& Jin, 2006; Razi & Athappily, 2005) have also been shown to provide better estimates than traditional 
regression methods for continuous outcomes. 
  Often the choice of prediction rests on characteristics of the study and data used. Lee & Jin (2006) 
demonstrate that CART models can provide better prediction than Poisson and zip regression in 
circumstances of zero-inflated count data.  GAMs and MARS demonstrate large gains in accuracy and 
sensitivity over OLS regression when data is simulated, however when real data is used the gains are 
much less prominent (Moisen & Frescino, 2002).  MARS is also especially powerful when detecting 
higher order interactions (Munoz & Felicisimo, 2004) and generally produces the fastest solutions of all 
the newer models (Moisen & Frescino, 2002).  When complicated data structures (Reibnegger et al., 
1991; Smith & Mason, 1997) are encountered, especially with large sample sizes, (Nguyen & Cripps, 
2006) neural networks can be particularly powerful.  In addition, neural networks and CART models 
demonstrate better accuracy than traditional regression models when categorical predictor variables are 
incorporated (Razi & Athappily, 2005).  Again, it is important to note that many of these prior studies 
relied only on single real datasets for which the underlying model was not known, and none of these 
simultaneously compared all of the methods examined in the current work.  Thus, the goal of this study is 
to compare the prediction accuracy of OLS with CART, NNET, MARS, GAM, CORR and BOOST for a 
continuous outcome under a variety of simulated model and data conditions.   
 

Methods 

Data Generation   
Generation of simulated data (1000 replications for each condition) based on conditions contained in 
Table 1, and the subsequent prediction analyses were performed using the R statistical software program 
(R Development Core Team, 2007). An example of the R code used to generate the simulated data and 
run the analyses appears in the appendix. Correlations among the predictor variables were drawn from 
those found among WAIS-III subscales, which appeared in Waller and Jones (2009).  These correlations, 
which can be seen in the R code appearing in the appendix of this manuscript, range from 0.36 to 0.76 
and might be thought of as falling in the moderate to large range.  Controlling of inter-predictor 
interactions was accomplished by defining simple-complex functions for the outcome variable (equations 
appear below). Model complexity took three forms, which appear below: (1) Simple additive linear 
model with no interactions, (2) Single interaction condition, where the outcome variable was defined as a 
linear combination of the predictors plus a two-way interaction between x1 and x2, and (3) Complex 
interaction condition for which the outcome 
variable was defined as a linear combination 
of the predictors plus a two-way interaction, 
a squared term and a cubed term.  Once the 
base function was defined, in order to control 
for predictor strength, slopes for each 
variable were defined at one of three 
conditions 0.2, 0.5, or 0.8. For the sake of 
simplicity all predictors had the same 
strength for each replication.  

1. 



y  x
1
 x

2
 x

3
 x

4
 

2. 



y  x
1
 x

2
 x

3
 x

4
 x

1
* x

2                               (5) 

3.  
32

43214321
* xxxxxxxxy   

   The noise condition refers to whether or not there were extraneous variables included in the predictive 
model for the sample that were not included in the simulated population model. This would be akin to a 
researcher including variables in their predictive equation that they believed were related to the outcome, 
but which in actuality were not related in the population. The no noise condition used only the four 
variables associated with the outcome in the population to predict the outcome variable, while the noise 
condition included an additional four extraneous variables to predict the outcome. More specifically, the 

Table 1. Simulation Conditions 

Variable Levels 

Sample Size 50, 100, 500, 1000 
Predictor Strength 0.2, 0.5, 0.8  
Predictor Interactions none, simple, complex 
Noise yes, no 
Prediction Method OLS, CART, GAM, MARS,  

COR, BOOST, NNET 
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noise condition was simulated by including independent variables in the prediction model for each 
replication whose coefficient with the dependent variable was simulated from a population value of 0. As 
an example, the population equation from which the data were generated would take the form:  
y=x1+x2+x3+x4, while the predictive models would take the form y=x1+x2+x3+x4+x5+x6+x7+x8. The 
noise variables in this case are x5-x8. 
It is well known (Berk, 2008) that predictions for the training data will be unrealistically accurate, or 
overfit.  Therefore, in order to appropriately test the accuracy of each method, it is necessary to first 
estimate a prediction model with the training data, and then test the prediction accuracy with a separate 
cross-validation sample.  Thus, for each simulation replication two datasets were generated:  1) training 
data with which the sample model was generated, and 2) cross-validation data for which predictions 
using the model derived from 1) were made. Both samples were simulated from the same population, for 
each replication in this study. 
 

   Analyses. Once data were generated, predictions of the outcome were made using the seven different 
prediction methods previously discussed. For each replication and prediction method, the root mean 
square error (RMSE) for the cross-validation sample and the correlation between the actual values and 
the predicted values from the cross-validation sample were saved. These, or similar outcomes have been 
used in prior work (Moisen & Frescino, 2002; Razi & Athappily, 2005) of which this study is meant to 
be an extension.  Specifically, the RMSE reflects overall prediction accuracy, accounting for both 
estimation bias and variation.  In addition, the correlation between predicted and actual values provides 
information regarding the pattern of prediction accuracy, above and beyond that given by RMSE.  The 
average RMSE and correlations across the thousand iterations are reported in the results.  For each of 
these methods the default settings in the R software package were used, values of which can be found in 
the software documentation. For CART there was no pruning of the trees conducted, an issue that is 
discussed below. With respect to NNET, several different models were run with respect to the number of 
hidden nodes including 1, 2, 3, 4, 5, and 15 such nodes.  For each combination of conditions the model 
with the lowest RMSE value was selected in order to simplify reporting. 
 

Results 

RMSE 
   In order to determine which of the manipulated effects were significantly related to the RMSE for the 
predictions, a full factorial ANOVA model was used, in which the independent variables were method of 
prediction, model complexity, sample size, strength of the relationship between the independent variables 
and the response, and whether noise was included in the model.  Two 4-way interactions among these 
manipulated factors were found to be significant:  method by sample size by model complexity by 
strength (p=0.018, η

2
=0.738) and method by noise by strength by model complexity (p=0.002, η

2
=0.819). 

All other significant interactions and main effects were subsumed under these two interactions and thus 
will not be discussed further.   Table 2 includes the RMSE values for each method by model 
complexity, sample size and strength of the predictors.  It is important to note that for each replication, 
the predictions discussed here were made on the cross-validation sample, while the models used to make 
the predictions were based on the training sample.   
 

No-Interaction Model 
   An examination of these results reveals that for the simplest model (no interactions among 
predictors), CORR and BOOST methods consistently produced the most accurate estimates, reflected in 
the lowest RMSE values, regardless of sample size or strength of relationship.  For this condition, OLS, 
GAM and MARS performed very similarly, and always somewhat less well than CORR and BOOST 
methods.  As with these two top performers, the sample size and strength of relationship appears to have 
had little impact on RMSE for OLS, GAM, and MARS.  The NNET method was somewhat more 
affected by sample size for the least complex model condition, so that for smaller samples it had a higher 
RMSE than OLS, GAM, or MARS, but for a sample of 1000 it produced very comparable results to these 
other approaches.  Finally, in this simplest model case, CART uniformly had the highest RMSE values, 
indicating that it produced the least accurate predictions for the cross-validation sample regardless of 
sample size or strength of the predictors.  Unlike the other methods studied here, the accuracy of CART 
was impacted by the strength of the predictors, such that the RMSE increased concomitantly with the 
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strength of the relationships.  In addition, as the sample size increased, the RMSE for CART decreased, 
indicating that with larger sample sizes CART predictions were somewhat more accurate, although they 
were never as accurate as those of the other methods. 
 

Table 2. RMSE by Prediction Method, Level of Interaction, Sample Size and Predictor Strength 

Interaction N Strength OLS CART GAM MARS CORR BOOST NNET 

Complex 50 .2 0.502 0.772 0.196 0.384 2.410 2.410 0.512 

.5 1.248 1.938 0.367 0.900 6.151 6.151 1.212 

.8 2.002 3.022 0.556 1.432 9.751 9.751 2.075 

100 .2 0.448 0.623 0.152 0.249 2.434 2.434 0.331 

.5 1.116 1.509 0.242 0.555 6.093 6.093 .897 

.8 1.750 2.397 0.348 0.877 9.753 9.753 1.528 

500 .2 0.382 0.434 0.120 0.147 2.442 2.442 0.219 

.5 0.987 1.002 0.137 0.238 6.173 6.173 0.550 

.8 1.510 1.645 0.177 0.382 9.720 9.720 1.001 

1000 .2 0.385 0.398 0.117 0.138 2.435 2.435 0.206 

.5 0.926 0.983 0.134 0.224 6.089 6.089 0.451 

.8 1.452 1.544 0.156 0.305 9.767 9.767 0.673 

Simple 50 .2 0.111 0.321 0.122 0.143 1.054 1.054 0.178 

.5 0.111 0.819 0.174 0.231 2.632 2.632 0.257 

.8 0.111 1.278 0.232 0.322 4.213 4.213 0.381 

100 .2 0.115 0.290 0.124 0.133 1.058 1.058 0.137 

.5 0.116 .654 0.142 0.163 2.638 2.638 0.161 

.8 0.117 1.078 0.172 0.216 4.219 4.219 0.195 

500 .2 0.112 0.249 0.111 0.113 1.052 1.052 0.112 

.5 0.117 0.530 0.116 0.123 2.636 2.636 0.123 

.8 0.128 0.867 0.124 0.139 4.217 4.217 0.146 

1000 .2 0.115 0.241 0.116 0.117 1.054 1.054 0.117 

.5 0.119 0.523 0.116 0.121 2.638 2.638 0.128 

.8 0.132 0.802 0.120 0.131 4.215 4.215 0.148 

None 50 .2 0.112 0.313 0.121 0.126 0.079 0.079 0.151 

  
100 

 

.5 0.110 0.734 0.119 0.118 0.078 0.078 0.152 

.8 0.112 1.145 0.119 0.116 0.080 0.080 0.156 

.2 0.114 0.269 0.116 0.118 0.080 0.080 0.127 

 
500 

.5 0.114 0.619 0.116 0.117 0.080 0.080 0.129 

.8 0.114 0.942 0.117 0.117 0.080 0.078 0.129 

.2 0.116 0.229 0.116 0.117 0.081 0.081 0.117 

 
1000 

.5 0.110 0.503 0.110 0.111 0.079 0.079 0.112 

.8 0.116 0.770 0.116 0.116 0.079 0.079 0.117 

.2 0.112 0.217 0.113 0.112 0.080 0.080 0.113 

 .5 0.112 0.473 0.112 0.112 0.079 0.079 0.113 

.8 0.113 0.738 0.113 0.113 0.080 0.080 0.114 
 

 

Simple Interaction Model 
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   For the simple interaction model (one interaction, between variables x1 and x2), the CORR and 
BOOST methods produced the highest RMSE values, indicating that they had the least accurate predicted 
values for the cross-validation samples. This result held true regardless of the sample size or strength of 
the relationships between the outcome and the predictors.  In addition, while the sample size did not seem 
to have a demonstrable impact on the accuracy of these methods, their RMSE values did increase 
markedly as the strength of the predictors increased in value. In contrast, OLS, GAM, and MARS 
produced the lowest RMSE values in the middle complexity condition. Indeed, when the sample size was 
50 or 100, OLS had the most accurate predictions, and was only slightly less accurate than GAM or 
MARS for N of 500 or 1000.  Furthermore, the RMSE values for OLS increased concomitantly with the 
strength of the predictors for samples of 500 or 1000, while for GAM this impact of relationship strength 
was most noticeable for sample sizes of 50 or 100.  The accuracy of MARS predictions was greater with 
larger samples, in which case the impact of relationship strength was mitigated somewhat. As was the 
case for the no interaction model, NNET had somewhat higher RMSE values than OLS, GAM or MARS, 
though this difference declined with increasing sample sizes.  The pattern in terms of accuracy for CART 
was similar in the simple interaction condition as it was for the no interaction model, namely it had 
relatively high RMSE values across conditions (though not as high as those for the CORR prediction or 
BOOST), and it was somewhat more accurate for larger samples and for weaker correlations. 

 

Table 3. RMSE by Prediction Method, Level of Interaction, Level of Noise and Strength of Relationship 

Interaction Noise strength OLS CART GAM MARS COR BOOST NNET 

Complex no .2 0.429 0.548 0.146 0.231 2.429 2.429 0.251 

.5 1.060 1.322 0.216 0.479 6.109 6.109 0.615 

.8 1.664 2.151 0.305 0.756 9.730 9.730 1.041 

yes .2 0.429 0.565 0.129 0.229 2.431 2.431 0.383 

.5 1.078 1.393 0.176 0.479 6.143 6.143 0.940 

.8 1.693 2.152 0.233 0.742 9.770 9.770 1.597 

Simple no .2 0.113 0.278 0.118 0.127 1.055 1.055 0.126 

.5 0.116 0.627 0.135 0.157 2.635 2.635 0.138 

.8 0.123 0.999 0.161 0.202 4.215 4.215 0.166 

yes .2 0.114 0.272 0.117 0.126 1.053 1.053 0.146 

.5 0.116 0.636 0.127 0.161 2.636 2.636 0.197 

.8 0.121 1.013 0.140 0.201 4.217 4.217 0.269 

None no .2 0.114 0.254 0.117 0.119 0.080 0.080 0.123 

.5 0.111 0.591 0.113 0.114 0.078 0.078 0.121 

.8 0.113 0.915 0.115 0.115 0.079 0.079 0.123 

yes .2 0.113 0.260 0.114 0.117 0.080 0.080 0.130 

.5 0.112 0.573 0.115 0.115 0.079 0.079 0.132 

.8 0.114 0.882 0.117 0.116 0.079 0.079 0.135 

 

Complex Interaction Model 
   For the most complex underlying model, GAM produced the lowest RMSE values across methods 
examined in this study, followed by MARS. As was true for all methods in the complex interaction 
model case, except for CORR and BOOST, the RMSE values for GAM increased concomitantly with the 
strength of the predictors, and declined as the sample size increased.  OLS and NNET performed 
similarly when the sample size was 50, but NNET had lower RMSE values than OLS for larger sample 
sizes, and the difference in performance between the two was magnified as N increased in size.  In 
addition, both methods were less accurate when the strength of the predictors was greater.  The worst 
performers by far in the complex interaction case were CORR and BOOST.  As was true with some of 
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the other prediction methods, their RMSE values increased with the strength of the relationships, though 
their accuracy was not influenced by sample size.  For this most complex model, CART had relatively 
high RMSE values, which increased with a greater strength of relationship between predictors and 
outcome, and which was lower for larger samples.    
   The second statistically significant interaction of the manipulated factors that was identified by the 
ANOVA involved the method of prediction by noise, by the strength of the predictors by model 
complexity. Table 3 contains the RMSE values for this interaction.  Given the prior discussion of results 
relative to the model complexity and strength of relationships, the focus in this section is on the 
interaction of noise with these factors. A perusal of Table 3 shows that for the OLS, CART, MARS, 
CORR and BOOST approaches, the presence of noise variables in the model had little to no impact on 
the accuracy of predictions.  On the other hand, for GAM the inclusion of noise variables resulted in 
slightly lower RMSE values for the most complex model condition, and for the middle model complexity 
case when the strength of relationship was 0.8. For the simplest model, the inclusion of noise variables 
had no impact on the RMSE for GAM, while it had the greatest effect on the performance of NNET for 
the most complex model, in which case the RMSE values were larger than when the noise variables were 
excluded.  This pattern was present, though less marked, when the interaction was simple and was only 
slightly apparent in the case of no interaction. 

 

Correlation between predicted and actual values for cross-validation sample 
  Table 4 includes the correlation between the actual and predicted values of the outcome variable in 
the cross-validation sample by the method of prediction, level of model complexity, sample size and the 
strength of the relationship.  Perhaps the most notable pattern here is that the correlations for GAM and 
MARS are uniformly above 0.95, regardless of the simulation condition.  The correlations for NNET, 
while not as high as those for GAM and MARS, were generally above 0.90 across conditions, and above 
0.95 in all situations where model complexity was not at its highest level.  On the other hand, the 
correlations between the actual and predicted values for CART and BOOST were never as high as 0.95, 
with those of CART not even attaining 0.91 for any condition simulated here.  In the case of BOOST the 
correlation between the actual and predicted values were lower than for any other method with the 
complex interaction model, were comparable to those of CART in the middle model complexity 
condition, and somewhat higher than CART for the least complex model.  In no situation simulated here 
were the BOOST correlations comparable to those of the other studied methods, however.  For both OLS 
and CORR, the correlations between the predicted and actual values were comparable to one another 
across simulation conditions.  In addition, for the least complex model, the correlation values for OLS 
and CORR were comparable to those from GAM, MARS and NNET, and somewhat lower than these 
three methods in the simple interaction case. 
 

Table 4. Correlation between Actual and Cross-Validation Values 

Interaction N Strength OLS CART GAM MARS COR BOOST NNET 

Complex 50 .2 0.872 0.759 0.986 0.953 0.843 0.615 0.895 

.5 0.874 0.762 0.992 0.959 0.845 0.611 0.901 

.8 0.875 0.761 0.992 0.959 0.846 0.620 0.899 

100 .2 0.878 0.828 0.992 0.978 0.846 0.622 0.944 

.5 0.881 0.828 0.996 0.982 0.848 0.629 0.939 

.8 0.881 0.827 0.996 0.982 0.848 0.623 0.933 

500 .2 0.883 0.893 0.996 0.992 0.845 0.631 0.973 

.5 0.886 0.898 0.998 0.995 0.846 0.634 0.969 

.8 0.886 0.897 0.998 0.995 0.848 0.639 0.964 

1000 .2 0.884 0.905 0.995 0.993 0.846 0.635 0.975 

.5 0.887 0.905 0.998 0.996 0.848 0.635 0.976 

.8 0.888 0.905 0.998 0.996 0.850 0.636 0.978 

Simple 50 .2 0.920 0.832 0.978 0.968 0.927 0.859 0.952 
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.5 0.930 0.840 0.989 0.984 0.935 0.868 0.978 

.8 0.930 0.840 0.990 0.979 0.936 0.868 0.973 

100 .2 0.924 0.868 0.981 0.978 0.927 0.865 0.977 

.5 0.932 0.876 0.992 0.990 0.935 0.874 0.993 

.8 0.934 0.876 0.993 0.991 0.937 0.876 0.995 

500 .2 0.927 0.895 0.985 0.984 0.927 0.871 0.987 

.5 0.937 0.904 0.994 0.993 0.936 0.880 0.997 

.8 0.935 0.904 0.991 0.995 0.935 0.879 0.998 

1000 .2 0.928 0.898 0.985 0.985 0.927 0.870 0.988 

.5 0.936 0.906 0.994 0.993 0.936 0.879 0.997 

.8 0.935 0.908 0.995 0.995 0.937 0.882 0.998 

None 50 .2 0.988 0.840 0.985 0.979 0.988 0.927 0.974 

  
100 
 

.5 0.998 0.849 0.998 0.997 0.997 0.938 0.996 

.8 0.999 0.850 0.999 0.999 0.999 0.939 0.999 

.2 0.988 0.867 0.987 0.986 0.988 0.928 0.983 

 
500 

.5 0.998 0.878 0.998 0.998 0.997 0.938 0.997 

.8 0.999 0.879 0.999 0.999 0.998 0.940 0.999 

.2 0.988 0.888 0.988 0.988 0.988 0.929 0.988 

 
1000 

.5 0.998 0.897 0.998 0.998 0.997 0.939 0.998 

.8 0.999 0.897 0.999 0.999 0.998 0.940 0.999 

.2 0.988 0.891 0.988 0.988 0.988 0.929 0.988 

 .5 0.998 0.900 0.998 0.998 0.997 0.939 0.998 

.8 0.999 0.902 0.999 0.999 0.999 0.940 0.999 

 
  The results in Table 5 show the correlations between the actual and predicted values of the response 
variable by model complexity, level of noise and strength of the relationship between the predictors and 
the outcome.  Correlations obtained from most of the methods studied here, including OLS, CART, 
GAM, MARS and CORR were not influenced by the presence of noise variables in the model.  On the 
other hand, the correlations between observed and predicted values from the BOOST method were lower 
in the presence of noise than in its absence. This pattern was particularly notable for the most complex 
model. The predicted with actual correlations produced by NNET were negatively influenced by the 
presence of noise in the model for the most complex model but not under for the other model conditions.  
 

Table 5. Correlation between Actual and Predicted Values by Prediction Method, Level of Interaction, 
Level of Noise in the Model and Strength of Relationship 

Interaction Noise strength OLS CART GAM MARS COR BOOST NNET 

Complex no .2 0.881 0.847 0.992 0.978 0.845 0.818 0.968 

.5 0.884 0.851 0.996 0.983 0.847 0.820 0.967 

.8 0.884 0.849 0.996 0.983 0.847 0.823 0.964 

yes .2 0.877 0.845 0.994 0.980 0.845 0.433 0.925 

.5 0.879 0.845 0.997 0.983 0.847 0.434 0.926 

.8 0.881 0.846 0.997 0.983 0.848 0.436 0.923 

Simple no .2 0.926 0.874 0.983 0.978 0.927 0.903 0.983 

.5 0.935 0.882 0.992 0.990 0.936 0.912 0.996 

.8 0.935 0.883 0.993 0.993 0.936 0.913 0.997 
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yes .2 0.924 0.872 0.983 0.979 0.927 0.830 0.968 

.5 0.932 0.881 0.992 0.990 0.935 0.838 0.987 

.8 0.932 0.881 0.993 0.987 0.936 0.839 0.985 

None no .2 0.988 0.873 0.987 0.985 0.988 0.966 0.985 

.5 0.998 0.882 0.998 0.998 0.997 0.976 0.997 

.8 0.999 0.882 0.999 0.999 0.998 0.977 0.999 

yes .2 0.988 0.870 0.987 0.985 0.988 0.891 0.981 

.5 0.998 0.880 0.998 0.998 0.997 0.901 0.997 

.8 0.999 0.881 0.999 0.999 0.998 0.902 0.999 

 

Discussion 
  The current study is among the first to systematically compare the performance of such a 
comprehensive set of the relatively new prediction models using Monte Carlo simulated conditions.  In 
prior research, single datasets were commonly used, and only a small number of these alternative 
prediction methods were examined simultaneously.  In the current study, we have attempted to include a 
much larger set of these methods and have compared them all under a common set of known conditions 
using the Monte Carlo approach.  The goal of this work is to help inform researchers about optimal 
methods for obtaining predicted values in a variety of conditions.  The results presented here have several 
implications for researchers interested in obtaining predicted values for continuous response variables.  
First, it is clear that the level of model complexity has an impact on the performance of several of the 
methods studied here.  For example, when the population model for the response consists only of a linear 
combination of the independent variables with no interactions, CORR and BOOST produced the lowest 
RMSE values for the cross-validated data, followed closely by OLS, GAM, and MARS.  In addition, in 
this least complex case predictions obtained from CORR and OLS had slightly higher correlations with 
the actual cross-validation data than did the other methods, although correlations for both GAM and 
MARS were only marginally lower.  It would appear, therefore, that if the researcher knows with some 
certainty that no interactions are present in the population, then using CORR for prediction in concert 
with standardized values of the independent and dependent variables might be a successful strategy for 
developing a prediction model.  This positive result for the CORR method is in keeping with results 
reported in Dana and Dawes (2004).  It should be emphasized that while when taken together these 
results for the simplest case do support CORR as producing optimal prediction results, several other 
methods, including BOOST, OLS, GAM and MARS provided predicted values that were almost as 
accurate as CORR.  Nonetheless, none of these other approaches are as simple as using the correlation 
coefficients, so that parsimony of the model may support this technique as compared to the others. 
  When the population model contained an interaction of two independent variables and/or a squared or 
cubed term, the performance of both CORR and BOOST was degraded substantially.  In the simple 
interaction condition, OLS continued to perform very well when compared with the other methods 
studied here, despite the fact that the model used did not actually contain the interaction.  In this case, the 
OLS predictions produced the lowest RMSE for the cross-validated data values consistently except for 
the largest sample size, in which case GAM had a comparable RMSE.  The correlations between the 
predicted and actual values were higher than OLS for some of the more complex prediction algorithms, 
such as GAM, MARS and NNET, however.  In contrast to the simple interaction model, when a more 
complex relationship existed between the independent and dependent variables, GAM, and to a lesser 
extent MARS, displayed a clear advantage in terms of their ability to accurately predict the response for 
the cross-validated data.  Indeed, in this most complex case, GAM consistently produced the lowest 
RMSE and highest correlation values regardless of sample size, strength of relationship between 
predictors and response and the presence or absence of noise variables.  These results support earlier 
findings in the physical sciences for GAM (Moisen & Frescino, 2002) and MARS (Munoz & Felicisimo, 
2004). 
  The relatively poor performance of CART was somewhat surprising given positive results reported in 
earlier studies (Lee & Jin, 2006).  However, it should be noted that much of this earlier research involved 



Finch & Holden 

 
24                                                                                           Multiple Linear Regression Viewpoints, 2010, Vol. 36(2) 

actual, rather than simulated data.  Furthermore, in these earlier studies the researchers engaged in 
pruning of the tree prior to coming up with the final predictive model.  Pruning, which involves the 
removal of nodes that are deemed statistically unnecessary, is an important aspect of tree building 
because it helps to prevent overfitting of the training data (Breiman, Friedman, Olshen, & Stone, 1984).  
Such overfitting can lead to a tree model that can very accurately predict values for the training sample 
but that is not generalizable to other samples from the population.  Indeed, this appears to be what 
occurred in the current study.  A brief examination of the ability of CART to predict response values for 
the training samples in this study revealed that its RMSE was much lower than the RMSE for the cross-
validation samples.  Therefore, one conclusion that should be drawn from these results is that researchers 
using CART must become adept at pruning trees in order to produce one that is sufficiently generalizable 
to the broader population. 
  In summary, then, it would appear that a researcher who uses the standard OLS methodology for most 
prediction problems will obtain reasonably accurate values unless the underlying model is fairly 
complex.  On the other hand, one could always rely on a more sophisticated approach, such as GAM and 
MARS, and be assured that regardless of the underlying population model the resulting predictions will 
be optimal or very close to optimal in most cases.  Of course, there are practical limitations to using these 
more complex methods, including a lack of familiarity on the part of many applied researchers.  In 
addition, the greater sophistication of some of these approaches may require greater knowledge of how 
they work so that appropriate settings are used.  This would appear to be particularly true for CART, and 
to a lesser extent NNET.  This increased difficulty in use may make the more complex techniques 
somewhat less appealing than the more familiar and simple OLS and CORR methods, particularly when 
it is known or strongly suspected that the underlying model is not complex. 
 

Limitations and directions for future research 
   There are limitations to the current study that should be addressed in future research.  The simulated 
data came from the normal distribution, so it is not known how well these various methods would 
perform when the assumption of normality has been violated.  In addition, both the response and 
predictor variables were continuous in nature.  Future studies should focus on the ability of these 
methods to accurately predict group membership for a categorical outcome, and their ability to use 
categorical predictor variables as well.  As noted above, some of the methods such as CART, require 
greater researcher intervention to be successfully employed.  Future studies should attempt to incorporate 
the pruning process into the simulation algorithm, although we recognize that automating this could 
present substantial logistical challenges.  Finally, it is important to note that the sole goal in this study 
was to optimize prediction accuracy, with no attention paid to model parsimony.  While in practice some 
applications of prediction models share this goal, in other instances researchers wish to balance such 
accuracy concerns with model parsimony.  In these cases, a researcher may be interested in finding the 
smallest possible set of independent variables that yields very accurate predictions (though perhaps not 
optimal).  When this combination of parsimony and accuracy is of interest, researchers may want to 
consider methods such as best subsets regression, or variants thereof. 
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APPENDIX 
 

Example R Code for Simulations 
 
library(MASS) 
library(tree) 
library(nnet) 
library(mgcv) 
library(mboost) 
library(mda) 
wais3 <- matrix(  
c(1, .76, .58, .43,   
.76, 1, .57, .36,   
.58, .57, 1, .45,  
.43, .36, .45, 1),  
nrow=4,ncol=4) 
NumSubj<-500  
NumSubj2<-500 
set.seed(125810470)  
finalresults.rmse.simulation11<-NULL 
finalresults.cor.simulation11<-NULL 
for(z in 1:1000) { 
wais.data <- mvrnorm(n = NumSubj, mu=rep(0,14), Sigma=wais3, empirical = TRUE)  
EigVecs <- eigen(wais3)$vectors  
EigVals <- eigen(wais3)$values  
PC.Weights.1 <- matrix(EigVecs[, 1] * 1/sqrt(EigVals[1]), 14,1)  
PC.Weights.14 <- matrix(EigVecs[,14] * 1/sqrt(EigVals[14]),14,1)  
PC.Scores.1 <- scale(wais.data %*% PC.Weights.1)  
PC.Scores.14 <- scale(wais.data %*% PC.Weights.14)  
#yhat.1 is collinear with the last principal component  
wais.data.frame<-data.frame(wais.data) 
attach(wais.data.frame) 
y1 <- .2*X1 + .2*X2+ .2*X3 + .2*X4 + rnorm(NumSubj2,mean=0,sd=.1)  
wais.cross <- mvrnorm(n = NumSubj2, mu=rep(0,14), Sigma=wais3, empirical = TRUE)  
EigVecs <- eigen(wais3)$vectors  
EigVals <- eigen(wais3)$values  
PC.Weights.1 <- matrix(EigVecs[, 1] * 1/sqrt(EigVals[1]), 14,1)  
PC.Weights.14 <- matrix(EigVecs[,14] * 1/sqrt(EigVals[14]),14,1)  
PC.Scores.1 <- scale(wais.cross %*% PC.Weights.1)  
PC.Scores.14 <- scale(wais.cross %*% PC.Weights.14)  
#yhat.1 is collinear with the last principal component  
wais.cross.frame<-data.frame(wais.cross) 
wais.cross.boost.frame<-data.frame(wais.cross.frame$X1, wais.cross.frame$X2, 
wais.cross.frame$X3, wais.cross.frame$X4) 
wais.cross.frame.boost<-
data.frame(wais.cross.frame$X1,wais.cross.frame$X2,wais.cross.frame$X3,wais.cross.frame$X4) 

y1.cross <- .2*wais.cross.frame$X1 + .2*wais.cross.frame$X2 + .2*wais.cross.frame$X3 + 
.2*wais.cross.frame$X4 + rnorm(NumSubj2,mean=0,sd=.1)  
waiscross.predict.ols<-predict(lm(y1~X1+X2+X3+X4),wais.cross.frame) 
waiscross.predict.tree<-predict(tree(y1~X1+X2+X3+X4),wais.cross.frame) 
waiscross.predict.gam<-predict(gam(y1~s(X1)+s(X2)+s(X3)+s(X4)),wais.cross.frame) 
wais.mars<-mars(wais.data, y1) 
waiscross.predict.mars<-predict(wais.mars,wais.cross) 
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waiscross.predict.nnet2<-predict(nnet(y1~X1+X2+X3+X4,size=2,linout=T, 
skip=T),wais.cross.frame) 
waiscross.predict.nnet3<-predict(nnet(y1~X1+X2+X3+X4,size=3,linout=T, 
skip=T),wais.cross.frame) 
waiscross.predict.nnet4<-predict(nnet(y1~X1+X2+X3+X4,size=4,linout=T, 
skip=T),wais.cross.frame) 
waiscross.predict.nnet5<-predict(nnet(y1~X1+X2+X3+X4,size=5,linout=T, 
skip=T),wais.cross.frame) 
waiscross.predict.nnet15<-predict(nnet(y1~X1+X2+X3+X4,size=15,linout=T, 
skip=T),wais.cross.frame) 
rxy <- cor(y1, wais.data) 
waiscross.predict.cor<-
wais.cross.frame$X1*rxy[1,1]+wais.cross.frame$X2*rxy[1,2]+wais.cross.frame$X3*rxy[1,3]+w
ais.cross.frame$X4*rxy[1,4] 
y1.boost<-as.numeric(y1) 
waiscross.boost<-glmboost(y1.boost~X1+X2+X3+X4, control=boost_control(mstop=1000, 
center=FALSE)) 
waiscross.predict.boost<-
coefficients(waiscross.boost)[2]*wais.cross.frame$X2+coefficients(waiscross.boost)[3]*wais.cro
ss.frame$X3+coefficients(waiscross.boost)[4]*wais.cross.frame$X4 
y1.cross2<-as.numeric(y1.cross) 
predicted2.values<-data.frame(y1.cross, waiscross.predict.ols, waiscross.predict.tree, 
waiscross.predict.cor, waiscross.predict.gam, waiscross.predict.mars, 
waiscross.predict.nnet2,waiscross.predict.nnet3, waiscross.predict.nnet4, 
waiscross.predict.nnet5, waiscross.predict.nnet15, waiscross.predict.boost) 
attach(predicted2.values) 
ols.rmse<-sqrt((1/50)*sum(waiscross.predict.ols-y1.cross2)^2) 
cart.rmse<-sqrt((1/50)*sum(waiscross.predict.tree-y1.cross2)^2) 
gam.rmse<-sqrt((1/50)*sum(waiscross.predict.gam-y1.cross2)^2) 
mars.rmse<-sqrt((1/50)*sum(waiscross.predict.mars-y1.cross2)^2) 
cor.rmse<-sqrt((1/50)*sum(waiscross.predict.cor-y1.cross2)^2) 
boost.rmse<-sqrt((1/50)*sum(waiscross.predict.boost-y1.cross2)^2) 
nnet2.rmse<-sqrt((1/50)*sum(waiscross.predict.nnet2-y1.cross2)^2) 
nnet3.rmse<-sqrt((1/50)*sum(waiscross.predict.nnet3-y1.cross2)^2) 
nnet4.rmse<-sqrt((1/50)*sum(waiscross.predict.nnet4-y1.cross2)^2) 
nnet5.rmse<-sqrt((1/50)*sum(waiscross.predict.nnet5-y1.cross2)^2) 
nnet15.rmse<-sqrt((1/50)*sum(waiscross.predict.nnet15-y1.cross2)^2) 
results.rmse<-
data.frame(ols.rmse,cart.rmse,gam.rmse,mars.rmse,cor.rmse,boost.rmse,nnet2.rmse,nnet3.rmse,n
net4.rmse,nnet5.rmse,nnet15.rmse) 
finalresults.rmse.simulation11<-rbind(finalresults.rmse.simulation11,results.rmse) 
 
cor.simulation<-cor(y1.cross, predicted2.values) 
cor.simulation<-data.frame(cor.simulation) 
finalresults.cor.simulation11<-rbind(finalresults.cor.simulation11,cor.simulation) 
} 
mean(finalresults.rmse.simulation11) 
mean(finalresults.cor.simulation11) 
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Canonical Correlation Analysis: A Step-by-Step  
Example in Commonly Available Software 

Eric L. Oslund 
Texas A & M University 

Canonical Correlation Analysis (CCA) can be conceptualized as a multivariate regression involving 
multiple outcome variables. CCA compares two sets of variables and is the second-most general 
application of the General Linear Model (GLM) following Structural Equation Modeling.  Structural 
Equation Modeling software have made conducting CCA feasible for researchers in numerous and 
disparate disciplines.  SPSS and AMOS are two commonly used statistical software packages and both 
can conduct CCAs.  AMOS is particularly useful because it enables statistical significance testing of 
individual canonical correlations. This article provides background knowledge of CCA as part of the 
GLM and provides step-by-step instructions for conducting a CCA in AMOS. 

he general linear model (GLM) comprises an overwhelming majority of parametric statistical 
procedures.  Regression is the univariate GLM (Cohen, 1968) and canonical correlation analysis 
(CCA) is the multivariate GLM (Knapp, 1978).  The GLM includes the t-test, ANOVA and other 

OVA procedures, descriptive discriminate analysis, CCA and structural equation modeling (SEM; 
Graham, 2008; Henson, 2002; Thompson, 1991; Zientek & Thompson, 2009).  SEM is the acme of the 
hierarchical GLM, subsuming all other procedures in the GLM. CCA is the second-most general 
application of the GLM (Henson, 2002; Knapp, 1978; Sherry & Henson, 2005; Thompson, 1991).  All 
GLM procedures are defined by the fact that they a) create weights applied to measured variables to 
construct synthetic variables, b) are correlational and c) provide analogues of the r

2 
effect size (Henson, 

2002; Kellow, 1998; Thompson, 2006). 
  Although univariate methods can be done in both CCA and SEM due to the hierarchical nature of the 
GLM, typically CCA and SEM focus on multivariate analyses.  Multivariate procedures are crucial to the 
behavioral sciences for several reasons.  Arguably the biggest reason is that multivariate methods honor 
the complex world of behavioral sciences research (Fan, 1997; Sherry & Henson, 2005; Thompson, 
1991).  Human behavior is complex and has multiple causes and multiple finalities.  Multivariate 
statistical procedures can aid in bridging the gap between the theoretical and practical world of 
behavioral sciences.  Multivariate methods provide valuable information that univariate methods simply 
cannot (Thompson, 1985). 
  Another major reason for use of multivariate procedures is that it keeps Type I error to a minimum 
(Fan, 1997; Sherry & Henson, 2005; Thompson, 1985, 1991).  Experimentwise Type I error rate grows 
considerably the more statistical tests are conducted on the same dataset (as an example, running multiple 
post hoc test in ANOVA inflates the experimentwise error rate unless a correction procedure is used to 
adjust testwise alpha levels).  Multivariate methods such as CCA and SEM protect against this inflation.   
  There are three main purposes of this article.  The first is to provide the reader with a brief 
background on CCA.  Thompson (1985) pointed out that CCA is becoming more and more popular as an 
analysis tool in different disciplines.  Illustrating that CCA can be done in SEM will also help the reader 
understand the connection of multivariate methods in the GLM.  
The second purpose is to provide the reader with detailed directions on how to use the AMOS 5.0 
software, which is a SEM program, to conduct a CCA. It should be noted that AMOS 18.0 yields the 
same results as AMOS 5.0; however, AMOS 5.0 was used as it is currently available for free. Krus, 
Reynolds, and Krus (1976) observed that CCA became more popular through the use of computer 
programs; this is even truer today than it was 30 years ago.  Brief instructions on use of SPSS and SAS 
will be given because using the three programs concurrently to compare results is recommended.  Also, 
there are several outputs that one program gives and the others do not.  Sherry and Henson (2005) discuss 
the importance of using step-by-step instructions to further the use of statistical analyses.  
The final purpose is to show the reader how using AMOS 5.0 allows for testing of individual canonical 
correlations, canonical function coefficients, canonical structure coefficients, and index coefficients 
through use of the bootstrap procedure.  Testing individual canonical correlations is an attractive feature 
available in AMOS 5.0 and is not done in SPSS.  
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CCA Overview 
   CCA employs the Multiple Indicators/Multiple Causes (MIMIC) model, which postulates that 
indicators are both caused by (effect indicators), and cause (causal indicators) synthetic variables 
(MacCallum & Browne, 1993).  The MIMIC model is essential to CCA and the creation of the synthetic 
variates that compose canonical functions.  In CCA, sets of measured variables are compared by creating 
synthetic variables though linear combinations of the measured variables (Fan, 1997; Graham, 2008; 
Henson, 2002; Knapp, 1978; Sherry & Henson, 2005).  Through the synthetic variables, the relationship 
between sets of measured variables is examined.  
  The creation of the synthetic variables is analogous to computing synthetic Ŷ scores in regression 
(Henson, 2002).  As throughout the GLM, weights are applied to the measured variables to calculate the 
synthetic variables (called canonical variables in CCA).  However, unlike regression procedures, the 
linear-combined synthetic canonical variables (or variates) are calculated without error (Fan, 1997).  
  The first canonical function is composed of two synthetic variables, one from the predictor variables 
and one from the dependent variables (Graham, 2008).  The number of canonical functions is equal to the 
number of measured variables in the smaller set (Graham, 2008; Thompson, 1991).  The Pearson r 
correlation, called the canonical correlation, between the two synthetic variables in a canonical function 
is the primary focus of CCA (Sherry & Henson, 2005).  The square of the canonical correlation 
represents the amount of variance shared by the variables that compose the canonical correlation 
(Thompson, 1984) and is analogous to the R

2 
effect size from multiple regression (Sherry & Henson, 

2005).  This reiterates the GLM.   
   The construction of the synthetic variables is done in a way to maximize the canonical correlations 
(Fan, 1997; Graham, 2008; Knapp, 1978; Sherry & Henson, 2005; Thompson, 1984).  In order to do this, 
the maximum likelihood estimation method is used as opposed to the least squares estimation method 
(which maximizes explained variance) (Graham, 2008).  These canonical functions are similar to 
components from principal component analysis (Thompson, 1991) and factors from exploratory factor 
analysis (Henson, 2002). 
   After the first canonical correlation is produced, there remains residual variance in the variable sets 
that is unexplained by the first canonical function.  All subsequent canonical functions are composed to 
analyze the residual variance left over from the preceding canonical function (Graham, 2008; Henson, 
2002; Sherry & Henson, 2005).  Of course, if the first canonical correlation explains 100% of the 
variance (r = 1.0), the researcher can stop there.  The synthetic variables comprised in a canonical 
function are orthogonal (uncorrelated) to all other synthetic variables outside their own canonical 
function (Graham, 2008; Sherry & Henson, 2005; Thompson, 1984, 1991).  That each canonical function 
is orthogonal to both predictor and dependent synthetic variables of all other canonical functions is a 
concept called double orthogonality (Sherry & Henson, 2005). 
   In the GLM, weights are applied to measured variables to produce the synthetic variable(s).  In CCA, 
these weights are called canonical function coefficients, either standardized or unstandardized.  These 
weights are analogous to beta weights in regression.  They are contextual and vary based on other 
measured variables in the model and multicollinearity (Sherry & Henson, 2005; Thompson, 2006).  Due 
to their being contextual and because CCA is a multistep process, the functional coefficients are 
constrained throughout the analyses.  Index coefficients, or cross loadings, are the correlation of 
measured variables with the synthetic variable of the opposite set (Fan, 1997; Graham, 2008; Thompson, 
1984).  
   Structure coefficients, which are the correlations between a measured variables and the synthetic 
variable, are crucial to interpretation of CCA results (Dunlap & Landis, 1998; Graham, 2008; Sherry & 
Henson, 2005; Thompson, 1984, 1991).  They are a measure of the direct effect a measured variable has 
on a synthetic variable and should always be interpreted because of the relativity of function coefficients.  
As Henson (2002) articulated, “if standardized weights inform the researcher what variables are getting 
credit for the effect, then structure coefficients inform the researcher what variables could have gotten 
credit for the effect” (p. 11).  Only interpreting function coefficients may lead to falsely believing one 
variable is more, or less, important than another when that may not be the case. 
   A historic problem with conducting CCA analysis through most statistical software is that there was 
no way to test for the statistical significance of individual canonical correlations or the various 
coefficients (Bagozzi, Fornell, & Larcker, 1981; Sherry & Henson, 2005; Thompson, 1991).  For 
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example, if there are three canonical functions, only the last test of statistical significance is for a single 
canonical correlation (for canonical function three).  The first test of statistical significance test all 
functions together; the second test function two and three combined.  Only when the last function is 
statistically significant are all the previous functions also statistically significant (Sherry & Henson, 
2005). 
   One very distinct advantage of conducting and CCA in SEM is that statistical significance testing can 
be done for individual canonical correlations and also for function, structure, and index coefficients (Fan, 
1997; Graham, 2008). According to Knapp (1978):  

The principle objective of canonical correlation analysis is to find a linear combination of the 
p variables that correlates maximally with a linear combination of the q variables and, for 
sample data, to test the statistical significance of that correlation. (p. 411)  

Others may argue that statistical significance testing is not as important as other indications of 
meaningful results, such as effect sizes.  However, that SEM allows for testing statistical significance is a 
significant advantage.  In order conduct the various statistical significance tests, bootstrap procedures 
must be employed.  
 

Bootstrap Overview 
   Bootstrapping allows for resampling of data for both descriptive and inferential use (Fan & Wang, 
1996; Thompson, 1993). The original dataset is copied, as many times as the user specifies, and then 
added to the dataset.  This process creates a huge dataset from which resamples are drawn (with 
replacement) of exactly the same size as the original sample (Thompson, 1995, 2006).  In inferential 
applications, the number of resamples drawn should number at least 2,000 and larger resamples are 
preferable (Fan, 2003; Thompson, 1995, 1999); samples of this size are easily done by AMOS 5.0.   
  Bootstrapping procedures create an empirically-based sampling distribution when theoretical 
distributions do not exist (Fan & Wang, 1996; Thompson, 1999).  A sampling distribution created from a 
bootstrap does not make, nor require, as many assumptions about the data as a theoretical distribution 
(Thompson, 1999).  An empirically-based sampling distribution is important if those assumptions are 
violated (Fan & Wang, 1996).  In the case of CCA, bootstrapping is absolutely necessary because 
theoretical distributions are nonexistent for function, structure, and index coefficients (Fan & Wang, 
1996).  From this empirical sampling distribution, standard errors are calculated, which play several 
important roles in CCA. 
   First, the standard errors provide information about the precision of observed estimates (Dunlap & 
Landis, 1998; Fan, 1997; Thompson, 1999).  Dunlap and Landis (1998) state, “the interpretation of 
weight significance depends on knowledge of the standard error of the weight” (p. 398).  Two equal 
function coefficients of .50 would have wildly different interpretations if one coefficient’s standard error 
was .90 and the other’s was .001.   
   Standard errors also allow for testing of statistical significance (Bagozzi, et al., 1981; Graham, 2008; 
Thompson, 1999).  This is simply done by dividing the observed parameter estimate (a function 
coefficient, canonical correlation, etc.) by the standard error of the estimate, which produces the critical 
ratio (Bagozzi, et al., 1981; Thompson, 2006).  An estimate with a critical ratio equal to approximately 
1.96, based on the standard normal distribution (M = 0, SD = 1), is statistically significant in a two-tailed 
test against a nil-null hypothesis.  AMOS 5.0, as an SEM program, easily performs this function while 
SPSS and SAS do not.  
 

Step-by-Step CCA Example Done in AMOS 
  The following is an example demonstrating how to run a CCA analysis using the free student version 
of AMOS 5.0.  The Holzinger and Swineford (1939) data were used and can be conveniently found at 
(http://www.coe.tamu.edu/~bthompson/datasets.htm#1).  The dependent variables used were Math 
Number Puzzles (hereafter T21) and Math Word Problem Reasoning (hereafter T22).  The predictor 
variables were General Information Verbal Test, Paragraph Comprehension Test, and Sentence 
Completion Test (hereafter T5, T6 and T7 respectively).  There is no theoretical basis for comparing 
these variable sets; in real applications, there should always be thought given to the basis for comparing 
variable sets through CCA (Sherry & Henson, 2005).  The reader is encouraged to replicate the current 
example and to always check results in two different statistical packages as the computations are difficult 
and lend themselves to easy mistakes being made.  

http://www.coe.tamu.edu/~bthompson/datasets.htm#1


Oslund 

 
32                                                                                           Multiple Linear Regression Viewpoints, 2010, Vol. 36(2) 

   The analysis was also done in SPSS and SAS for comparison purposes; the syntax for SPSS and SAS 
provided in the Appendix.  CCA can also be run in SAS through a series of point-and-click selections.  
After opening SAS, choose the “Solutions” drop-down menu, click on the “Analysis” option and then the 
“Analyst” option.  Open the data file then go to the “Statistics” drop down menu, choose “Multivariate” 
and then “Canonical Correlation”.  In the box that opens up, choose variables T5, T6, and T7 for “Set 1” 
and T21 and T22 for “Set 2”.  Click “OK” to run the analysis.   
  The data was in an SPSS file and imported into AMOS using the “Data Files” option in the “Files” 
drop-down menu.  The variables were then examined for selection using the “Variables in Dataset” 
option under the “View/Set” drop-down menu.  This option brings up every variable in the dataset from 
which the relevant variables can be imported and analyzed.  All following procedures in this example 
will utilize the visual icons located on the furthest left pane in AMOS.  The drop-down menu tabs at the 
top of the AMOS frame can also be utilized for those more comfortable with that method.  
  The figure for the first synthetic variable for the predictor variables, labeled LF1 (indicating it is the 
left side of the first canonical 
function) is drawn by clicking 
and dragging the measured 
variables from the “Variables 
in Dataset” box.  Click on the 
variable of interest in the 
“Variables in Dataset” box and 
drag it into the modeling plane 
and release it.  This is done for 
the remainder of measured 
variables.  Figure 1 illustrates 
the complete drawing for the 
first left synthetic variable 
using the MIMIC model.   
   The synthetic variable is then created and named.  The user selects the “draw unobserved variables” 
icon, which is represented by an oval in the top-left portion of the AMOS window.  This variable must be 
named at the user’s discretion; however, indicating in some manner that it is a synthetic variable for the 
first canonical function is recommended for clarity. As more variables are added, the figures become 
progressively busier and labeling can be important to allow the user and others to easily identify 
variables.  
   Dependent variables must have a synthetic variables created and attached to represent the 
residual/error variance.  This is done by selecting the “add a unique variable to an existing variable” icon, 
which is represented by a box with an attached circle above it on the top-left portion of the screen.  Move 
the figure over the dependent variables and click one time for each dependent variable.  The default path 
value from these latent variables to their respective measured variables will be 1.0.  Once these variables 
are created, they need to be named.  In the current example, the error variances are labeled LFE1 and 
LFE2 for T21 and T22 respectively.  LFE is short for left-function error.  Again, these labels are given at 
the discretion of the researcher.   
  The paths between variables must be drawn and a marker variable must be determined in order to run 
the analysis. Select the directional path represented by the icon of a line with a single point, which 
AMOS calls “draw paths (single headed arrows)”.  Single-headed arrows must be drawn from the 
predictor variables (T5, T6, and T7) to LF1 and from LF1 to the dependent variables T21 and T22.  
Choose one of the paths from LF1 to a dependent variable (in this case, T21) and set the value to 1.0.  
This is accomplished by right-clicking on the path from LF1 to T21, clicking on “parameters” tab, and 
setting the “regression weight” to 1.0.  LF1 is now in the same metric as T21 and considered the marker 
variable.  
  The covariance’s between the variables, represented by non-directional (double arrow) paths are then 
drawn between every possible combination of T5, T6, and T7.  This is repeated for LFE1 and LFE2.  The 
analysis properties must then be established once the drawing is complete.  
  Click on the “analysis properties” icon located in the middle column and roughly midway down the 
page.  The default estimation method is “maximum likelihood” (and was used in this example); however, 

T21

T22

T5

T6

T7

LF1 LFE1
1

LFE2
1

1

 
 Figure 1. CCA diagram representing the first synthetic variable from  
 the predictor variable set.   
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this can be changed on the “estimation” tab.  Under the “output” tab, check the boxes for the 
“standardized estimates” and “all implied moments”.  Close the window and then click the “calculate 
estimates” icon located immediately to the right of the “analysis properties” icon.  An error message is 
likely to appear indicating that the endogenous synthetic variable (in this case, LF1) does not have an 
error variable attached.  This refers to a variable similar to the error variables LFE1 and LFE2 for 
criterion variables T21 and T22.  Click on the “proceed with the analysis” option.  This effectively sets 
the error variance of LF1 at zero, which can also be accomplished by creating a residual/error variance 
latent variable and constraining the variance to zero.  Simply ignoring the error message is easier. 
  Once the analysis is run, click the “view text” icon.  This gives the output for the analysis.  A 
“decimals” drop-down menu is on the top output file; the setting should be set so that the output is to the 
12

th
 decimal.  This is critical as minor rounding error can cause inaccurate outputs in subsequent analysis.  

Table 1 provides the unstandardized canonical function coefficients (called unstandardized regression 
weights in AMOS 5.0) of the individual paths including the standard errors, critical ratios and associated 
p values using the z distribution.  In this example, all individual regression paths are statistically 
significant except the path from LF1 to T21.  This is because the path value was constrained and not 
freely estimated.  
 

Table 1. Statistical Significance Tests of Unstandardized Canonical Function Coefficients (UCFC).  

UCFC Path estimate  Standard error Critical ratio P value 

T5 to LF1 .037752036695 .018214782033 2.072604361989 .038209114766 

T6 to LF1 .180258686233 .067915221761 2.654172092166 .007950326870 

T7 to LF1 .127449262517 .049433912843 2.578174681851 .009932377397 

LF1 to T21 1.0  - - - 

LF1 to T22 
2.926949942591 .478352643185 6.118812102930 

  <.001 

Note. In the row LF1 to T21, - indicate values that were not freely estimated due to the path estimate 
being constrained to 1.0 as the marker variable.   
 

 The next step of the analysis requires the same procedure be followed for the synthetic variable of the 
second canonical function (called LF2 in this example) with the exception that the directional paths for 
LF1 are constrained to the observed values from the previous analysis (provided in Table 1).  In addition 
to the paths being constrained to the unstandardized function weights, a marker variable must be set.  
This follows the aforementioned procedure of constraining the regression weight for the path from LF2 
to a criterion variable to 1.0; in this example the path from LF2 to T21 is constrained.  Figure 2 
represents the drawing, including constraints, for the two left synthetic variables.  
  The path from T5 to LF1 is constrained using the observed value (from Table 1) to the 12

th
 decimal 

place, which equals 
.037752036695.  
The remaining 
constrained paths in 
the Figure 3 display 
the path estimate 
values to the 2

nd
 

decimal place.  The 
values should never 
be constrained to 
the second decimal 
place and are done 
so here for the sole 
purpose of being 
able to easily see which paths are being constrained.  Always use the observed values to the 12

th
 decimal 

place as shown in the T5-LF1 path.  

T21

T22

T5

T6

T7

LF1 LFE1
1

LFE2
1

0.18

1

LF2

1

0.
13

0.037752036695

2.93

 
Figure 2.  CCA diagram for second synthetic variable from the predictor 
variables set.  The paths are constrained to the values obtained from the analysis 
of the first synthetic variable of the predictor variable set.  
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  The next step is to 
draw the figure for the 
first right synthetic 
variable (RF1).  This is 
represented in Figure 3 
and is a duplicate of 
Figure 1 with the 
exception that the 
directional paths are 
reversed.  Essentially, the 
regression diagram is 
reversed and the criterion 
variables (T21 and T22) 
from the previous 
analyses now become the 
exogenous variables and 
the predictor variables 
(T5, T6, and T7) become 
the criterion variables.  It 
should be noted SPSS still 
labels the initial criterion 
variables as “dependent”.  
   The same analyses are 
done for RF1 and RF2 as 
were done for LF1 and 
LF2.  Once RF1 canonical 
function coefficients 
(unstandardized 
regression weights) are 
obtained, the associated 
paths are constrained in 
the RF2 analysis as demonstrated in Figure 4.  The paths are shown here to the 2

nd
 decimal for ease of 

viewing; however, again it is crucial to use values to the 12
th
 decimal and to also set a marker variable for 

each separate analysis. 
  The next step requires combining the completed diagrams from the LF2 and RF2 analyses as 
demonstrated in Figure 5.  The diagram includes regression paths from T5-7 to the left synthetic 
variables and from T21-22 to the right synthetic variables.  The regression paths are constrained to the 
values from the analyses conducted previously.  The canonical function coefficients for the left variables 
are presented to the 2

nd
 decimal place for ease of viewing only.  

   The next step involves correlating all the measured variables as depicted in Figure 6.  The 
constraints/es
timates for 
the function 
coefficient 
paths are not 
shown so the 
reader can 
easily see all 
the paths.  
The paths 
would be 
constrained 
to the 
observed 
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Figure 3.  CA diagram representing the first synthetic variable from the 
dependent variable. 

T21

T22

T5

T6

T7

RF1

RFE1
1

RFE2
1

0.13

3.38

1.
51

0.15

RF3
1

RF2
1

1

 

Figure 4.  CCA diagram for second synthetic variable from the dependent 
variable set.  The paths are constrained to the values obtained from the 
analysis of the first synthetic variable from the dependent variable set.   
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Figure 5. CCA diagram with the canonical function coefficient paths constrained to 
previously observed values.   
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values. The 
canonical 
correlations 
(correlations 
between LF1 and 
RF1 and between 
LF2 and RF2) 
cannot be drawn 
because AMOS 
does not allow 
drawing 
correlations 
between 
synthetic 
variables.  The 
analysis can be 
run at this point. 
   On the “analysis properties” icon, select the “bootstrap” tab.  Check the “perform bootstrap” and 
“bias-corrected confidence intervals” boxes.  It is recommended to run at least 2,000 bootstrap samples 
and use a 95% bias corrected (BC) con-fidence interval.  Bias-corrected estimation is preferred because it 
makes fewer as-sumptions regarding the sampling distribution (Thompson, 1993).  Under the “output” 
tab, the standardized estimates (stand-ardized beta weights or stand-ardized canonical function 
coefficients) and “all implied moments” boxes should be checked.  
 

Interpretation.   
   The bootstrap procedure allows for an empirically derived sampling distribution to be calculated, 
which allows for statistical significance testing, building of confidence intervals, and calculating standard 
errors.  This is a particular appealing feature in AMOS that SPSS does not readily do.  Arguably the most 
important difference between the two programs is that AMOS allows for statistical significance testing of 
individual canonical correlations as opposed to testing sequential correlations as done by SPSS.  
The output file provides numerous analyses values.  Of particular interest are the standardized beta 
weights (a.k.a., standardized canonical function coefficients), canonical structure coefficients, and 
canonical correlations.  Standard errors, confidence intervals, and p values for the statistical significance 
tests for these statistics are also provided in disparate tables.  
   Table 2 provides the bivariate correlations, structure coefficients, index coefficients and canonical 
correlations for the completed CCA taken from the “Implied (for all variables) Correlations” table.  Index 
coefficients will not be discussed here other than to mention they are the bivariate correlations between 
the measured variables of one set with the synthetic variables of another.  
 

Table 2. Bivariate Correlations, Structure Coefficients, Index Coefficients and Canonical Correlations 
  T22 T21 T7 T6 T5 RF2 RF1 LF2 LF1 

T22 -         

T21 0.377
a 

-        

T7 0.470
 a
 0.302

 a
 -       

T6 0.448
 a
 0.321

 a
 0.733

 a
 -      

T5 0.426
 a
 0.307

 a
 0.716

 a
 0.657

 a
 -     

RF2 -0.319
b 

0.758
 b
 -0.022

c 
0.013

 c
 0.014

 c
 -    

RF1 0.948
 b
 0.653

 b
 0.488

 c
 0.477

 c
 0.454

 c
 0.00

e 
-   

LF2 -0.018
 c
 0.044

 c
 -0.383

 b
 0.219

 b
 0.244

 b
 0.058

d 
0.00

 e
 -  

LF1 0.501
 c
 0.345

 c
 0.923

 b
 0.901

 b
 0.858

 b
 0.00

 e 
0.529

d 
0.00

 e
 - 

Note.  
a
Bivariate correlations.  

b
Structure coefficients.  

c
Index coefficients.  

d
Canonical correlations.  

e
Reflect double orthogonality.  

 

LF1 RF1

LF2 RF2

T21

T22

T5

T6

T7

 
Figure 6.  Final CCA diagram including all paths.  The canonical function coefficient 
path values are omitted to ease viewing of diagram.  The paths would be constrained 
using the values found in Figure 5.  
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   Notice the correlation of LF1 with RF2 is 0.00, as is the correlation between LF1 with LF2.  This 
demonstrates double orthogonality and reflects the rule of CCA that the correlations between all 
synthetic variables of the first canonical function are completely uncorrelated with all synthetic variables 
in the second function and all subsequent functions (Sherry & Henson, 2005).  
   The first canonical function, LF1 with RF1, is equal to .529.  The second function between LF2 and 
RF2 is equal to .058.  While it is impossible to discern statistical significance at a glance, it is 
immediately apparent that the first function is much more likely to be statistically significant that the 
second against the null hypothesis that r = 0.00.  Comparing the canonical correlations given by SPSS, 
AMOS, and SAS is recommended to ensure the analysis was done correctly.  If the canonical correlations 
match between the two programs, it can be assumed that the analysis was done correctly and that the 
remaining AMOS output, such as the tests of significance for paths and canonical correlations, is 
accurate. In addition to the correlation, SPSS and SAS also give the squared correlation value under 
“Eigenvalues and canonical correlations” and “Canonical Correlation Analysis” respectively.   
   A critical step in any CCA analysis is the examination of structure coefficients as they are a 
measurement of the direct impact of a measured variable on a synthetic variable.  Both AMOS and SPSS 
provide the structure coefficients, which again should be compared to ensure accuracy.  In Table 3, the 
correlation between 
T22 and function one 
(r = .948) is a 
structure coefficient.  
SPSS provides the 
same output, calling 
them the correlations 
between either the 
“dependent” or 
“covariates” and the 
“canonical variables”.  
   Comparing the standardized canonical function coefficients with the structure coefficients for 
function one found in Table 3, it is apparent that the difference between the two on T5 is quite large 
(.297 vs. .858).  Does this mean T5 is a much better predictor, based on the structure coefficient equaling 
.858, than it appears to be if only the standardized function coefficient of .297 where interpreted?  
Because the proportion of T5 to T6 to T7 is roughly the same on both the structure and the function 
coefficients, and because the ranking of the values from least to greatest is the same, interpreting both the 
structure and function coefficients would lead to the same conclusion.  The best predictor for function 
one is T7 and the worse is T5.   

   Statistical Significance Testing.  In the final analysis output, AMOS provides the p values for the 
significance tests (against Ho: r = 0.00) for the bivariate correlations, index coefficients, structure 
coefficients, and canonical correlations.  The tests for individual function coefficients are conducted 
along the previous steps of the analysis (see Table 1 for an example).  The ability to test these statistics in 
AMOS makes it appealing as SPSS does not readily compute these tests of significance.  The AMOS 
output also comprises standard error estimates and the lower- and upper-bound estimates for confidence 
intervals.  
  Table 4 replicates the 
AMOS table “Implied (for 
all variables) Correlations 
– Two Tailed Significance 
(BC)”, providing the p 
values for statistical 
significance testing.  The 
first canonical function 
(correlation between LF1 
and RF1) is statistically 
significant as p = .001.  
This was somewhat 

Table 3. Standardized Canonical Coefficients and Structure Coefficients 

 Std Canonical Coefficients Structure Coefficients 

Variable Function 1 Function 2 Function 1 Function 2 

T21  .345 1.023 .653 .758 
T22  .818 -.705 .948 -.319 
T5  .297 .836 .858 .244 
T6  .400 .841 .901 .219 
T7  .418 -1.598 .923 -.383 

 

Table 4.Observed p Values Testing H0: r
 
= 0.00 

 T22 T21 T7 T6 T5 RF2 RF1 LF2  

T21 .001         

T7 .001 .001        

T6 .001 .001 .001       

T5 .001 .001 .001 .001      

RF2 .001 .001 .719 .813 .761     

RF1 .001 .001 .001 .001 .001 .978    

LF2 .772 .437 .001 .001 .001 .275 .983   

LF1 .001 .001 .001 .002 .001 .992 .001 .998  
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expected due to their correlation of .529.   The second canonical function (r = .058), fails to reach 
statistical significance (p = .275).  SPSS does not test individual canonical correlations, except for the 
last one.  The only time to know the statistical significance of all individual canonical correlations using 
SPSS is when the last canonical correlation is statistically significant.  If the last one is statistically 
significant, then all individual canonical correlations are significant.  
  The p values for the statistical significance tests between LF1 and LF2 and between LF1 and RF2 are 
.998 and .992 (see Table 4).  According to the double orthogonality rule, these values should be 1.0.  The 
presence of sampling error prevents the probability of rejecting the null from being 0.00% (Graham, 
2008), which is the theoretical value.  This fact further highlights the need to constrain paths throughout 
the model to the highest decimal place available to reduce the amount of sampling error contamination. 
  The structure and index coefficients also have reported p values as seen in Table 4.  All the structure 
coefficients are statistically significant with the highest p value being .002 for T6 with LF1.  Exactly half 
of the index coefficients are statistically significant.  As the number of bootstrap procedures increases, 
the p values decrease as a function of smaller standard errors and larger critical ratios.   
   The caveat for statistical significance testing throughout the entire GLM applies in CCA; statistical 
significance is directly related to sample size and, in many ways, test whether you have a numerous 
sample (Thompson, 1991).  SEM typically requires large sample sizes, which likely inflates the 
significance of statistically significant findings.  However, because many journals are reluctant to publish 
results that fail to reach statistical significance, this article provides the heuristic demonstration of how to 
test statistical significance for individual canonical correlations, structure coefficients and function 
coefficients.  As Max Planck (1949) once said, “A new scientific truth does not triumph by convincing its 
opponents and making them see the light, but rather because its opponents eventually die, and a new 
generation grows up that is familiar with it” (p. 33-34).  Perhaps this will be true of statistical 
significance testing across the GLM. 
   Caution is also needed when interpreting effect sizes.  The r

2 
effect size for the first canonical 

correlation is .280.  If holding rigidly to conventional standards, most would conclude this is a small 
effect size.  However, effect sizes must be considered in light of previous research findings and 
thoughtfulness when determining if the magnitude of effect is meaningful.  If the effect size is three times 
larger than any other previous research has found, suddenly an effect size of .280 becomes very 
meaningful and quiet large.  Likewise, if the observed effect size means the difference in extending the 
life of a cancer patient by five years, it is extremely meaningful.  As with all statistical analyses, it is at 
least as important and probably more to accurately interpret results then it is to be able to run analyses.   
 

Discussion 
   CCA is a useful technique for comparing two sets of variables and is part of the GLM.   Recent SEM 
computer software and computer capabilities have made it easier to conduct CCAs.   The purpose of this 
paper was to expand the reader’s knowledge of CCA and give explicit instructions and a replicable 
example.   
   A few important considerations are mentioned to reiterate key principles expounded upon in this 
paper.  Canonical function coefficients and structural coefficients should always be examined together as 
only interpreting function coefficients can lead to erroneous conclusions.   As an SEM software package, 
AMOS is user-friendly and allows for the statistical significance testing of individual canonical 
correlations, function, structure, and index coefficients, which other statistical software does not readily 
do.  It is recommended, especially the first few times a CCA is conducted, to check the results across 
multiple software packages.   
   The uses of statistical techniques take time to be adopted following their invention.  As Cohen (1992) 
pointed out, the t-test took nearly 40 years to be adopted and included in statistical textbooks.  One way 
to quicken the use of statistical techniques, in this case CCA, is to provide the background knowledge 
and perhaps more importantly, detailed instructions and examples.   
  Explicit directions and examples are especially critical in the evolving world of increasingly 
sophisticated software that allows statistical procedures to be done in times inconceivable even a few 
years ago.  However, knowledge of using a software program must be buttressed with knowledge of the 
analysis being run.  There is no point, and much danger, in running an analysis that isn’t understood.  The 
reader will hopefully not only replicate the examples provided in this paper, but also read other 
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informative articles and books (many referenced in this paper) to gain both the knowledge of what a CCA 
is and how to conduct one.  
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APPENDIX 
SPSS and SAS Syntax for the Current CCA Example 
 
SPSS syntax 
manova t21 t22 with t5 t6 t7 
/PRINT=SIGNIF(MULTIV UNIV EIGEN DIMENR) 
 /DISCRIM(STAN COR ALPHA(.999))  
 /method=unique 
 /design . 
execute. 
 
SAS syntax  
proc cancorr data='C:\HolzingerData.sas7bdat'; 
var t5 t6 t7; 
with t21 t22; 
run; quit; 
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All Possible Kappa Coefficient Values and Cell Distribution 
Combinations in a 2 x 2 Matrix: The Case of the Small Sample 

David A. Walker 
Northern Illinois University 

This research provided practitioners and researchers with information containing all possible kappa 
coefficient values and cell distribution combinations for 2 x 2 matrices comprised of binary data and with 
a sample size of N = 5. It was found that there was a low probability of 0.16 when employing a small 
sample size that a kappa value would reside in the categories that signified κ ≥ 0.60 from the Landis and 
Koch (1977) or the Fleiss (1971) and Cicchetti (1984) scales, with a probability ratio indicating that 
kappa values were 5.25 times more likely to be derived from the bottom categories of these scales where 
κ < 0.60. 

nter-rater agreement indices used in 2 x 2 classification matrices with categorical data have been 
studied comprehensively in the social science scholarly literature (Berry & Mielke, 1988; Brennan & 
Prediger, 1981; Fleiss, 1975; Light, 1971; Soeken & Prescott, 1986; Zwick, 1988). A sampling from 

the literature in the field of education shows that inter-rater agreement has been applied in classroom-
based contexts pertaining to in-class student behaviors (Junod, DuPaul, Jitendra, Volpe, & Cleary, 2006; 
Nolan, Gadow, & Sverd, 1994), to examine social communication (Olswang, Svensson, Coggins, 
Beilinson, & Donaldson, 2006), or to look at teaching and classroom processes (Walker de Felix, 
Waxman, Paige, & Huang, 1993).  
  There are numerous indices for inter-rater agreement that can be applied to 2 x 2 tables with 
categorical data. Cohen‟s (1960) kappa coefficient, or κ, is cited frequently as an index used in inter-rater 
agreement studies (Umesh, Peterson, & Sauber, 1989; Zwick, 1988). Traditionally, kappa has been 
employed as a chance-corrected index related to the 
proportion of inter-rater agreement when using a 2 x 2 
matrix with two raters and binary data. In Figure 1, the 
main diagonal (i.e., cells A and D) indicates the 
agreement level between the raters as either 00 or 11 and 
the off diagonal (i.e., cells B and C) indicates the level of 
disagreement between the raters as either 10 or 01. 
   Assumptions affiliated with κ are that “N objects  
categorized are independent; the assigners operate 
independently; and the categories are independent,  
mutually exclusive, and exhaustive” (Brennan & Prediger, 1981, p. 688). Mathematically, kappa can be 
derived from the following formula (Subkoviak, 1988): 

                              κ =                             (1) 

 

where, PO = observed agreement, where PO = (A + D)/N; A = count from cell 1; D = count from cell 4; N 
= number of observations; B = count from cell 2; C = count from cell 3; and PE = expected percentage of 
agreement based on chance  = [(A + B)*(A + C) + (C + D)*(B + D)]/N

2
. 

   The maximum value of kappa is 1.00, which indicates total agreement between two raters. The 
minimum value for kappa is 0.0, which signifies that there is not better than chance that the two raters 
would agree. Although kappa can take on negative values to -1.00, which indicate agreement worse than 
expected by chance, said negative values tend to be reported in the literature as 0.0, thus, keeping kappa 
at a functional range from 0.0 to 1.00. Landis and Koch (1977) provide a guide concerning general 
interpretations of kappa values, where inter-rater agreement values are categorized as: 
 

                          < 0.0    = Poor  
                      0.0   to 0.20  = Slight 
                     0.21  to  0.40  = Fair  
                     0.41   to 0.60  = Moderate  
                     0.61  to 0.80  = Substantial  
                     0.81  to 1.00  = Almost Perfect 

I 

  Rater  2  

  0 1 Tota
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Figure 1. A 2 x 2 matrix configuration 
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   Other researchers, such as Fleiss (1971) and Cicchetti (1984), have presented similar guidelines for 
interpreting inter-rater agreement values derived from kappa-like coefficients: 
 

                         < 0.40   = Poor  
                    0.40  to 0.59   = Fair 
                     0.60  to 0.74  = Good  
                     0.75  to 1.00  = Excellent  
 

   However, as with guidelines provided for effect size measures (cf. Cohen, 1988; Glass, McGaw, & 
Smith, 1981), the context of the research and the use of the results in a clinical or academic setting 
should be evaluated before decisions are made pertaining to the magnitude of a particular kappa value. 
Cohen (1960) noted that the kappa coefficient can reach a maximum value of 1.00, or perfect agreement 
between two raters, only when cells B and C have zero counts in them. That is, when the degree of rater 
disagreement is zero. Along with Cohen‟s work, Brennan and Prediger (1981) and Umesh et al. (1989) 
examined, although not extensively, some of the maximum values that kappa could achieve based on the 
distributions of inter-rater agreement and disagreement in cells A through D in a 2 x 2 matrix with binary 
data. What these studies emphasized was the fact that in many instances, such as when marginals are free 
or as Brennan and Prediger found “… a margin is „free‟ whenever the marginal proportions are not 
known to the assigner beforehand” (p. 690), there are sundry possible values for a kappa coefficient, 
which is problematic in interpreting agreement results. As Umesh et al. (1989) noted about the 
importance of understanding kappa coefficient values and cell distribution derived from a study situation, 
“… in general, knowing the maximum value of a kappa statistic facilitates inferences about its practical 
or substantive significance” (p. 845). 
 

Purpose and Methods 
   Adding to the research provided by Cohen (1960), Brennan and Prediger (1981), and Umesh et al. 
(1989), a purpose of this study was to provide practitioners and researchers with detailed information 
containing all possible kappa coefficient values and cell distribution combinations for a 2 x 2 matrix 
comprised of binary data, free marginals, and an observation size of N = 5. A small observational sample 
was a primary application because it represented recurrent sizes in applied research fields (Huberty & 
Mourad, 1980), especially in classroom observation situations where small samples often are 
encountered.  
   Further, this study used a small observation size example due to the enormity of possible ratings in a 2 
x 2 matrix with binary data, two raters, and free marginals. That is, the case of N = 5 has 2

10
 or 1,024 

possible ratings, N = 10 has 1,048,576 ratings or 2
20

, N = 15 has 1,073,741,824 ratings or 2
30

, and N = 20 
has 1,099,511,627,776 ratings or 2

40
. For the case of N = 5, the various cell combinations were 

determined by letting the rows represent the ratings for rater 1 and the columns represent the ratings for 
rater 2 as noted in Figure 1. To determine the possible number of combinations within a matrix, for 
example, if we had an arrangement in cells A through D of 3002 (i.e., both raters had three 0s and two 1s 
or κ = 1.00), we would have 10 possible combinations for this cell distribution: 11100, 11010, 11001, 
10101, 10110, 10011, 01011, 01101, 01110, 00111. Statistical Analysis System code provided by Klar, 
Lipsitz, Parzen, and Leong (2002) and Mundfrom (D. Mundfrom, personal communication, April 29, 
2008) were used for this research intent.  
   A second purpose for this research was to study the use of the Landis and Koch (1977) and Fleiss 
(1971)/Cicchetti (1984) interpretive guides as a comparative condition pertaining to the degree of inter-
rater agreement when determining the probability of attaining kappa values ≥ 0.60 for the case of N = 5. 
A kappa value ≥ 0.60 has been noted in the scholarly literature, both theoretically (Cicchetti; Fleiss, 
1971; Landis & Koch; Subkoviak, 1988) and in application (Lavigne et al., 1994; Schrijnemaekers & 
Haverman, 1993), as a threshold between “moderate/good” inter-rater magnitude of agreement and the 
converse of this agreement extent. 

Results and Discussion 
   With five observations, the sample space for all negative, zero, and positive kappa values was 56. 
Table 1 shows the entire sample space when N = 5. To keep congruent with the scholarly literature in 
reporting kappa values that range from 0.0 to 1.00, the sample space was re-operationalized as only non-
negative kappa values and became 38. Of the 38 possible kappa coefficient values, for both the Landis 
and Koch (1977) and Fleiss (1971)/Cicchetti (1984) parameters, 6 were ≥ 0.75, with all achieving κ = 
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1.00 or perfect agreement, and 2 were ≥ 0.60 with κ = .62 in both instances. From Table 1, we can see 

that the previously-noted 8 instances where κ  .60 had 92 possible combinations that resulted in this 
desired cut-off or the numerator. Of the possible 1,024 ratings, 574 returned non-negative κ values or the 
denominator. Thus, in the case of N = 5, the probability of obtaining a kappa value ≥ 0.60 on either the 
Landis and Koch or the Fleiss-Cicchetti scales was only 0.16.  
   When all possible combinations of cell distributions and kappa values are known, Table 1 shows that 
there was a greater chance of obtaining kappa values in the bottom ranges of rater agreement, where κ < 
0.60. There was a high probability when employing a small sample size, that a kappa value would reside 
in either the “moderate,” “fair,” or “slight” categories from the Landis and Koch (1977) scale or the 
“fair” or “poor” categories from the Fleiss (1971) and Cicchetti (1984) scales (i.e., all < 0.60). The 

probability ratio (i.e., ( κ < 0.60) or 0.840  ( κ  0.60) or .160) indicated this result by showing that 
with 5 observations from the Landis and Koch or the Fleiss/Cicchetti scales, kappa values were 5.25 
times more likely to be derived from the bottom categories where κ < 0.60. 
   Therefore, when using either of these guidelines to describe the relative strength of agreement for 
kappa coefficient values, researchers and practitioners using a small set of observations should not be 
surprised if the value of κ is determined not to have great magnitude of agreement due to the lower 

probability of achieving a desired level of agreement  0.60. That is, using adjectives from either 
guideline of “substantial,” “good,” “almost perfect,” or “excellent” to describe the magnitude of 

agreement between two raters at a defined threshold of κ  0.60 may not be appropriate when using 
kappa with small sets of observations. This recommendation can be extended beyond the small data set 
example of N = 5 because when sample size increases, the ratio gap of N to sample space is augmented 
due to exponentially higher possible ratings for 2

20
 (N = 10), 2

30
 (N = 15) or, 2

40
 (N = 20) and power is 

lost, which leads to a lower probability that κ  0.60. 
 

Table 1. All Cell Distributions and Possible Combinations for N = 5   
Kappa SE PO PE Cell A Cell B Cell C Cell D Possible Combinations 

1.00* 0.0 1.00 1.00 5 0 0 0 1 
1.00*    0 0 0 5 1 
1.00* .45 1.00 .52 3 0 0 2 10 
1.00*    2 0 0 3 10 
1.00* .45 1.00 .68 4 0 0 1 5 
1.00*    1 0 0 4 5 
0.62* .41 .80 .48 2 0 1 2 30 
0.62*    2 1 0 2 30 
0.55 .40 .80 .56 1 0 1 3 20 
0.55    1 1 0 3 20 
0.55    3 0 1 1 30 
0.55    3 1 0 1 20 
0.29 .31 .60 .44 1 0 2 2 25 
0.29    2 2 0 1 25 
0.29    1 2 0 2 30 
0.29    2 0 2 1 30 
0.17 .45 .60 .52 1 1 1 2 60 
0.17    2 1 1 1 60 
0.12 .21 .40 .32 1 3 0 1 20 
0.12    1 0 3 1 20 
    0 0.0 .80 .80 0 1 0 4 5 
    0    4 1 0 0 5 
    0    4 0 1 0 5 
    0    0 0 1 4 5 
    0 0.0 .60 .60 0 0 2 3 10 
    0    3 2 0 0 10 
    0    3 0 2 0 10 
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Table 1 (continued). All Cell Distributions and Possible Combinations for N = 5   
Kappa SE PO PE Cell A Cell B Cell C Cell D Possible Combinations 

    0    0 2 0 3 10 
    0 0.0 .40 .40 0 3 0 2 10 
    0    2 3 0 0 10 
    0    0 0 3 2 10 
    0    2 0 3 0 10 
    0 0.0 .20 .20 0 0 4 1 5 
    0    1 4 0 0 5 
    0    0 4 0 1 5 
    0    1 0 4 0 5 
    0 0.0 0.0 0.0 0 0 5 0 1 
    0    0 5 0 0 1 
-0.15 .41 .40 .48 1 2 1 1 60 
-0.15    1 1 2 1 60 
-0.25 .45 .60 .68 3 1 1 0 20 
-0.25    0 1 1 3 20 
-0.36 .40 .40 .56 0 2 1 2 30 
-0.36    2 2 1 0 30 
-0.36    2 1 2 0 20 
-0.36    0 1 2 2 30 
-0.43 .31 .20 .44 1 1 3 0 20 
-0.43    0 3 1 1 20 
-0.43    1 3 1 0 25 
-0.43    0 1 3 1 25 
-0.47 .21 0.0 .32 0 4 1 0 5 
-0.47    0 1 4 0 5 
-0.67 .45 .20 .52 0 2 2 1 30 
-0.67    1 2 2 0 30 
-0.92 .41 0.0 .48 0 3 2 0 10 
-0.92    0 2 3 0 10 

Note: SE = standard error derived from Fleiss‟ (1981) corrected standard error, PO = observed agreement, 

PE = expected percentage of chance agreement. * = κ  0.60 
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