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Model Selection with Information  

Complexity in Multiple Linear Regression Modeling 
   Hongwei Yang           Hamparsum Bozdogan 
   University of Kentucky              University of Tennessee 

This paper aims to introduce to applied researchers a new family of information model selection criteria 

in multiple linear regression models. These criteria are known as information complexity (ICOMP) 

criteria. The paper provides supportive evidence under the R language to show the effectiveness of 

ICOMP and its tendency to outperform some other traditional criteria: AIC, SBC, etc. This paper also 

creates a framework on which to base future work in applying ICOMP to more general regression 

modeling problems in R. 

he selection of an appropriate model from a potentially large class of candidate models is an issue 

that is central to regression, time series modeling, and generalized linear models (McQuarrie & 

Tsai, 1998). In multiple linear regression, statistical model evaluation and selection involves 

evaluating a pool of subsets of predictors and selecting the best subset that predicts the response with 

sufficient accuracy from predictor variables that can be measured cheaply (Miller, 2002). Given a large 

number of predictor variables, the hope is to identify a small subset of them that gives adequate prediction 

accuracy for a reasonable cost of measurement. On the other hand, it is well known that, for multiple 

linear regression models fitted using least squares, the variance of the predicted response values increases 

monotonically with the number of predictor variables used in the prediction equation, and this increased 

prediction variability is traded off against reduced prediction bias. The question of how this trade-off 

should be handled is a critical problem in this field of subset selection in multiple linear regression 

modeling. 

  The problem of selecting the best regression subset is not trivial particularly when there are a large 

number of potential predictors. This is so because, usually without a precise knowledge of the relationship 

between the response and the predictors, researchers have to find a way of developing, validating, 

evaluating and selecting regression models and the increase in the number of predictors complicates the 

process. In addition to theoretical considerations, researchers also rely on data-adaptive approaches to 

regression model selection. Hypothesis-test-based stepwise regression is one of many data-adaptive 

model selection techniques that are commonly used today, which adds and/or removes predictors based 

on partial F or t statistics with arbitrarily set probabilities of entry and removal after controlling the 

contributions of other predictors, if any, already in the model. However, hypothesis-test-based stepwise 

regression has known problems. First, there is no guarantee that the final model from stepwise regression 

is optimal in any specified sense (Tamhane & Dunlop, 1999). Stepwise procedures can sometimes err by 

identifying a suboptimal regression model as “best” (Kutner, Nachtsheim, & Neter, 2004). Second, the 

probabilities for entry and removal of predictors are arbitrarily set, so plenty of subjectivity exists in the 

model search process. 

  As an alternative to model selection via hypothesis testing, information model selection criteria are 

recommended for comparing and evaluating competing regression and other statistical models (Burnham 

& Anderson, 2002). As is compared with the usual methods of hypothesis testing, the use of information 

criteria in model selection has had a much shorter exposure in statistics. Information criteria belong to the 

group of relative fit criteria which select the best model from a pool of models that we have specified. 

Relying on information criteria, we can identify the model that appears to be the best among its 

competitors (Skrondal & Rabe-Hesketh, 2004), and the model is the best in the sense of optimizing 

information criteria. So, a critical task for users of information criteria is to set up more appropriate 

competing models by making use of knowledge regarding the object (Konishi & Kitagawa, 2010). 

Information criteria can be used with many data-adaptive automatic model selection algorithms including 

stepwise regression, all-possible-subset regression, and genetic algorithms (Bozdogan, 2004). 

There are two approaches to information model selection criteria: 1) Information- theoretic approach, and 

2) Bayesian approach (Ando, 2010; Konishi & Kitagawa, 2010). The former approach includes Akaike's 

Information Criterion or AIC (Akaike, 1973; 1987), Consistent Akaike's Information Criteria or CAIC 

(Bozdogan, 1987), etc. The latter approach includes Schwartz Bayesian Criterion or SBC (Schwartz, 

1978), etc. The AIC-type criteria and their variants are constructed as estimators of the Kullback-Leibler 

T 
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(K-L) information (Kullback & Leibler, 1951) between a statistic’s model and the true distribution 

generating the data. In contrast, the Bayes approach for selecting a model is to choose the model with the 

largest posterior probability among a set of competing models. Information criteria usually assess how 

badly a model fits the data while adjusting for the level of complexity of a model (i.e., the number of free 

parameters, interdependency of parameter estimates, etc.) (Bozdogan, 2004), so the best approximating 

model is selected as the one that minimizes the criterion. Due to the availability of multiple criteria, 

matching appropriate selection criteria to a given problem or data set has received much attention in the 

literature (McQuarrie & Tsai, 1998). 

  Many information criteria appear similar in form to AIC because they all take the form of 1) a 

penalized log likelihood: a badness/lack of fit term, or a negative log likelihood term, plus 2) a penalty 

term (Sclove, 1987). For example, the formula for AIC is (-2) times the maximized log likelihood 

function plus 2 times the number of free parameters, with the former term describing lack of fit and the 

latter penalizing the number of free parameters in the model. In AIC, a measure of model complexity is 

comprised of the number of free parameters (Bozdogan, 2004). Like AIC, many other information criteria 

also contain two terms that serve similar purposes. They usually use the same lack of fit term as AIC, but 

differ in how to penalize model complexity. 

  Bozdogan's Information Complexity Criterion or ICOMP is a relatively new family of model 

selection criterion (Bozdogan, 2004). Like AIC and other criteria, ICOMP uses (-2) times the maximized 

log likelihood to measure the lack of fit of the model. On the other hand, the complexity of the model is 

measured based on a generalization of the covariance complexity index introduced by Van Emden (1971). 

Unlike AIC, which defines model complexity as number of free parameters, ICOMP measures this 

concept with both the number of free model parameters and the interdependency of parameter estimates. 

According to Bozdogan (2004), Konishi and Kitagawa (2010), and Mulaik (2009), a generic formula of 

ICOMP is:  

             ICOMP = -2logL( ̂) + 2C( ̂ ),  
 

where  ̂ is the maximum likelihood estimate of the parameter vector under the model whose covariance 

matrix is denoted by   ̂  = Est.Cov( ̂), and where C represents a real-valued complexity measure of  ̂ . 

Usually two types of C measures exist denoted by C1(*) and C1F(*), respectively. Both of them are 

designed to transform a covariance matrix into a scalar value, which is then used to measure model 

complexity. The covariance matrix inside the parenthesis of the two complexity measures is called the 

inverse Fisher Information Matrix (IFIM). Bozdogan (2004) developed several IFIMs to handle different 

modeling conditions (e.g., mis-specification resistant vs. otherwise). Loosely speaking, when applying a 

complexity measure (either by C1(*) or C1F(*)) to IFIM, the model complexity part of ICOMP is created, 

which is combined with the lack of fit part to construct an ICOMP criterion. 

 Although the use of AIC, CAIC, and SBC in regression analysis is well documented in the literature 

(Burnham & Anderson, 2002; Claeskens & Hjort, 2008; McQuarrie & Tsai, 1998; Miller 2002) partially 

because they have been made readily available by major statistics programs, the research on applying 

ICOMP to regression modeling is very limited. Bozdogan and Haughton (1998) examined the 

performance of six ICOMP criteria using only the C1(*) measure of complexity in its early stage of 

development. Since then, more ICOMP criteria have been created that have extended the way model 

complexity is measured. So, this paper revisits the topic of ICOMP-based regression model selection 

using more recent ICOMP criteria that approach model complexity from beyond the C1(*) perspective to 

include the C1F(*) measure. Also, prior implementations of ICOMP have used MATLAB
®
, a program 

preferred mainly by engineers/mathematicians. Coding ICOMP in R is desired because R is more readily 

available and is better accepted in non-engineering/non-math fields 

 In sum, this study aims to achieve the following: 1) familiarizing applied researchers using regression 

with ICOMP, 2) comparing the performance of ICOMP in regression with that of other criteria, and 3) 

creating ICOMP routines in R (available upon request from the authors) to present the criteria in a better 

accepted environment. 
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  Before continuing, some key general issues in model selection are briefly discussed: 

  Best approximating model: This is the model in the pool of candidate models that is “closet” 

to the true model (Bozdogan & Haughton, 1998). The objective of modeling is to obtain a 

“good” model, rather than the true model (Konishi & Kitagawa, 2010). This true model, which 

in the background generated the data, might be very complex and almost always unknown. For 

working with the data, it may be more practical to work instead with a simpler, but almost-as-

good model, and, hence, the best approximating model. A true model can be defined explicitly 

only in some special situations such as in computer simulations. In this paper, the good model 

and the best model are both used to refer to the best approximating model. 

  Consistency: A model selection criterion is considered to be consistent if the probability of 

selecting the best approximating model converges to one as the sample size goes to infinity. 

Because an infinitely large sample is impossible to obtain, the paper focuses on the behavior of 

ICOMP criteria as the sample size is finite and keeps increasing. If the performance of ICOMP 

improves as sample size increases, it provides supportive evidence of ICOMP being consistent. 

  Overfitting and underfitting: Statistical modeling has to balance simplicity (i.e., fewer 

parameters in a model, lower variability in the predicted response, but with more modeling bias) 

against complexity (i.e., more parameters in a model, higher variability in the predicted 

response, but with smaller modeling bias). Statistical model selection criteria have to seek a 

proper balance between overfitting (i.e., a model with too many parameters, more than actually 

needed) and underfitting (i.e., a model with too few parameters, not capturing the right signal) 

(Claeskens & Hjort, 2008). A criterion underfits/overfits a model when it selects a model that 

contains fewer/more parameters than does the best approximating model (Bozdogan & 

Haughton, 1998). 
 

Theoretical Framework 

A multiple linear regression model under normality is defined by: 
 

                                      (1) 
                                  
 

where y is an (nx1) vector of observed values of the response variable, X is an (nxq) full rank matrix 

representing n observations with each one measured on k variables and q = k + 1, β is a (qx1) matrix of 

unknown regression coefficients, and ε is an (nx1) vector of i.i.d. random errors. Further, suppose y ~ 

Nn(Xβ, σ
2
I) and ε ~ Nn(0, σ

2
I) with σ

2
 being the unknown variance of random errors.  

  To evaluate how well an estimated regression model under Equation (1) fits the observed data, 

ICOMP criteria are presented below. ICOMP criteria share the same badness/lack of fit term as AIC, 

CAIC, etc., which equals (-2) times the maximized log likelihood function, but ICOMP criteria measure 

model complexity differently. 
 

Badness/Lack of Fit Term of ICOMP 

Given the multiple regression model in Equation (1) the maximum likelihood estimates or MLE’s of β
 

and σ
2
 are given by: 

            ̂ = (X′X)
-1

 X′y ,          (2) 

          ̂   = 
 

 
(y – X ̂)′ (y – X ̂)          (3) 

 

Hence, the maximized log likelihood function is 
 

       logL( ̂,  ̂  ) = - 
 

 
 n log(2π) -  

 

 
 log( ̂ ) - 

 

 
 n       (4) 

 

The badness/lack of fit part of ICOMP is thus: 
 

       -2logL( ̂,  ̂  ) = n log(2π) + n log( ̂ ) + n        (5) 
 

Model Complexity Term of ICOMP 

  The model complexity term of ICOMP takes various forms, so various versions of ICOMP can be 

defined. Basically, this term is defined as the complexity of inverse the Fisher Information Matrix or 

IFIM (Bozdogan, 2004). There are two ways to measure the complexity of a matrix, namely C1(*) and 
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C1F(*). There are also two different forms of IFIM, namely IFIM and mis-specified IFIM. Presented next 

are three approaches to model complexity in ICOMP with different combinations of 1) complexity 

measure (C1(*) vs. C1F(*)) and 2) IFIM (IFIM vs. mis-specified IFIM). 

  The first approach to ICOMP complexity takes the C1(*) complexity of F
-1

, denoted by C1(F
-1

), where 

F
-1

 is the estimated inverse Fisher Information Matrix of the regression model given by 
 

       F
-1

 = Est.Cov( ̂,σ
2
) =  [

 ̂          

  
  ̂  

 

] 

 

Now invoking the complexity measure the C1to F
-1

we have the scalar value of its complexity given by:  
 

       C1(F
-1

) = 
 

 

 
   [

       

 
]   

 

 
   |   | ,          (6) 

 

 where         s = dim(F
-1

) = rank(F
-1

)             (7) 
 

For the regression model in Equation (1), s = dim(F
-1

) = rank(F
-1

) = q. Further suppose the eigenvalues of 

Est.Cov( ̂,σ
2
) are λ1, λ2, . . ., λq. Therefore, 

 

      C1(F
-1

)  = 
 

 
   [

       

 
]   

 

 
   |   | 

 

        = 
 

 
   [

∑   
 
   

 
]   

 

 
   |∏   

 
   | 

 

        = 
 

 
   [

 ̅ 

 ̅ 
] 

where  ̅  = 
 

 
∑   

 
    is the arithmetic mean of the eigenvalues of F

-1
 and  ̅  = [∏   

 
   ]

 

 
 is the 

corresponding geometric mean. 

  The second approach to ICOMP complexity takes the C1F(*) complexity of F
-1

 denoted by C1F(F
-1

). 

This second complexity measure is used to avoid the problematic situation where C1(F
-1

) becomes zero; it 

measures the relative variation in the eigenvalues and is given by: 
 

       C1F(F
-1

) = 
 

  ̅ 
 ∑      ̅  

  
     .           (8) 

 

 The third approach to ICOMP complexity uses both F
-1

 and its outer product form R. For the 

regression model in Equation (1), the estimated outer product form of the Fisher Information Matrix is 

given by: 

        R =  [

 

  ̂  
       

  

  ̂ 

    
  

  ̂   
      

  ̂  

] ,           (9) 

 

where D
2
 = diag[  ̂

 ,   ̂
 , , . . .,   ̂

 ] with  , i = 1,2, . . ., n, being squared residuals from the fitted regression 

model, Sk is the estimated residual skewness, Kt the estimated residual kurtosis, and 1 is an (nx1) vector 

of ones. Formulas for Sk and Kt are respectively given by: 
 

      Sk = 

 

 
∑  ̂ 

  
   

 ̂   ,   and     Kt = 

 

 
∑  ̂ 

  
   

 ̂    
 

With F
-1

 and R, the mis-specified version of the estimated IFIM can be defined: 
 

              Est.Cov( ̂,σ
2
)Mis = F

-1
RF

-1
 

 

 Therefore, the third approach to ICOMP complexity takes the C1(*) complexity of F
-1

RF
-1

 denoted by 

C1(F
-1

RF
-1

). This version of ICOMP provides a protection against model mis-specification (Bozdogan, 

2004).  
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ICOMP and Non-ICOMP Criteria 

  Based on the information presented previously, formulas for several ICOMP criteria are given below, 

along with formulas for several non-ICOMP criteria. 
 

     AIC  =                ̂                    (10) 
 

     AICC  =                ̂      [
      

     
]         (11) 

 

     CAIC  =                ̂     [        ]         (12) 
 

     SBC  =                ̂     [      ]          (13) 
 

     ICOMPC1  =                ̂          
     

                        (14) 

         =                ̂      [
 

 
   (

 ̅ 

 ̅ 
)]  

 

      ICOMPC1F =                ̂           
     

                        (15) 

         =                ̂      [
 

  ̅ 
 ∑      ̅  

  
   ]  

 

Finally, according to the mis-specified IFIM or Est.Cov( ̂,σ
2
)Mis, the mis-specified ICOMP can be defined 

by: 

     ICOMPMis =                ̂        [         ̂  ̂
     ]  

                        (16) 

        =                ̂        [ 
      ]  

 

  Further analyses are based on the seven criteria presented above. Data sources and the simulation 

protocol are detailed in the next section. 

 

Monte Carlo Simulation Examples 

Simulation Protocol 

Determining the effectiveness of an information criterion involves evaluating cumulative model selection 

results from repeated random sampling: running the simulation repeatedly and finding the number of 

times that the best approximating model is identified by each criterion. Data sets used in the study are 

generated using Monte Carlo methods (Bozdogan & Haughton, 1998). The study simulates data sets 

where the true regression model has five predictors, namely x1, x2, x3, x4, and x5. And the analysis is 

performed respectively for three sample sizes, namely n = 50, 100, and 1000. 

Suppose zi ~ N(0,1), i = 1, 2, . . ., 6. The following simulation protocol is used: 
 

         xi = √    
 zi  + α1z6  when i = 1, 2, 3          

        xi = √    
 zi  + α2z6  when i = 4, 5.          

 

α1 and α2  are parameters controlling the degree of multicollinearity, and   
  = 0.3 and   

  = 0.5 to yield a 

reasonable covariance structure for X = {x1,x2,x3,x4,x5}. Given X already generated using the above 

protocol, the focus is now on obtaining β. Here, β is generated from the eigenvectors of (X′X). Three β 

vectors are obtained from (X′X) and used to produce three sets of (Xβ) values having different degrees of 

variability, namely βmax, βmin, and βint. The eigenvector corresponding to the largest eigenvalue of (X′X) is 

denoted as βmax, that corresponding to the smallest eigenvalue as βmin, and that equal to ½(βmax+βmin) as 

βint. So, according to Johnson and Wichern (1992), (Xβmax) possesses the largest variability, (Xβmin) the 

smallest variability, and (Xβint) the intermediate variability. Given X and β, y = Xβ + ε. Here, ε is 

simulated from a normal distribution with a mean of 0 and a user-specified variance, σ
2
. 

 

Two Modeling Conditions 

Given X and y, the performance of information criteria is examined under two conditions. One condition 

has the true model included in the pool of candidate models, whereas the other one does not. The good 
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model is to be identified in both conditions. When the true model is in the pool, the good model is just the 

true model. Otherwise, the good model is the one that is “closest” to the true model. 

 

When the True Model is Included  

  This part of the analysis assesses the number of times that ICOMP criteria successfully identify the 

true model, which ICOMP criteria overfit a model, and that ICOMP criteria underfit a model. To add 

more competing models to the pool, two additional variables x6 and x7 are added to X with both of them 

generated from an exponential distribution Exp (0.1). A total of seven models are evaluated and compared 

using information criteria, namely {x1}, {x1,x2 },  …, and {x1,x2, ..., xK}, K = 3, 4, …, 7. The true model is 

the one with five predictors: {x1,x2,x3,x4,x5}. 

 

When the True Model is Not Included  

  This part of the analysis assesses the number of times that ICOMP criteria select the good model 

minimizing the K-L distance between the true model and each estimated model. Here, x1, x2, x3, and x4 

are used to create the pool of candidate models. A total of four models are created, evaluated, and 

compared using information criteria, namely {x1}, {x1,x2 }, {x1,x2,x3}, and {x1,x2,x3,x4}. The true model 

is still the one with five predictors: {x1,x2,x3,x4,x5}, although it is not in the pool of competing models. 

The model in the pool that minimizes the K-L distance from the true model is the one with four 

predictors: {x1,x2,x3,x4}. Hereafter, Models 1 through 7 refer to the regression models with 1 through 7 

predictor variables, respectively. For example, Model 3 is the regression model that contains just three 

predictors x1 through x3, or
 
{x1,x2,x3}. 

 

Simulation Results 

With the True Model Included 

  Tables 1, 2, and 3 present the model selection results from the case when the true model is included, 

with Table 1 corresponding to βmax, Table 2 to βint, and Table 3 to βmin. In each table, seven model 

selection criteria are scored to evaluate seven regression models: Models 1 to 7 described above under 

three sample sizes (i.e., small, medium, and large): nmin = 50, nint = 100, and nmax = 1000. Since it is Model 

5 that simulates the data, the goal of using model selection criteria is to identify this model as the best 

model. 

  Under each β by n combination, two sets of simulations are run. In the first set of simulations, a total 

of 100 runs are performed, whereas in the second set, as many as 10,000 runs are performed. So, cells in 

each table contain two integers separated by a forward slash sign which are frequencies of each 

competing model being selected under the two sets of simulations (100 runs/10,000 runs), respectively. 

Model selection results from the two sets of simulations are compared with each other in a few aspects: 

frequency and/or percentage of identifying the best approximating model, etc. Conclusions are drawn 

from the patterns found from both sets of simulations. Given any inconsistency in results between the two 

sets of simulations, those from the second set with a larger number of simulations prevail, because they 

explore a larger model space. 

 In addition to model selection frequencies in each of the tables, Figures 1 and 2 present the average 

percentage of the true model (Model 5) selection as a function of sample size and variability in (Xβ), 

respectively. Finally, Figure 3 compares all seven criteria in terms of the range of percentages of each of 

Models 1 through 7 being selected. 

The model selection results are examined in the following three aspects: 

(1) The increase in sample size tends to improve the performance of all seven criteria in 

identifying the true model, or Model 5, and this supports the consistency property of all seven 

criteria. This trend is indicated relatively clearly in all seven line graphs in Figure 1, particularly 

when the number of runs is larger. In that figure, when the number of runs is 10,000, with an 

increase in sample size (from 50 to 100, again to 1,000), each line graph keeps showing an 

upward trend, which indicates that the average percentage of successfully identifying the true 

model is increasing. When the number of runs is only 100, five of the seven information criteria 

present an upward trend with an increase in sample size. Two of them, AICC and ICOMPC1F,  
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Table 1. Frequency of Model Selection Given Maximum Variability with True Model (100/10,000 runs) 

Criterion n 1 2 3 4 5* 6 7 

AIC 50 0/0 0/0 0/6 2/143 72/7179 15/1506 11/1166 

 100 0/0 0/0 0/0 0/0 78/7582 12/1467 10/951 

 1000 0/0 0/0 0/0 0/0 73/7822 15/1337 12/841 

AICc 50 0/0 0/0 0/11 2/210 79/8112 12/1085 7/582 

 100 0/0 0/0 0/0 0/1 84/8052 9/1251 7/696 

 1000 0/0 0/0 0/0 0/0 73/7874 15/1313 12/813 

CAIC 50 0/0 0/1 0/52 6/526 89/8940 4/381 1/100 

 100 0/0 0/0 0/0 0/15 99/9698 1/252 0/35 

 1000 0/0 0/0 0/0 0/0 99/9947 1/49 0/4 

SBC 50 0/0 0/1 0/30 3/371 87/8751 7/613 3/234 

 100 0/0 0/0 0/0 0/9 97/9490 3/414 0/87 

 1000 0/0 0/0 0/0 0/0 99/9890 1/100 0/10 

ICOMPC1 50 0/0 0/0 0/0 0/41 95/9437 4/407 1/115 

 100 0/0 0/0 0/0 0/0 97/9532 3/387 0/81 

 1000 0/0 0/0 0/0 0/0 96/9615 4/331 0/54 

ICOMPC1F 50 0/0 0/0 0/0 0/22 50/5152 31/2849 19/1977 

 100 0/0 0/0 0/0 0/0 53/5041 26/2969 21/1990 

 1000 0/0 0/0 0/0 0/0 37/5007 39/3028 24/1965 

ICOMPMis 50 0/0 0/0 0/0 0/100 93/9236 6/532 1/132 

 100 0/0 0/0 0/0 0/2 97/9423 3/482 0/93 

 1000 0/0 0/0 0/0 0/0 94/9578 6/362 0/60 
 

Table 2. Frequency of Model Selection Given Intermediate Variability with True Model (100/10,000 runs) 

Criterion n 1 2 3 4 5* 6 7 

AIC 50 0/6 0/142 10/644 14/1696 54/5190 13/1282 9/1040 

 100 0/1 1/53 2/305 14/1204 61/6221 12/1334 10/882 

 1000 0/0 0/0 0/0 0/6 73/7818 15/1337 12/839 

AICc 50 0/9 0/198 12/854 17/2033 57/5541 8/877 6/488 

 100 0/2 1/62 2/343 15/1333 66/6510 9/1123 7/627 

 1000 0/0 0/0 0/0 0/6 73/7870 15/1313 12/811 

CAIC 50 1/111 2/602 21/1658 20/2459 51/4864 4/240 1/66 

 100 0/16 4/292 9/917 26/2144 60/6428 1/181 0/22 

 1000 0/0 0/0 0/0 0/25 99/9922 1/49 0/4 

SBC 50 1/51 1/412 18/1316 20/2318 54/5292 4/434 2/177 

 100 0/11 4/212 9/751 21/1954 63/6681 3/329 0/62 

 1000 0/0 0/0 0/0 0/23 99/9867 1/100 0/10 

ICOMPC1 50 0/0 0/5 0/99 10/831 85/8548 4/403 1/114 

 100 0/0 0/5 0/31 7/447 90/9051 3/386 0/80 

 1000 0/0 0/0 0/0 0/1 96/9614 4/331 0/54 

ICOMPC1F 50 0/0 0/1 0/42 5/411 45/4761 31/2822 19/1963 

 100 0/0 0/1 0/11 5/172 49/4863 25/2966 21/1987 

 1000 0/0 0/0 0/0 0/0 37/5007 39/3028 24/1965 

ICOMPMis 50 0/0 0/31 2/195 10/1232 81/7924 6/492 1/126 

 100 0/0 0/9 1/78 6/639 90/8719 3/467 0/88 

 1000 0/0 0/0 0/0 0/2 94/9576 6/362 0/60 

* The true model 
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Table 3. Frequency of Model Selection Given Minimum Variability with True Model (100/10,000 runs) 

Criterion n 1 2 3 4 5* 6 7 

AIC 50 0/0 3/133 4/755 13/1599 58/5205 14/1271 8/1037 

 100 0/0 1/67 6/647 15/1567 61/5608 8/1262 9/849 

 1000 0/0 0/19 10/504 13/1500 56/6059 13/1162 8/756 

AICc 50 0/0 3/184 5/969 15/1886 60/5616 12/867 5/478 

 100 0/0 1/77 6/735 17/1693 63/5832 6/1050 7/613 

 1000 0/0 0/19 11/509 12/1508 56/6098 13/1139 8/727 

CAIC 50 1/9 5/576 13/1854 21/2244 56/4977 3/263 1/77 

 100 0/0 4/331 19/1799 20/2252 56/5430 1/161 0/27 

 1000 0/0 1/106 20/2060 31/2344 47/5462 1/27 0/1 

SBC 50 0/2 4/405 7/1494 20/2149 61/5337 6/450 2/163 

 100 0/0 2/228 14/1507 21/2173 61/5741 2/283 0/68 

 1000 0/0 1/87 19/1832 23/2287 56/5734 1/56 0/4 

ICOMPC1 50 0/0 0/2 2/80 6/680 87/8719 4/404 1/115 

 100 0/0 0/2 0/50 6/564 91/8917 3/386 0/81 

 1000 0/0 0/0 1/30 2/458 93/9130 4/328 0/54 

ICOMPC1F 50 0/0 0/0 0/24 1/265 49/4894 31/2843 19/1974 

 100 0/0 0/0 0/6 3/183 50/4856 26/2967 21/1988 

 1000 0/0 0/0 0/0 1/83 36/4924 39/3028 24/1965 

ICOMPMis 50 0/0 0/16 2/194 10/1091 83/8080 4/493 1/126 

 100 0/0 0/6 0/123 8/889 89/8428 3/463 0/91 

 1000 0/0 0/0 2/52 4/543 88/8989 6/356 0/60 

* The true model 

 

have a turning point when the sample size is medium, indicating that they perform the best 

when the sample is neither largest nor smallest. This observation under only 100 simulations is 

not consistent with that when the number of runs is 10,000, thus we consider it to be 

untrustworthy due to the small number of simulations. Finally, the performance of ICOMPC1F 

does not seem to be very consistent with that of the rest. Its performance under 10,000 runs of 

simulations increases only slightly when the sample size jumps from 50 to as large as 1,000, 

whereas all other criteria show a marked increase in the average percentage of identifying the 

true model when increasing the sample size. 

(2) The increase in the variability of (Xβ)
 
tends to improve the performance of all seven criteria. 

This trend is clearly indicated in Figure 2 for both sets of simulations for six of the seven 

criteria (excluding ICOMPCIF); and, the two trend lines representing 100 and 10,000 simulations 

in each of the six graphs almost completely overlap, so that they are almost indistinguishable 

from each other. When sample size increases from 50 to 1,000, a marked increase in the average 

percentage of identifying the true model is observed for AIC (approximately from 60% to 78%), 

AICC (approximately from 60% to 80%), SBC (approximately from 60% to 96%), and CAIC 

(approximately from 58% to 98%). A relative moderate increase is observed for ICOMPC1 

(approximately from 90% to 99%) and ICOMPMis (approximately from 90% to 98%). These 

two ICOMP criteria are already successful at as high as 90% of the time when (Xβ) assumes the 

minimum variability, so there is not much room for improvement for the two of them given 

more variability in (Xβ). Finally, ICOMPC1F fails to meet our expectations again this time. 

When the other criteria are becoming more and more capable of identifying the true model with 

increasing variability in (Xβ), the increase in the performance of ICOMPC1F is negligible under 

the larger set of simulations. 

(3) An overall comparison of all seven criteria is found in Figures 1, 2, and 3. In Figures 1 and 

2, it can be seen that on average both ICOMPC1 and ICOMPMis tend to outperform non-ICOMP  
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Figure 1. Comparison of average percentage of true 

  model selection (Model 5) as a function of sample size 

  under 100 and 10000 runs of simulations. 

 
Figure 2. Comparison of average percentage of 

 true model selection (Model 5) as a function of 

 variability under 100 and 10000 runs  

of simulations. 

 
Figure 3. Comparison of range of percentages of model selection by 

all seven information criteria with true model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

criteria: AIC, AICC, SBC, and 

CAIC, and, in Figure 3, the range 

of percentages of successfully 

identifying the true model from 

each simulation condition tends 

to be higher for the two ICOMP 

criteria than for all other criteria. 

However, ICOMPC1F does not 

seem to perform as well as the 

other two ICOMP criteria, and is 

probably the worst of all seven 

criteria in terms of the likelihood 

of identifying the true model. 

The bad performance of this 

criterion is due to its tendency to 

select more complex models, 

either Model 6 or Model 7. In 

Figure 3, such an overfitting 

tendency of ICOMPC1F is clearly 

observed. This criterion is much 

more likely to select either 

Model 6 or Model 7 than all 

other criteria, thus causing it to 

be less successful in identifying 

the true model, or Model 5. 
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Table 4. Frequency of Model Selection Given Maximum Variability  

Without True Model (100/10,000 runs) 

Criterion n 1 2 3 4* 

AIC 50 0/0 1/1 2/278 97/9721 

 100 0/0 0/0 0/9 100/9991 
 1000 0/0 0/0 0/0 100/10000 

AICc 50 0/0 1/2 5/346 94/9652 
 100 0/0 0/0 0/14 100/9986 
 1000 0/0 0/0 0/0 100/10000 

CAIC 50 0/0 1/25 9/828 90/9147 
 100 0/0 0/0 1/76 99/9924 
 1000 0/0 0/0 0/0 100/10000 

SBC 50 0/0 1/12 7/611 92/9377 
 100 0/0 0/0 1/51 99/9949 
 1000 0/0 0/0 0/0 100/10000 

ICOMPC1 50 0/0 0/0 0/40 100/9960 
 100 0/0 0/0 0/0 100/10000 
 1000 0/0 0/0 0/0 100/10000 

ICOMPC1F 50 0/0 0/0 0/31 100/9969 
 100 0/0 0/0 0/0 100/10000 
 1000 0/0 0/0 0/0 100/10000 

ICOMPMis 50 0/0 0/0 1/153 99/9847 
 100 0/0 0/0 0/3 100/9997 
 1000 0/0 0/0 0/0 100/10000 

 

Table 5. Frequency of Model Selection Given Intermediate Variability  

Without True Model (100/10,000 runs) 

Criterion n 1 2 3 4* 

AIC 50 0/38 4/392 25/2023 71/7547 

 100 0/1 2/218 12/1226 86/8555 
 1000 0/0 0/0 0/3 100/9997 

AICc 50 0/45 5/481 27/2244 68/7230 
 100 0/2 3/234 12/1285 85/8479 
 1000 0/0 0/0 0/3 100/9997 

CAIC 50 1/238 7/1068 39/3041 53/5653 
 100 0/35 7/634 21/2133 72/7198 
 1000 0/0 0/2 0/10 100/9988 

SBC 50 1/145 6/828 33/2762 60/6265 
 100 0/23 5/513 20/1919 75/7545 
 1000 0/0 0/1 0/8 100/9991 

ICOMPC1 50 0/5 2/83 8/747 90/9165 
 100 0/0 0/39 4/380 96/9581 
 1000 0/0 0/0 0/0 100/10000 

ICOMPC1F 50 0/5 2/58 4/575 94/9362 
 100 0/0 0/25 3/266 97/9709 
 1000 0/0 0/0 0/0 100/10000 

ICOMPMis 50 0/6 1/159 13/1092 86/8743 
 100 0/0 0/57 7/579 93/9364 
 1000 0/0 0/0 0/0 100/10000 

* The best approximating model 

 

With the True Model Excluded  

  Tables 4, 5, and 6 present the 

model selection results from the 

case when the true model is 

excluded, with Table 4 

corresponding to βmax, Table 5 to 

βint, and Table 6 to βmin. In each 

figure, seven model selection 

criteria are scored to evaluate four 

regression models: Models 1 to 4 

described above, with Model 4 

being the best approximating 

model of the true model: Model 5. 

Three different sample sizes (i.e., 

small, medium, and large) are 

used, namely nmin = 50, nint = 100, 

and nmax = 1000.  

  Similar to the previous case 

with the true model included, 

under each β by n combination, 

two sets of simulations are 

performed for the purpose of cross-

validating model selection results. 

The first set contains 100 runs of 

simulations whereas the second set 

10,000 runs. So, cells in each of 

Tables 4, 5, and 6 also contain two 

integers separated by a forward 

slash sign which represent 

frequencies of each competing 

model being selected under the two 

sets of simulations (100 

runs/10,000 runs), respectively. 

  Besides, Figures 4 and 5 

present the average percentage of 

the best approximating model 

(Model 4) selection as a function 

of sample size and variability in 

(Xβ), respectively. Finally, Figure 

6 compares all seven criteria using 

the range of percentages of each of 

Models 1 through 4 being selected 

under each simulation condition. 

  Under the second case, where 

Model 4 is the best, similar 

patterns of criterion performance 

are found. In Figure 4, the two 

lines of 100 and 10,000 

simulations both show a continuing 

upward trend with an increase in 

sample size for all seven criteria 

(i.e., the ICOMPC1 line for the 

smaller number of simulations  
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Table 6. Frequency of Model Selection Given Minimum Variability  

Without True Model (100/10,000 runs) 

Criterion n 1 2 3 4* 

AIC 50 3/127 5/572 20/2720 72/6581 

 100 1/10 2/296 29/2533 68/7161 

 1000 0/0 0/58 22/2094 78/7848 

AICc 50 3/177 8/680 20/2921 69/6222 
 100 1/10 3/315 29/2665 67/7010 
 1000 0/0 0/58 23/2099 77/7843 

CAIC 50 8/604 14/1269 29/3513 49/4614 
 100 1/48 9/767 43/3765 47/5420 
 1000 0/0 1/196 39/4023 60/5781 

SBC 50 8/401 10/1042 26/3322 56/5235 
 100 1/31 8/618 39/3549 52/5802 
 1000 0/0 1/167 37/3821 62/6012 

ICOMPC1 50 1/3 1/76 6/883 92/9038 
 100 0/1 0/34 2/677 98/9288 
 1000 0/0 0/4 10/523 90/9473 

ICOMPC1F 50 1/3 0/32 6/582 93/9383 
 100 0/1 0/9 1/388 99/9602 
 1000 0/0 0/1 2/184 98/9815 

ICOMPMis 50 1/12 3/159 6/1509 90/8320 
 100 0/2 0/54 10/1077 90/8867 
 1000 0/0 0/8 10/616 90/9376 

* The best approximating model 

may deviate a little bit, though), thus 

supporting their property of 

consistency. In Figure 5, such a 

continuing upward trend is also 

observed for all seven criteria when 

the variability in (Xβ)
 

increases. 

Finally, the performance of ICOMP 

criteria is generally better than that of 

non-ICOMP criteria. This is true of 

all three ICOMP criteria. In Figures 4 

and 5, the average performance of 

each ICOMP criterion under smallest 

sample size or smallest (Xβ)
 

variability is generally the same as or 

even better than that of each non-

ICOMP criterion under largest sample 

size or largest (Xβ)
 

variability. In 

Figure 6, the range of percentages of 

successfully identifying the best 

approximating model under each 

simulation condition tends to be 

higher for the three ICOMP criteria 

than for the four non-ICOMP criteria. 

Although ICOMPC1F performs less 

satisfactorily in the previous case that 

includes the true model, it performs 

as well as the other two ICOMP 

criteria in this second case. Such an 

increase in performance is probably  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
Figure 4. Comparison of average percentage of  
 best approximating model selection (Model 4) as a  
function of sample size under 100 and 10000  

runs of simulations. 

 
Figure 5. Comparison of average percentage of best 

approximating model selection (Model 4) as a function 

of variability under 100 and 10000 runs of simulations. 
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Figure 6. Comparison of range of percentages of model selection by 

all seven information criteria without true model. 

because this criterion tends to 

overfit a model and the best 

approximating model in the 

second case is already the most 

complex model. In other words, in 

both cases, ICOMPC1F tends to 

select a more complex model and, 

in the second case only, the most 

complex model happens to be the 

best approximating model. 

 

Conclusion 

  The paper provides support 

for the use of two ICOMP criteria 

in multiple linear regression to 

supplement existing information 

criteria commonly found in major 

statistics programs: AIC, CAIC, 

SBC, etc. The two recommended 

ICOMP criteria are ICOMPC1 and 

ICOMPMis. However, this paper 

has some reservations for the third 

ICOMP criterion, or ICOMPC1F, 

because it is usually prone to 

overfitting. 

The two recommended ICOMP 

criteria are usually more capable of successfully identifying the best approximating model than other 

criteria under the simulations of multiple linear regression modeling in this study. And their effectiveness 

can generally be improved by either increasing sample size or increasing the variability in (Xβ). 

 

 

  Future research on ICOMP could focus on its application to linear and nonlinear mixed models, 

which are extensions of the type of linear models covered in this paper. Mixed models consist of both 

fixed and random components and are capable of analyzing grouped, nested, or hierarchical data 

structures that are more commonly seen in many fields of study. ICOMP would be used to select fixed 

and/or random components in mixed models. Special ICOMP formulas should be developed for mixed 

models that correspond to formulas for marginal and conditional AIC (Vaida & Blanchard, 2005)  .
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A content analysis of the American Educational Research Journal and the Educational Evaluation and 

Policy Analysis journal for the use of multiple linear regression (MLR) was conducted. Two hundred 

articles were randomly sampled and coded to determine if basic reporting guidelines were followed. 

Results showed that standard reporting methods for MLR were not followed and the use of stepwise MLR 

was on the rise. Manuscripts using MLR did not apply necessary corrections for inflated Type I error 

rates. The majority of the sampled articles did not include key summary statistics, which violated the 

American Educational Research Association’s principle of transparency. The lack of consistency in 

reporting hindered critique of work, meta-analysis, and theory development. 

ultiple linear regression (MLR) is a common statistical technique used in educational research 

(Elmore & Woehlke, 1996). Used in experimental and non-experimental research designs alike, 

MLR involves the use of one or more predictor (i.e., independent) variables predicting some 

criterion (i.e., dependent) variable. Research conclusions based on MLR are used to influence education 

policy decisions (Clements & Sarama, 2008; Ingersoll, 2001; Stern, Dayton, Paik, & Weisberg, 1989), 

inform school reform efforts (Desimone, Smith, Baker, & Uano, 2005), determine variables considered in 

college admission (e.g., Zwick & Sklar, 2005), and identify relationships between school climate and 

student achievement (e.g., McInerney, Roche, McInerney, & Marsh, 1997; Pianta, Belsky, Vandergrift, 

Houts, & Morrison, 2008). Given the pervasive use of this technique in educational research, the 

improper interpretation of MLR results are far reaching. Hierarchical MLR (HMLR) and stepwise MLR 

(SMLR) are particularly susceptible to misreporting. Regrettably, as is detailed in this study, many 

educational researchers fail to avoid common misinterpretations of HMLR and SMLR. Research and 

statistical analysis classes typically focus on the scientific method and its fundamental guidance to 

conducting good research. Specifically, theory is developed and tested to determine if it can be supported. 

When theories endure multiple tests they are regarded as robust and acceptable – statistical analysis is a 

critical component in this process. In this respect, replication and statistical validity are critical to the 

development of sound theory. If researchers are unable to replicate research due to the lack of 

standardized reporting, or if researchers are concluding that hypotheses are supported when in fact they 

are not; proper development and acceptance of theory is jeopardized. 

  To facilitate replication of studies, transparency in reporting is essential. Transparency in research 

findings refers to the practice of revealing the key methodological components necessary for scrutiny and 

replication of research findings (American Educational Research Association (AERA), 2006). 

Transparency allows researchers to critique the statistical validity of a study, conduct replication studies, 

and ultimately ensure the accuracy of research claims. Despite the known importance of standard 

reporting practices and statistical validity, many researchers have failed to provide adequate transparency 

in their analysis. The purpose of this paper is to call attention to the frequency of inaccurate statistical 

claims (i.e., specifically as related to regression), call for statistical reporting standards, and provide 

recommendations to aid in the development of said standards. 

. 

Importance of Study 

  The use of MLR is common among education researchers (Elmore & Woehlke, 1996).  In Elmore and 

Woehlke’s review of articles published in the American Educational Research Journal (AERJ), 

Educational Researcher (ER), and the Review of Educational Research (RER) from 1988 to 1995, 

MLR/correlation emerged as the third most used statistical method following analysis of variance/analysis 

of covariance and descriptive methods (1996).  MLR continues to be utilized in contemporary research. In 

our random sample of 200 articles, 35% of our articles were published from 1968 to 1995. The remaining 

65% of the articles were published between 1996 and 2008, supporting the pervasiveness of the method in 

M 
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recent years. Given the popularity of MLR (Elmore & Woehlke), it is important to establish standardized 

reporting conventions and ensure that MLR results are reported accurately. In a recent article, Zientek and 

Thompson (2009) called for at a minimum, the reporting of matrix summaries when using continuous 

data (e.g., correlation matrix and standard deviations, or the variance-covariance matrices) as matrices 

support and encourage meta-analytic thinking. In an earlier paper, Thompson (2007) also called for basic 

reporting and research standards. The following quote from Thompson reflects his belief in the value of 

creating statistical reporting standards that reflect transparency and enable replication: “Vital aspects of 

scholarship include exposing one’s conclusions and their warrants to public scrutiny and disseminating 

one’s findings” (Thompson, 2007, p. 18).  

 

Standards for Reporting Empirical Research 

 Having standards in reporting statistical findings is important for a variety of reasons, namely it 

makes it easier to generalize findings across fields, ensures accuracy, enables understanding, provides 

information necessary for replication, and allows researchers to conduct meta-analysis. Our call for 

reporting standards is shared by other researchers and professional organizations. For example, both 

AERA and the American Psychological Association (APA) provide guidelines that encourage reporting 

standards and transparency. Specifically, AERA (2006) outlines two overarching principles for reporting 

empirical research: sufficiency and transparency. In short, adequate evidence should be provided to 

support results and conclusions and reports should be transparent. “Reporting that takes these principles 

into account permits scholars to understand one another’s work, prepares that work for public scrutiny, 

and enables others to use that work” (AERA, 2006, p. 33). AERA provides further detail for the area of 

analysis and interpretation reporting. Specifically, for quantitative methods, AERA calls for a statement 

of statistical analyses and why they were appropriate; descriptive and inferential statistics; discussion of 

considerations that arose during data collection and processing such as, missing data or attrition; 

considerations identified as a result of data analysis (e.g., violations of assumptions); and inclusion of a 

measure of effect size for each statistical result; standard error or confidence interval; test statistics and its 

significance level for hypothesis testing; and a qualitative description of the index of the effect. 

 The APA (2010) publication manual also provides guidelines for standard reporting practices. 

Specifically, they call for summary descriptive data, variance-covariance or correlation matrices, and 

results of inferential statistics (e.g., observed values, degrees of freedom, p values, standard errors, and 

effect sizes). 

 Conventions for reporting analysis of variance, t-tests, and correlation results have been well 

established for many years (Daniel, 2001; Schafer, 1991). Nonetheless, similar standards for reporting 

MLR results have not been established (Courville & Thompson, 2001; Schafer). In his 1991 editorial, 

Schafer offers recommendations for reporting hierarchical regression results. Schafer proposes that 

authors report both descriptive and inferential statistics (e.g., correlation matrix for the predictors, df 

column, R
2
 change column, and p values for each F ratio), and predictors listed in the order of their 

inclusion in the analysis. Schafer emphasizes reporting results with sufficient information in an 

interpretable way without losing the ability for replication, thereby highlighting the importance of 

transparency in research. Schafer further notes that if exact p values are reported, then it is not as 

important to indicate which are below the alpha level set by the researcher, but simply indicate the a 

priori alpha level in the text. Near the end of the article, Schafer states “Whether this or some other 

format becomes popular remains to be seen, but it seems clear that some conventional way to report 

multiple regression outcomes is needed” (Schafer, p. 3). As evidenced in the content review below, 

conventional reporting for MLR has yet to take hold. Moreover, a standard for identifying the type of 

MLR and proper adjustments for experimentwise error rates were absent in most cases, resulting in 

inflated Type I error rates and inaccurate statistical claims.  

 

Multiple Regression Typology 

  Multiple regression is the process of predicting a dependent, outcome variable from a set of 

independent, predictor variables. The dependent and independent variables can take several forms: 

continuous, dichotomous, or polytomous, to name a few. The level of measurement of the dependent 

variable (DV) is typically used to define the multiple regression technique. For example, in logistic 

regression the dependent variable is dichotomous; whereas in MLR the dependent variable is continuous.  
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  Regression techniques are further classified by the procedures used to enter the independent variables 

(IV) to obtain the final equation. Simultaneous MLR is when all independent variables are entered into 

the regression equation at one time, which results in one hypothesis being tested. Hierarchical multiple 

linear regression (HMLR) is when the entry order of the independent variables is predetermined by the 

researcher and there are two or more stages of variable entry into the regression equation. For example, a 

researcher might first enter demographic variables as control variables in stage one and then enter a 

second set of variables in stage two, and focus on a change in R
2
 (i.e., the amount of variance in the DVs 

accounted for by the IVs) at each stage. As a second example, the researcher might enter a single IV, such 

as self-efficacy, followed by another single variable, such as school climate, at stage two. This process 

would continue for all variables the researcher chooses to enter. Lastly, stepwise regression (also known 

as empirical multiple regression) is when statistical software determines the entry order of IVs based on 

which variables contribute most to prediction at a given step in the regression equation (Hoyt, Leierer, & 

Millington, 2006).  

   For the purposes of this study, we have categorized multiple regression techniques using the 

following terms: simultaneous multiple regression, hierarchical multiple regression, and stepwise multiple 

regression (Hoyt et al., 2006). Methodologists in the psychological community have recommended that 

SMLR be used rarely, or not at all, in academic research (Cohen, Cohen, West, & Aiken, 2003; 

Thompson, 1995). The primary reason was that stepwise procedures yield data-dependent results that are 

unlikely to generalize to future samples (Hoyt et al.). These authors take a similar stance and recommend 

that researchers never use the stepwise method in education or any other discipline. A computer program 

is not sufficient to determine the importance of a variable; instead the literature and theory should guide 

decisions. Additionally, statistical conclusion validity, as discussed in the next section, is often violated 

when conducting stepwise regression. Furthermore, as demonstrated in our content analysis, neither 

hierarchical nor stepwise regressions are properly identified in education research and results are often 

misreported.  

Compromising Statistical Conclusion Validity 

  Statistical conclusion validity refers to the accuracy of a conclusion regarding the relationship 

between variables (Shaddish, Cook, & Campbell, 2002). In MLR, statistical conclusion validity is often 

violated when researchers fail to properly adjust alpha levels to compensate for multiple hypothesis 

testing.  When researchers use HMLR or SMLR to test multiple combinations of variables, they are in 

fact testing multiple hypotheses. Each variable or set of variables entered into and removed from the 

regression equation represents a separate hypothesis test. When using stepwise regression procedures 

(e.g., forward and backward regression), the software executes the adding and removing of the variables 

and provides the model with the best R
2
 to the researcher. This is particularly dangerous if the researcher 

is unaware of the exact number and order of steps used by the software to derive the final model and 

further supports the authors’ position to never use SMLR.  

  Using hierarchical and stepwise regression and not adjusting the alpha level is the same as testing 

multiple hypotheses while holding the alpha level constant. The reason for the adjustment of the alpha 

level is the same reason that researchers conduct an ANOVA when there are three or more groups being 

compared. If three separate t tests are conducted, the result of this practice is that the researcher is testing 

the hypothesis at an inflated Type I error rate, which could result in variables being identified as 

“significant” predictors when they are not. Additionally, running simultaneous regression and not 

adjusting the alpha level produces a similar problem as hierarchical and stepwise regression in that 

multiple tests are performed on the same sample data in an attempt to find the best predictors. Not 

adjusting for the multiple tests can inflate Type I error if several different predictors are tested. In the 

following section, we provide a more thorough explanation of the experimentwise error rate problem.  

 

Error Rates 

  To begin, we offer a brief reminder of the difference between alpha levels, p values, and error rates. 

The alpha level is the standard set by the researcher before statistical tests are conducted. Alpha levels are 

commonly set at .05, .01, and .001 in education research and determine the probability of obtaining a 

sample mean in the critical region when the null hypothesis is true. In other words, the alpha level 

controls the risk of making a mistake or a Type I error (Gravetter & Wallnau, 2007). Ultimately then, the 
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risk of a Type I error is in the control of the researcher. The p value, or probability value, is related to the 

test statistic and defines the probability of observing the sample results actually obtained, given that the 

null hypothesis is true. When the p value is equal to or less than the alpha level, the null hypothesis is 

rejected. Lastly, the error rate, or Type I error (synonymous with the alpha level), is also defined as the 

probability of rejecting a null hypothesis when in fact it is true (Salkind, 2007). 

  When conducting multiple hypothesis tests in an experiment, you have both a testwise error rate and 

an experimentwise error rate. Testwise error rate is the probability of making a Type I error in a single 

hypothesis test and should be set by researchers a priori. Experimentwise error rate, also known as 

familywise error rate, is the probability of having made a Type I error within a set of hypothesis tests 

(Thompson, 1995). The experimentwise error rate is inflated for every hypothesis tested on a single set of 

data in a given experiment (Altman, 2000).  Each hypothesis test conducted can be considered as a 

separate experiment.  

  Experimentwise Type I error rate is affected by the number of tests (hypotheses) ran using a single 

sample (Thompson, 1995). When conducting multiple hypothesis tests, the inflated experimentwise error 

rate (ew) can be calculated using the Bonferroni inequality (Love, 1988): 
 

            ew ≤ 1 – (1 - Tw)
k
           (1) 

 

where k is the number of perfectly uncorrelated hypotheses being tested and Tw is the testwise alpha 

level (Altman, 2000). As an example, if you have three different models with variables being entered 

separately, an alpha initially set at .05 becomes an alpha of .14 using the Bonferroni inequality. 

  Mundfrom, Perrett, Schaffer, Piccone, and Roozeboom (2006) further propose that when unadjusted t 

tests are used for individual variable selection in simultaneous linear regression, Type I error is even 

further affected. Researchers using unadjusted alpha levels exponentially inflate the Type I error rate 

depending on the number of independent variables in the model and the number of independent variables 

that are correlated with the dependent variable (Mundfrom et al.). As a result, Type I errors are 

committed, which means variables are identified as “significant” predictors when in fact they may not be. 

Mundfrom et al. suggest that when conducting multiple hypothesis tests, researchers should control the 

testwise error rate by using the Bonferroni correction (Altman, 2000): 

            Tw
*
 = Tw/k            (2) 

where k is the number of hypothesis tests being conducted and Tw is the testwise error rate. Roozeboom, 

Mundfrom, and Perrett (2008) later developed a modified Bonferroni correction in an effort to maintain 

greater statistical power 

           Tw
*
 = Tw/k(1-q)            (3) 

where the numerator remains the same nominal alpha value as in equation 2, but the denominator 

becomes the number of tests performed (k), multiplied by one minus the proportion of nonzero 

relationships  between the dependent and independent variables. 

  In general, the Bonferroni correction (also known as the Dunn test) adjusts the inflated experiment-

wise alpha level by dividing the original testwise error rate (Tw) by the number of hypotheses being 

tested (k) yielding a new testwise error rate (Tw
*
). Consequently each hypothesis (or post hoc) test uses 

the new testwise error rate to keep the experimentwise error rate at the appropriate level. For example, if 

there are three comparisons made with an overall alpha level of .05, each comparison would be held to an 

alpha level of .02 (i.e., .05/3 = .02), thereby maintaining the experiment wise error rate of .05 (Gravetter 

& Wallnau, 2007). Below we mention additional alternatives to the traditional Bonferroni correction that 

purport to have greater power than Bonferroni’s correction yet maintain its flexibility for use with tests 

such as MLR and correlations. 

 

Sidak-Bonferroni 
  Sidak (1967) suggested a modification of the Bonferroni formula that would have less impact on 

statistical power than the Bonferroni method and retain much of its flexibility (Keppel & Wickens, 2004).  

Instead of dividing by the number of comparisons, there is a slightly more complicated formula:   

            αS-B = 1 – (1 – αFWE)
1/c

           (4) 

where S-B is the Sidak-Bonferroni alpha level used to determine statistical significance (a value less than 

.05), FWE is the computed testwise error according to Formula 1, and c is the number of comparisons or 
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Table 1. Percentage of Manuscripts that  

Included Summary Statistics 

                                                   Journal 

Descriptive Statistic AERJ EEPA 

Means 83% 90% 

Standard Deviation 77% 82% 

Correlation Matrix 48% 55% 

Overall F value 95% 95% 

t statistics 80% 85% 

Regression coefficients 95% 95% 

R
2
 95% 95% 

*Change in R
2
 90% 95% 

Standard Errors 65% 70% 

Note. *Change in R
2
 is only reported for those  

articles that used stepwise regression 

methods. 

statistical tests conducted in the study. The p values obtained from the results of the analysis must be 

smaller than S-B to be considered significant (Olejnik, Li, Supattathum, & Huberty, 1997). 

 

Methodology 

Data Sources and Procedures 

  We used a qualitative research design to assess the current multiple regression reporting standards. 

Specifically, we conducted a content analysis of two educational research journals published by the 

AERA: the AERJ and the Educational Evaluation and Policy Analysis (EEPA) journal. The Sage search 

engine was used to conduct a query using the key word regression, within each of the two journals. The 

search created a sampling frame of 590 articles in AERJ and 289 articles in EEPA. One hundred articles 

were then randomly selected from the sampling frames of each journal, resulting in a final sample of 200 

articles. The articles were then analyzed using a qualitative analysis approach; document/content analysis 

(Creswell, 2003). Articles that did not contain actual multiple regression techniques were replaced. For 

example, some of the randomly selected articles were book reviews or made a one-line reference to the 

term regression but did not conduct an analysis using regression. Articles reviewed in AERJ covered 40 

years ranging from 1968 to 2008 and the articles in EEPA ranged from 1979 to 2008. The difference in 

years occurred because the search was not restricted by years, but instead simply by the use of multiple 

regression and the random sampling.  

  Each article was then coded by two coders using the following categorizations: (a) simultaneous 

multiple regression, or stepwise/hierarchical regression depending on the method used to enter the 

independent variables, (b) whether or not corrections of Type I error rates were made for HMLR/SMLR, 

(c) whether authors properly identified HMLR/SMLR when used, (d) inclusion of correlation matrices, 

basic descriptive statistics data (e.g., mean and standard deviation), effect size statistics (e.g., R
2
), 

standard errors, and lastly, whether F statistics and t statistics were provided. 

  

Results 

 About 30% of the articles from AERJ and EEPA used HMLR/SMLR methods. Ninety percent of the 

articles that used HMLR/SMLR in AERJ and 95% of the articles in EEPA failed to adjust their testwise 

error rate. In short, of the articles that used HMLR/SMLR, only 10% of the articles in AERJ and 5% of 

the articles in EEPA used a procedure to ensure a reduction in Type I error rate. The remaining articles 

found significance when in fact, if the researchers had adjusted their testwise error rate, the results may 

have been different. Additionally, in light of the recommendations against the use of stepwise regression, 

it was noteworthy that of the 60 articles using stepwise 

or hierarchical regression, more than 50% of the 

articles were published within the last 10 years. This 

finding heightens the urgency of this study.  

 The content analysis also confirmed 

inconsistencies in the reporting of basic regression 

summary statistics, which hinders transparency and 

replicability. In particular, it is recommended that 

researchers report the following statistics when 

conducting regression analysis: means, standard 

deviations, bivariate correlations, overall F value, 

regression coefficients, R
2
, and changes in R

2
 (for 

stepwise regression methods). In Table 1, a 

summarization is provided listing the number of 

articles that included these basic data in their 

manuscripts.  
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Table 2
a
 Probability of Entry into a Bachelor’s Program: Fall 1990 First-time Freshman (Survey 

Respondents) Logistic Regression 

 Model 1 Model 2 Model 3 

Variable B SE % B SE % B SE % 

Immigrant origin          

Foreign born, U.S. HS  0.13 0.06   3.1*   0.30 0.09    6.8***   0.46 0.13   10.3*** 

Foreign born, foreign HS -0.25 0.11 -5.8* -0.16 0.15   -3.4 -0.07 0.16   -1.4 

Race/ethnicity -- -- --       

Black -- -- -- -0.43 0.09   -8.5*** -0.38 0.09   -7.1*** 

Hispanic -- -- -- -0.04 0.09   -0.9 -0.01 0.10   -0.2 

Asian -- -- --   0.00 0.13    0.1 -0.01 0.13   -0.2 

GED -- -- -- -0.69 0.11 -12.7*** -0.70 0.11 -12.1*** 

Aspirations -- -- --   1.02 0.10   24.4***  1.02 0.10   24.2*** 

Gender (F = 1) -- -- --   0.36 0.07     8.2*** 0.47 0.08   10.5*** 

Age (minus 18) -- -- -- -0.03 0.01   -0.6*** -0.03 0.01   -0.6 

Enrolled part-time, F90 -- -- -- -0.12 0.11   -2.5 -0.10 0.11   -2.1 

Supporting Children -- -- -- -0.74 0.14 -13.4*** -0.73 0.14 -12.5*** 

Employment, F90 -- -- --       

Part-time -- -- -- -0.16 0.08   -3.4** -0.17 0.08   -3.4** 

Full-time -- -- -- -0.33 0.12   -6.6*** -0.33 0.12   -6.3*** 

Household income -- -- --       

16K to 31K -- -- -- -0.16 0.10   -3.4* -0.15 0.10   -3.0 

31K+ -- -- -- -0.15 0.10   -3.2 -0.14 0.10   -2.8 

Missing income -- -- -- -0.45 0.10   -8.8*** -0.44 0.10   -8.1*** 

Parent’s education -- -- --       

High school degree -- -- -- -0.14 0.09   -3.0 -0.15 0.09   -3.0* 

Some college -- -- -- -0.11 0.10   -2.4 -0.13 0.11   -2.6 

College degree -- -- -- -0.17 0.11   -3.5 -0.19 0.11   -3.8* 

Graduate/professional -- -- --   0.18 0.13    3.9 0.16 0.13    3.4 

Hybrid college -- -- -- -1.22 0.09 -19.4*** -1.22 0.09 -18.2*** 

CDSEEK -- -- --   1.28 0.10   30.7***  1.29 0.10   30.8*** 

Assessment tests -- -- --       

Math -- -- --   0.73 0.04   17.4***  0.72 0.04   16.6*** 

Reading -- -- --   0.44 0.04   10.2***  0.58 0.06   13.1*** 

Interactions          

FB, U.S. HS*reading -- -- -- --   -0.22 0.09   -4.2** 

FB, FRGN HS*reading -- -- -- --   -0.53 0.13   -9.5*** 

FB, U.S. HS*female -- -- -- --   -0.24 0.16   -4.7 

FB, FRGN HS*female -- -- -- --   -0.56 0.26 -10.0 

Constant -0.40   0.03 40.1 -0.79 0.15 31.3 -0.91 0.16   28.8 

-2 Log likelihood 7344.181 5549.253 5524.656 

Note. N = 5413 (unweighted), B = Coefficient, HS = High School, FB = Foreign Born, FRGN = Foreign, 

and *p < .10, **p < .05, ***p <.01. 
a
 Table 2 is derived from Bailey and Weininger (2002).  

 

Adjusting Alpha Levels in Multiple Regression: An Example 

  Table 2 is an example from an article in the sample. In this case, the authors focused on foreign-born 

and native minority community college entrants at City University of New York. Stepwise logistic 

regression was used to predict the likelihood of entering a four-year or a two-year college program. The 

results show that non-native US students who immigrate to the US and graduate from a US high school 

are more likely than native US students to enroll in a four-year program. Additionally, those non-native 

US students who immigrated after high school (i.e., attended a non-US high school) are more likely to 

enroll in a two-year program (Bailey & Weininger, 2002).  
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  The authors tested a total of three models. The third model is referred to as the full model and 

contained nearly 30 independent variables compared to only two independent variables in the initial 

model. Independent variables were added to the initial model until the full model was developed. All 

three models used the same sample. The authors report that the control variables, which were entered in 

model 2, had the expected influence. In particular, students who earned a GED, older students, those with 

jobs, those with childcare responsibilities, and those who did not aspire to a higher degree were more 

likely to enroll in a community college.  

  Interestingly, the authors report what they called a counterintuitive result concerning parental 

education. In the full regression model, all levels of parental education other than the highest level (i.e., 

attendance at graduate or professional school) exhibited negative coefficients even though only two 

categories were statistically significant with small effect sizes. The results suggested that if the parent had 

a high school degree or a college degree that those students were less likely to attend a four- year college. 

While these results were statistically significant, they were only marginally significant (i.e., p < .10). Had 

the researchers employed the Bonferroni correction, the testwise alpha level would have been set at .0167 

and these variables would not have been statistically significant. Additionally, had the authors applied the 

modified Bonferroni approach proposed by Roozeboom et al. (2008), even fewer independent variables 

would maintain their level of significance. Roozeboom et al. posit that each time a new model is run and a 

decision concerning which independent variables are significant contributors is made, the Type I error 

rate is increased 2 to 6 times the nominal alpha level depending on the number of independent variables 

and their nonzero correlation with the dependent variable. 

  Continuing with the most basic application, given that there were three models tested in this example, 

employing the Bonferroni correction would result in having an adjusted alpha level of .02 (.05/3 = .017 

rounded to .02) for the overall regression equation. As a result, two key interactions in the study (i.e., 

foreign born, US high school, reading score interaction; and foreign born, foreign high school, and 

female) would no longer be significant. 

  Regrettably, as was demonstrated, educational researchers regularly fail to adjust their testwise alpha 

levels when conducting HMLR/SMLR or simultaneous MLR consequently inflating their experimentwise 

alpha levels and Type I error rates. Zwick and Sklar (2005) is one of very few examples of authors who 

attempted to adjusted their testwise alpha levels. In their article published in AERJ, it was reported that 

“Statistical significance tests for individual predictors were conducted at an alpha level of .01 because of 

the large number of hypotheses being assessed” (p. 451). 

  Although Zwick and Sklar’s (2005) article is a step in the right direction, Mundfrom et al. (2006) 

would suggest that they did not go far enough. The full model should evaluate each variable at the α/k 

level of significance, where α equals the beginning nominal alpha level and k equals the number of 

independent variables in the equation, which would result in an adjusted significance level of .05/30 

or .002. To maintain power, the Roozeboom et al. (2008) modified Bonferroni technique could have also 

been applied as well. 

  At minimum, researchers should report the number of hypothesis tests they run (i.e., the number of 

models tested) so that it is clear whether the appropriate correction procedure is used. Zwick and Sklar 

(2005) used a common approach in education literature which is to just use .01, but if the authors had run 

20 different models or hypothesis tests, the proper alpha could be .05/20 = .003. While an unusual 

occurrence, it is essential that researchers report the number of models or different hypothesis tests 

conducted.  

  In summary, our results demonstrated that educational researchers are not adhering to the basic 

standards of reporting when conducting MLR analyses (cf. Hoyt et al., 2006; Schafer, 1991). Moreover, 

researchers have adopted the trend to report a range of alpha levels, for example, from .05 to .01, never 

specifying their a priori alpha level. Additionally, in the discussion of their results, researchers will often 

report their results using a variety of significance levels; variables will be referred to as statistically 

significant whether at the .10, .05, or .01 level instead of maintaining a single a priori standard. As a 

result, inappropriate and possibly damaging recommendations for practice may flow from these studies.  

 

Recommendations for Reporting Regression Results 
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  Our recommendations for what should be included when reporting regression results are as follows: 

researchers should (a) describe the variables and the conceptual sets of variables (if distinct sets exist), (b) 

indicate if the sets are ordered, (c) describe what technique was used to adjust the alpha level when 

multiple models are run, (d) explicitly state the a priori alpha level, and (e) describe the research 

conclusions reached. Authors should include the following in separate tables: (a) descriptive statistics 

(i.e., means, standard deviations, and sample sizes), (b) correlation matrices of all continuous variables, 

and (c) regression results that include: the overall F ratio for each test, R
2
, adjusted R

2 
when comparing 

regression equations with different numbers of predictors and when using small sample sizes, standard 

error of estimate if the dependent variable has a meaningful metric, the change in R
2
 and the associated 

significance for HMLR, regression coefficients and their associated t tests. Furthermore, we recognize 

page and word restrictions commonly in place in journals for authors seeking publication. In this event, 

we suggest authors make supplementary material available on websites or through other avenues provided 

through publication. 

Conclusion 

 Results of this study indicated that researchers commonly fail to adjust alpha levels when 

implementing HMLR techniques. Instead, it is much more common to see authors report results using a 

range of alpha levels from .10 to .01, which leads to inflated Type I and experimentwise error rates. 

Consequently, many of the results and recommendations reported in the studies in AERJ and EEPA based 

on HMLR/SMLR techniques may be misleading. Additionally, about half of the articles failed to properly 

document research findings to ensure transparency and replication (e.g., correlation matrices). The 

omission of basic summary statistics not only prevents replication, but it violates the principle of 

transparency. Regression is a powerful statistical analysis tool when used correctly. We call for a 

common convention in reporting and a return to basic scientific research standards. 
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What Makes a Winning Baseball Team  

and What Makes a Playoff Team? 
    Javier Lopez     Daniel J. Mundfrom          Jay R. Schaffer 
 New Mexico State University      Eastern Kentucky University         University of Northern Colorado 

Team statistics from all 30 teams in Major League Baseball were analyzed to determine what makes a 

winning baseball team and what makes a playoff team. Thirty-two statistics in all, including batting, 

fielding, and pitching statistics, were used in a multiple linear regression and discriminant analyses. The 

regression procedure was to determine what makes a winning team, while the discriminant analyses were 

used to see what makes a playoff team. On-base percentage plus slugging (OPS) and earned run average 

(ERA) were fit on wins in the regression model with an R
2
 = 0.83. The discriminant analyses 

distinguished different statistics in the National and American Leagues for discriminating between playoff 

and non-playoff teams. ERA and OPS were discriminating factors in the National League, while saves, 

on-base percentage, and earned run average were factors in the American League. 

very year, 30 Major League Baseball (MLB) teams strive to make the playoffs and World Series. 

Sixteen teams are from the National League and 14 are from the American League. Each league is 

split into three divisions, the East, Central, and West. In order to make the playoffs, a team must 

either win their division or win the wild card spot. That is, at the end of the 162 regular season games, 

they must either have the most wins in their division or have the most wins among the teams that did not 

win their division. Essentially, in order to be a successful team in MLB, you must win. General Managers 

(GM) in MLB can be fired because they are unable to build a winning baseball team. The question that 

every GM in MLB should be asking himself as they build their team each year is, “What makes a winning 

baseball team?”  

  Talsma (1999) answers this question in a simple and forthright manner. In his study, he determined 

that run differential (RDIFF = runs scored – runs allowed) is the most important statistic in determining 

how many wins a baseball team will have. The higher the run differential, the more wins a team will have. 

But if we are trying to build an MLB team, we cannot directly sign “runs” to our team. That is, we can 

only sign players. For instance, if we want to sign a free agent such as Manny Ramirez, there are many 

statistics that we can look at to determine his worth. However, the question may well be “which statistics 

are the ones that appear to contribute to winning and runs scored?” Should a GM sign him, and if so, on 

what should he base his decision if he cannot determine how many runs he is worth? In this study, we 

take 32 team statistics into account and attempt to find which ones best determine the wins a team will 

have in a given year. We do this by using past research to help determine which statistics should be used 

to fit a multiple linear regression model for all data collected between 1995 - 2009. 

  The second objective of this study is to determine which statistics are best for predicting which teams 

will make the playoffs and which teams will not. There have been some models to predict divisional 

winners. Barry and Hartigan (1993) used Markov chain sampling to determine future strengths of teams 

and future outcomes of games to predict divisional winners. This research was done before MLB split 

into 3 divisions and the addition of a wild card team in the playoffs. Barry and Hartigan only had a total 

of 4 playoff teams each year when this research was done, as opposed to the present day when we now 

have 8 playoff teams each year. For this reason we only use data after 1994 when the new wild card rule 

took effect. In this study, we use discriminant analysis to find out which statistics discriminate between 

teams that made and missed the playoffs. 
 

Review of Literature 

  Talsma (1999) used a simple linear regression analysis to determine what made a winning baseball 

team. He initially explored the relationships between wins and hits, homeruns, runs, and opponents’ runs. 

All four of these statistics are offensive statistics. After finding that the relationship between those four 

variables and winning was weak, he decided that maybe offense was not the only way a team could win. 

He found that run differential (RDIFF = runs scored – runs allowed) is the most important statistic in 

determining how many wins a baseball team will have. The higher the RDIFF, the more wins a team will 

have. His regression equation was: 

    ̂                       

E 
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 Table 1. Offensive and Defensive Statistics. 

Offensive Statistics 

Abbreviation  Statistic Mathematical Definition 

PA Plate Appearances   

AB At-Bats   

H Offensive Hits   

2B Doubles Hit   

3B Triples Hit   

HR Home Runs Hit   

SB Stolen Bases   

CS Caught Stealing   

BB Bases on Balls   

SO Strike Outs   

BA Batting Average 

 Hits 

AB 

OBP On Base Percentage 

        (H+BB+HBP)         

(At-Bats+BB+HBP+SF) 

SLG Slugging Percentage 

(1B+2*2B+3*3B+4*HR) 

AB 

OPS On Base Plus Slugging OBP+SLG 

E Errors Committed   

DP Double Plays Turned   

BatAge Batter's Age   

Defensive Statistics 

Fld% Fielding Percentage 

       (Putouts+Assists)   

(Putouts+Assists+Errors) 

ERA Earned Run Average` 

(Earned Runs*9) 

IP 

CG Complete Games   

SHO Shutouts   

SV Saves   

IP Innings Pitched   

H Hits Allowed   

ER  Earned Runs Allowed   

HR Home Runs Allowed   

BB Bases on Balls Allowed   

SO Strike Outs   

WHIP 

Walks & Hits Per 

Innings Pitched 

(BB+H) 

IP 

SO/9 

Strike Outs Per 9 

Innings 

(9*Strikeouts) 

IP 

HR/9 

Home Runs Per 9 

Innings 

(9*HR) 

IP 

PitchAge Pitchers Age   

 

Talsma’s results are vital information for use 

in this study. If run differential is the best 

predictor for wins, we would then need to 

find out which player and team statistics best 

predict runs scored and runs allowed. 

  There is a plethora of statistics that we 

can examine in baseball to evaluate 

performance. Batting average (BA), on-base 

percentage (OBP), home runs (HR), earned 

run average (ERA), strike outs (SO), on-base 

percentage plus slugging(OPS), and fielding 

percentage (Fld%) are just a few examples. 

But which ones are the most valuable?  

  A study by Cover and Keilers (1977) 

used a batter’s cumulative statistics to 

determine which batters were the best of all 

time. They used at-bats, walks, singles, 

doubles, triples, homeruns, and outs to 

determine what they called an offensive 

earned run average (OERA). Cover and 

Keilers defined OERA as the number of 

earned runs per game that a player would 

score if he batted in all nine positions in the 

line-up. After getting the OERA for all 

players, they then could be compared to each 

other to determine which players were 

actually the best batters in the league. The 

higher the OERA, which means they would 

score more runs, the better the batter.  

  Another study by Koop (2002) used an 

output aggregator to compare players. This 

method weighed multiple batting statistics to 

output a value between 0 and 1, where 1 

would be the best player and 0 the worst. 

These two methods of determining a player’s 

performance were very different, but the 

consensus between these studies is that there 

were multiple statistics that contributed to 

the performance of a player. 

There has been little published in regard to 

what statistics best predict playoff teams. As 

stated earlier, Barry and Hartigan (1993) 

used Markov chain sampling to determine 

future strengths of teams and future 

outcomes of games to predict divisional 

winners. They used information based on 

strength of teams to determine divisional 

winners. Our objective in the current study is 

to determine which baseball statistics may be 

able to be used to predict which teams will 

make the playoffs and which teams will not. 
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Methods 

The following 32 statistics from Table 1 were collected for all teams’ from the 1995 - 2009 seasons 

(Baseball-Reference.com, 2010). The data used in these analyses were the final season-ending values of 

each of these statistics for each team collectively for each of these 15 seasons. 

 Data were analyzed using SAS version 9.1.3 software using PROC GLM, PROC REG, PROC 

DISCRIM, and PROC STEPDISC. Data were initially explored graphically and, subsequent to model 

fitting, residual analysis was conducted. All 32 statistics for both American and National League teams 

were initially used in the multiple linear regression analysis. After eliminating variables to remove 

multicollinearity from the data, variables with large p-values were taken out of the model one at a time 

using the method described below. The statistical significance level for the regression was defined for p < 

0.05.  

  Beginning with the full model that contained all 32 variables, an examination of the pairwise 

correlations and variance inflation factors (VIF) identified several pairs or groups of variables that were 

collinear (i.e., pairwise correlations > .70 and VIFs > 10). By removing variables one at a time and re-

running the model with one fewer variable at each step, the multicollinearity was successfully removed 

with the elimination of 12 variables, leaving 20 predictor variables in the model with only one having a 

VIF slightly larger than 10 (R
2
 = .889, adjusted R

2
 = .885). The remaining predictors were plate 

appearances (PA), doubles (DB), triples (TR), stolen bases (SB), caught stealing (CS), offensive 

strikeouts (OSO), batting average (BA), on base plus slugging (OPS), errors (E), double plays, (DP), 

batter’s age (BatAge), earned run average (ERA), complete games (CG), shutouts (SHO), saves (SV), hits 

(H), home runs (HR), walks (BB), defensive strikeouts (SO), and pitcher’s age (PitchAge). With this 

model, the unique contribution of each variable to the explanation of the variance in the number of wins 

was examined (using Type III Sums of Squares in SAS) and the variable that made the smallest unique 

contribution (i.e., provided its p-value was less than .05) was dropped from the model.  

  The remaining 20 variables were re-analyzed and the variable with the smallest, non-significant 

unique contribution to the model was dropped. This process was continued, at each stage dropping only 

the one variable that made the smallest, non-significant, contribution to the explanation of the variation in 

the number of wins, until only the variables that made significant unique contributions remained. The 

final model, a multiple linear regression of OPS and ERA on Wins was fit. 

  Stepwise discriminant analyses were performed on the 32 statistics to determine which statistics 

discriminate between teams that made and missed the playoffs for both the National League and 

American Leagues separately. Separate analyses were used because the American League uses a 

designated hitter as opposed to the National League, which does not. The discriminant procedure was run 

three times for each league. Each time the significance level (i.e., statistical significance level for entry 

and significance level for removal were set to be equal) was set to be different. The three different 

significance levels used were p < 0.1, p < 0.05, and p < 0.01. This process was used to determine whether 

more predictors would lower the total probability of misclassification (TPM). If the TPM stayed the same 

when there were fewer predictors, the extra predictors were deemed unnecessary because they were not 

contributing to better predicting classification. The jack-knife (cross-validation) method was performed in 

SAS to estimate the TPM. Both linear and quadratic models for the jack-knife method were evaluated to 

determine which one performed better based on the TPM. Lower TPM was deemed to be better than 

higher. 

Results 

  A model to predict the number of wins based on OPS and ERA was considered. Because these two 

variables were the only ones that survived the variable-identification process, it could be surmised that 

these two statistics are in some way representing offensive prowess (i.e, OPS) and defensive prowess (i.e., 

ERA). For a team to have enough wins at the end of the season to make the playoffs, they must be good 

both offensively and defensively so it made sense that these two variables would be good predictors of the 

number of games a team wins during the season. Some teams may win a lot of games because they have 

very potent offenses, and others may win fewer games because they are less productive at the plate. Also, 

some teams may win a lot of games because they have good pitching and defense, and others may win 

less often because they do not. It is also possible that some teams that may be only “average” on both 

offense and defense may win a lot of games because they are able to score just a few more runs than they 
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give up on enough occasions during the season so that they win a lot of games. Consequently, it seemed 

prudent to consider an interaction between these two variables as an addition to this model. 

  A model was subsequently fit that contained the two variables identified earlier, OPS and ERA, and 

their interaction to predict the number of wins. The results of this analysis showed that the interaction 

between OPS and ERA was not statistically significant (p = 0.8991. Consequently, it was dropped from 

the model. The final model from the multiple linear regression, containing only OPS and ERA as 

predictors, provided a good fit (F = 1044, p < 0.0001, R
2 

= 0.83) and yielded the following estimated 

equation: 

    ̂                              
 

with standard errors for the intercept = 5.09, OPS = 6.5, and ERA = 0.45. 

 Results for the discriminant analysis varied with each league. Table 2 shows that the discriminant 

analysis did a credible job of classifying the American League teams properly. We see that 80% of the 

teams that made the playoffs were actually classified as making the playoffs and 89.12% of the teams that 

missed the playoffs were actually classified as missing the playoffs. Table 3 indicates that the 

discriminant analysis did not work quite as well in the National League as compared to the American 

League in terms of correctly classifying the teams that made the playoffs (66.3%). However, for the 

National League teams, 90.96% of the teams that missed the playoffs were classified correctly; just 

slightly more than in the American League. 
 

Table 2. American League Classification Results.           Table 3. National League Classification Results.  

American League Classified as Type  National League    

From Type 

Made 

Playoffs 

Missed 

Playoffs Total 

 

From Type 

Made 

Playoffs 

Missed 

Playoffs Total 

Made Playoffs 48 12 60  Made Playoffs 38 22 60 

  80.00% 20.00% 100%    63.33% 36.67% 100% 

Missed Playoffs 16 131 147  Missed Playoffs 16 161 177 

  10.88% 89.12% 100%    9.04% 90.96% 100% 

Total 64 143 207  Total 54 183 237 

  30.92% 69.08% 100%    22.78% 77.22% 100% 
 

  In Table 4, we see that for all cases, the linear function outperformed the quadratic. That is, the TPM 

was lower for the linear function in each case. The TPM stayed the same within league and model even 

when the stepwise significance level was decreased. The only change concerned the number of predictor 

variables identified as important discriminators. 
 

Discussion 

  From our results, we found that statistics indeed can help us determine what makes a winning 

baseball team. OPS and ERA accounted for 82.57% of the variation in determining wins for a Major 

League baseball team. This result is consistent with what Talsma (1999) found in that both offense and 

defense are needed factors to succeed. Within our model, OPS is used as the offensive statistic and ERA 

is used as the defensive statistic. This fact may provide assistance to General Managers for potentially 

basing their decisions for personnel drafting and trading, as well as signing free agents. This is not to say 

that other statistics, such as stolen bases or strikeouts, do not contribute to winning; as all offense 

contributes to scoring runs and winning. However, when there are millions of dollars at stake, as there is 

in Major League Baseball, it is suggested by this analysis that General Manager’s might benefit from 

looking at these two statistics before any others when making a decision to pursue a prospective player.  

  In the second set of analyses, we saw in both the National and American Leagues that even as the 

level of significance for selecting discriminating variables went down, the TPM remained the same. At p 

< 0.1, the TPM was the same at p < 0.01. What does change, is the number of discriminants, which even 

with this change, we can see that there is no change in the number of incorrectly classified teams. This 

result brought us to the conclusion that we could drop the extra variables because they were not 

contributing to the classification.   
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 Table 4. Results from the Discriminant Analysis 

Discriminant Analysis Cross-Validation Results 

League Model TPM 

Stepwise 

Sig. Predictors 

NL Linear 0.1595 p≤0.1 ERA,OPS,2B,Fld% 

NL Quad 0.2337 p≤0.1 ERA,OPS,2B,Fld% 

NL Linear 0.1595 p≤0.05 ERA, OPS, 2B 

NL Quad 0.2337 p≤0.05 ERA, OPS, 2B 

NLl Linear 0.1595 p≤0.01 ERA, OPS 

NL Quad 0.2337 p≤0.01 ERA, OPS 

AL Linear 0.1349 p≤0.1 SV,OBP,ERA,DP 

AL Quad 0.2676 p≤0.1 SV,OBP,ERA,DP 

AL Linear 0.1349 p≤0.05 SV,OBP,ERA 

AL Quad 0.2676 p≤0.05 SV,OBP,ERA 

AL Linear 0.1349 p≤0.01 SV,OBP,ERA 

AL Quad 0.2676 p≤0.01 SV,OBP,ERA 

 

  The next thing to notice in the results was 

that there were two different sets of statistics 

that discriminated between playoff teams and 

non-playoff teams. The National League 

followed our regression model; where the OPS 

and ERA were the best predictors in 

determining whether or not a team made the 

playoffs. However, the American League 

discriminant analysis indicated that saves (SV), 

on-base percentage (OBP), and earned run 

average (ERA) were the best predictors. The 

question then became, “Why were the results 

different between the two leagues?”   

  Let us first examine the difference between 

OBP and OPS. OBP is the percentage of times 

a batter gets on base by walking, hitting safely, 

or being hit by a pitch. OPS is equal to OBP 

plus slugging percentage (SLG%). Slugging 

percentage is the tell-tale statistic that takes into 

account a batter's power. A batter who hits 

mostly singles will have a lower SLG% than a 

batter who hits more doubles, triples, and home 

runs. These results indicate that OPS is more 

important in the National League and OBP is 

more important in the American League.  

  One reason there may be a difference is 

because the American League uses a designated 

hitter (DH) and the National League does not. 

That is, in the American League, the pitchers do not hit. The designated hitter is used in the lineup 

instead. Whereas, in the National League, the pitchers bat for themselves until a substitution is made that 

removes the pitcher from the game. Pitchers, in general, are the least proficient batters in the league. The 

use of the DH in the American League contributes to why most ERAs are lower in the National League. 

That is, National League pitchers face a lesser quality batter 1 out of every 9 batters in the lineup. It could 

be that it is for this reason OPS is more important in the National League.  

  Let us consider an example. We will assume that we have two outs and a man on first base. The 8th 

man in the lineup, who has a low slugging percentage, is up to bat and the pitcher is on deck to bat next. If 

the 8th man hits a single, the runner advances to 2nd base only. The next batter is the pitcher and in most 

cases, he is assumed to be an easy out. So if he strikes out or fails to hit safely, then the inning is over and 

2 men are left on base. If, however, the 8th man in the order happens to be more of a power hitter and he 

hits a double, the runner may score a run. Then, once again, the pitcher, who is the next batter, strikes out 

or does not hit safely to end the inning.  The difference being that a run scores with a double instead of a 

single. This scenario occurs daily in the National League.  

  In the American League, this same scenario does not happen as often because instead of having the 

pitcher bat, the league uses a DH who in most cases is a better batter. In the same hypothetical situation, if 

the 8th batter only hits a single, we would again have a man on first and second. Only this time, in the 

American League, the pitcher or "easy out" is not up to bat. Instead, we would have a higher quality batter 

up who even if he only singles, he drives in a run; whereas in the National League, the pitcher is much 

more likely to make an out. The OPS statistic takes into account a batter’s power whereas OBP does not. 

We can see from the previous simple example, why power is an important aspect and, therefore, OPS was 

more important in the National League in the results.  

  Our results also show that saves are a significant factor in the American League and not in the 

National League. This result could also be due to the quality of batters that a pitcher must face in the 

American League. However, our previous example does not quite apply to this situation. Saves are 

credited to a pitcher when:    
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1. He is the finishing pitcher in a game won by his team; 

2. He is not the winning pitcher; 

3. He is credited with at least ⅓ of an inning pitched; and 

4. He satisfies one of the following conditions:  

a. He enters the game with a lead of no more than three runs and pitches for at least one inning. 

b. He enters the game, regardless of the count, with the potential tying run either on base, at bat, 

or on deck. 

c. He pitches for at least three innings. 
 

  In the National League, a pinch hitter (PH) can bat for a pitcher only if the pitcher is substituted out of 

the game. After the PH hits, a different pitcher must come into the game to pitch. When it next becomes 

the pitcher's turn to bat, he must bat, or another PH can hit for him, and he will be substituted out. Once a 

pitcher is taken out of the game, he cannot come back in. The same goes for the PH. Any one player can 

only pinch hit once in a game (i.e., unless his turn comes around again in the same inning or he enters the 

game as a position player after completing his pinch hit). In the late innings of a game, the pitchers in the 

National League are usually substituted for to try and maximize runs scored. By having a better batter 

pinch hit for the pitcher, you eliminate what is often an "easy out" in the lineup.  

  Most likely, pitchers that are in save situations, will not have an easy out, but the quality of hitter may 

still differ from the National League to the American League. The DH in the American League hits every 

time around in the lineup. A pinch hitter in the National League sits most of the game until a substitution 

is needed. When a substitution is made, the pinch hitter usually goes up to bat one time and then his job is 

over for the day. For this reason, it is probably reasonable to say that it is more difficult to be a pinch 

hitter than a designated hitter. We may also guess that it is easier to get most PHs out than it is to get DHs 

out. A pinch hitter has sat most of the game and only has one chance to hit in a game whereas the 

designated hitter has probably already hit three or four times before a closing pitcher comes in to attempt 

a save. Since it is more difficult to get a designated hitter out, it becomes more crucial to have a good 

closer to get a save in the American League than in the National League. Consequently, the use of the DH 

in the American League versus the PH in the National League could be contributing to why our results 

show that SVs are more important in the American League than in the National League. 
 

Conclusion 

  In conclusion, we can see that certain statistics are vital in determining wins for a baseball team and 

determining which teams will and will not make the playoffs. We can predict wins based on OPS and 

ERA. We can also determine that OPS and ERA are significant factors for predicting if a team makes the 

playoffs in the National League, whereas Saves, OBP, and ERA are significant factors in predicting 

whether a team makes the playoffs in the American League. Although our discriminant analysis 

procedure did predict 80% of teams correctly to make the playoffs in the American League, it only 

predicted 63.33% correctly for the National League. This outcome is not bad and is certainly better than 

simply guessing or flipping a coin. Perhaps future research can identify other variables that can improve 

this percentage. 
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A Note on Cost-Benefit Analysis 
David A. Walker 

Northern Illinois University 

Following the framework presented by Leech and Onwuegbuzie (2004), results from an heuristic example 

added to the very limited scholarly literature in the area of cost-benefit analysis, and also served as a 

potential template related to the relative ease of implementation of some of cost-benefits‟ components that 

have shown initial properties of augmenting results affiliated with correlational designs and/or program 

evaluation. 

n the research literaure for the social sciences, the idea of understanding and/or reviewing the cost 

effectiveness and also the benefit(s) derived from an intervention or program activity is an emergent 

concept with limited scholarship devoted to it. Of the research in this domain, programmatic overall 

cost analysis has been presented in the literature via estimated measures (King, 1994; Odden, 2000). 

Program cost effectiveness measured through meta-analysis has been proffered by Borman, Hewes, 

Overman, and Brown (2003) and Yeh (2008). A correlational study combining both cost (i.e., program) 

and benefit (i.e., increased student test scores) was conducted by Quinn, Van Mondfrans, and Worthen 

(1984). Barnett (1985) offered a cost (i.e., program) and benfit (i.e., social investment of a program) 

analysis of a preschool program.  

  Finding literature and guidelines that amalgamate both known, direct costs of a program and said 

program‟s tangible benefit(s), coupled with other measures such as effect sizes and practical effects of an 

intervention and/or program activity, is arduous. Two seminal sources in the literature that looked at both 

cost and benefit in terms of the effectiveness of intervention results were offered by Levin (1983) and 

Levin and McEwan (2001). These authors develed into this area by providing guidance related to how 

reviewing costs of an intervention given the outcome(s) derived may provide new and/or additional 

information pertaining to an intervention‟s effect. Related to the Levin and Levin and McEwan works, 

Leech and Onwuegbuzie (2004) coined the term „economic significance‟ as the “economic value of the 

effect of an intervention” (p. 185). Their work yielded a typology of five economic-related indices used to 

measure cost in its various forms: effectiveness, benefit, utility, feasibility, and sensitivity. A major 

component of their indices was to incorporate the cost, either direct or estimated, along with the effect, 

typically measured as either post-hoc raw differences or standardized differences (i.e., effect sizes). 

Finally, along this same line of thought  in the field of psychology, Wittmann (2004; 2007) proposed the 

use of a priori break-even effect sizes (i.e., standardized differences) to compare with known effects from 

the literature resultant from meta-analysis to assist in estimating a return on investment of an intervention. 

Wittman‟s work was an extension of earlier social science cost-benefit research completed on economic 

impact from workforce productivity studies (Schmidt, Hunter, & Pearlman, 1982). 
 

Context 

  A school-university partnership between Northern Illinois University and Rockford, Illinois Public 

School District 205 has been in existence for the past decade. The focal point of this comprehensive 

partnership is to enhance student learning. As part of a partnership evaluation, a correctional design was 

employed to measure the relationships and effect sizes obtained from programming initiatives concerning 

student learning in the content areas of mathematics and reading at two school sites: a P-5 elementary 

school and a 6-8 middle school (MS). The concept of “student learning” for schools in the partnership 

was measured via data attained from their performance in mathematics and reading on the Illinois 

Standards Achievement Test (ISAT). 
 

Cost-Benefit Design 

  Following the framework of a cost-benefit analysis presented by Leech and Onwuegbuzie (2004), two 

indices were implemented. The first index related to the cost per level of effectiveness (CE), where C was 

the direct cost of the program and E was the practical effect measured in terms of the raw difference in 

testing points (i.e., ISAT mathematics and reading). Note: the practical effect of the effect size measure in 

terms of testing points gained was based on average standard deviations from sample data trends found 

for ISAT mathematics elementary = 28.04, mathematics MS = 27.83, reading elementary = 27.51, and 

reading MS = 24.27 (Consortium on Chicago School Research, 2007).  

I 
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Figure 1. Average effect size. (Reading Scores in Blue; Mathematics 

Scores in Green) 

 

            CE = C / E             (1) 
 

A second index measured the maximum effectiveness of a program per level cost (MCE), where cost (C) 

and effect (E) were continued in their use, but the idea of desired expernditure (D) was added; 

theoretically by the district as a form of sustainability after the initial program: 
 

           MCE = (E / C) x D           (2) 

 

Heuristic Example 

  An activity of the partnership to enhance student learning, National Board for Professional Teaching 

Standards (NBPTS) certification, lent itself to a cost-benefit analysis due to the ability to tally direct costs 

and relational effects for this endeavor. A NBPTS certification program was initiated at the P-5 and the 

middle school as a sustained mentoring and professional development plan focused on teacher 

instructional and curricular development, specifically in the subject areas of mathematics and reading, as 

well as a focus on the association between the practices of teaching and learning. 

 

Effect Sizes 

  Figure 1 shows the 

average effect size in 

reading and mathematics for 

the P-5 and the middle 

school. The effect size used 

in this study was Cohen‟s d 

and employed benchmarks 

set at .20, .50, and .80 that 

represented small, medium, 

and large effects, 

respectively (Cohen, 1988). 

Results from research 

conducted by Lipsey and 

Wilson (1993) corroborated 

Cohen‟s .50 cut-point for a 

medium effect by finding, 

via meta-analysis, that the 

mean and median effects 

from over 300 studies were established at .50 and .47, correspondingly. Recently, Sawilowsky (2009) 

found in a review of the literature that the aforementioned effect size cut-points of .20, .50, and .80 could 

be conceptualized also as small, medium, and large; though as inclusive members of a more expanded d-

based benchmark scheme. Throughout the duration of measuring the relational effects of the NBPTS 

initiative, certainly other factors in addition to it accounted for a percentage of the effect size results 

depicted in Figure 1. By comparative measures with the Cohen benchmarks and/or the Lipsey and Wilson 

and Sawilowsky values, both of the schools showed medium to large effect sizes in reading and 

mathematics scores, where the relational effect in mathematics, for instance at the MS, approximated a 

large effect contrasted against known criteria from the literature.  

 

Practical Effects 

  In conjunction with the effect size results, Figure 2 shows that in a practical sense for the amount of 

testing points gained, there was an increase at both schools. In fact, there was quite a substantial increase 

given that the ISAT test varies from a minimum of 120 to a maximum ranging from 340 to 411 based on 

grade level (Consortium on Chicago School Research, 2007).  
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Figure 2. Average practical effect in testing points. 

 (Reading Scores in Blue; Mathematics Scores in Green) 

 

 
Figure 3. Cost per one point mean difference in test scores.. 

 (Reading Scores in Blue; Mathematics Scores in Green) 

 

Cost per Level of Effectiveness 

  The total direct cost for 

each of the 14 NBPTS certified 

teachers at the two schools was 

$12,571.43 with 7 teachers 

serving in both the P-5 and the 

MS. Figure 3 displays the cost 

per level of effectiveness. As 

examples, in the P-5 school, the 

relational effect in reading from 

the presence of 7 NBPTS 

certified teachers was an 

average gain of 13.20 ISAT 

points or a cost of $952.38 per 

each one point mean difference 

in reading scores (i.e., 

$12,571.43 / 13.20). For the 

NBPTS MS mathematics, the 

cost was $651.37 per each one 

point mean difference in math 

scores (i.e., $12,571.43 / 19.30).  

 

Maximum Effectiveness of an 

Intervention per Level Cost 

  As a means to look at the 

potential sustainability of the 

NBPTS programs within the 

district, a maximum 

effectiveness of an intervention 

per level cost analysis was 

conducted to correspond with 

the previous findings. Given the 

medium to large effect sizes 

and the relatively low costs per 

one point mean difference in 

reading and mathematics scores 

for both school settings and 

each program, the question of 

effectiveness sustainability 

emerges. Thus, if after 

reviewing the positive, 

previously-mention results, the 

district were to allocate $50,000 

a year for the continuation of 

the NBPTS programs (i.e., 

apportioning $25,000 to 

NBPTS x 2 schools).  

  Figure 4 indicates that they could predict quite large maximum mean test score increases. For 

instance at the MS NBPTS, increases of approximately 23 (i.e., (11.57 / $12,571.43) x $25,000) and 38 

testing points for reading and mathematics, respectively may be predicted in the near future by continuing 

with the program of National Board certification of additional teachers within the school, however; with 

the caveat of having a reasonably similar student body and teacher ability as was accompanied with past 

results. 
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Figure 4. Maximum in mean test score gain. 

 (Reading Scores in Blue; Mathematics Scores in Green) 

 

Conclusion 

 An importance of this research note is that it adds to the very limited scholarly literature in the area of 

cost-benefit analysis for the 

social sciences and serves as a 

potential template related to the 

relative ease of implementation 

of some of cost-benefits‟ 

components that have shown 

initial properties of augmenting 

results affiliated with, for 

example, correlational designs 

or program evaluation. 
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Paying Attention to the Default Reference Category in Several  

SPSS Statistics Procedures: An Example of Coding Reversal 
Hongwei Yang 

University of Kentucky 

This paper reviews two common approaches to handling categorical predictors in regression analysis and 

how they are implemented in several Statistical Package for the Social Sciences (SPSS) procedures. 

Through this review, the aim is to revisit a warning from the SPSS literature regarding dummy coding for 

categorical predictors with just two classes. In this problem, the original coding of a two-category dummy 

variable is reversed by the software program without any alert and such a change is likely to result in an 

incorrect interpretation of the regression coefficient estimate of the corresponding categorical predictor. 

Further, the paper discusses the generalizability of this conclusion to several other statistics programs: 

Statistical Analysis System (SAS), JMP, and STATA. 

n regression analysis, categorical predictors are very commonly seen. A categorical predictor is 

usually presented as a single variable in one of two formats: 1) A string variable, and 2) a numeric 

variable. Here, the most commonly used two-class categorical predictor gender is used as an example. 

When it is presented as a string variable, its values are in the form of letters: male and female, for 

example. On the other hand, when it is presented as a numeric variable, its values are usually in the form 

of allocated (numeric) codes (Kutner, Nachtsheim, & Neter, 2004). The allocated codes are arbitrarily 

selected, and could be any sets of numbers. For the two values of the gender variable, possible sets of 

codes are (-1) and (-2), 0 and 1, 2 and 3, 99 and 100, 999 and 1000, etc. In fact, as long as two numbers 

are distinct from each other, they could be allocated to represent the two different values of the gender 

variable. 

  Although a categorical predictor could be presented as either a single string variable or a single 

numeric variable, in many cases neither format could be directly used as an input in a regression model 

without properly performing further coding of those (string/numeric) categories. For a string variable, the 

underlying reason is obvious because its values are non-numeric. For the other approach where a 

categorical predictor is allocated arbitrarily selected numeric codes, the problem is that those codes define 

a metric for the categories of the predictor that may not be reasonable. This is because the spacing of 

categories indicated by those allocated codes may not be in accord with the reality (Kutner et al., 2004). 

With that described, in order for a categorical predictor to be used as a direct input in a regression model, 

it should be properly recoded. And this process is known as dummy coding. 

  When dummy-coding a categorical predictor, the most common scheme is the 0-1 coding. Within the 

0-1 scheme, for a categorical variable with c categories, a total of (c - 1) dummy/indicator variables are 

needed with each one representing one category of the predictor. The only ignored category for which 

there is no dummy variable created is the reference level or base level. All other coded categories are 

compared with the reference category in terms of the average change in the outcome when it moves from 

the reference category to that particular non-reference category. Unlike a single categorical predictor in 

either string or numeric format, its dummy-coded indicator variables can be used as direct inputs for a 

regression model. 

The way the 0-1 coding scheme is implemented in the software Statistical Package for the Social Sciences 

(SPSS) varies from one regression procedure to another. Related procedures can generally be classified 

into two categories: 1) Those that are not capable of automatically creating dummy variables, and 2) those 

that have this particular capability. The REGRESSION procedure is an example from the first category, 

whereas the GENLIN, LOGISTIC REGRESSION, NOMREG procedures, etc. belong to the second 

category. 

  The paper focuses on the use of a categorical predictor in those SPSS procedures that can 

automatically perform dummy coding. A procedure in this category has to be informed of the categorical 

nature of a predictor before it automatically recodes the variable into one or more dummy variables in the 

background. For a categorical predictor presented in a string format, this is not an issue at all because its 

values are non-numeric. SPSS identifies all such non-numeric variables as categorical without having to 

I 
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be told. However, when a categorical predictor is presented in numeric format using allocated codes, 

things could become more complex.  

  A particular confusing case is when the allocated codes for a two-category binary predictor are 

selected to be identical to its 0-1 dummy codes and, at the same time, the predictor is still specified as 

categorical in an SPSS procedure with an automatic dummy coding capability. Norusis (2003) provides a 

warning on this issue, saying that there is nothing to be gained by declaring such a predictor as categorical 

and since such a specification prevents the original coding (already in 0-1 format) from being preserved, 

it is not a recommended practice. However, some, like Field (2009), think that declaring a two-class 

binary predictor as categorical or non-categorical in a SPSS procedure should not make any difference 

when the variable is already coded as 0 and 1, which clearly violates this warning. Considering such an 

unfortunate fact, this paper elaborates on this warning and uses an example to demonstrate it with the 

hope of helping practitioner comprehension related to the issue. 

  As is known, numeric values associated with a categorical variable are often coded by the researcher 

in a manner that does not reflect substantive meaning. They are different from numeric values of a non-

categorical predictor that are actual measures of an attribute. Unfortunately, SPSS is not capable of 

distinguishing the former from the latter without additional information from the outside. So, a SPSS 

procedure with an automatic dummy-coding capability needs to be informed of the categorical nature of a 

predictor before the procedure generates dummy indicators for it. When a single numeric categorical 

variable is entered into a SPSS procedure, it should usually be specified either as a factor (e.g., in the 

GENLIN procedure) or as a categorical covariate (e.g., in the binary logistic procedure). According to the 

default settings (although these default settings could be overridden or controlled in many cases), SPSS 

will then identify the “last” level of this predictor as the reference level and create dummy variables for 

all other categories of this predictor. By default, the “last” level is defined in ascending (from lowest to 

highest) order of the alpha-numeric coding. So, the highest numeric coding is the default “last” level, and 

it corresponds to the default reference category selected by a SPSS procedure with an automatic dummy 

coding capability (SPSS Inc., 2010). 

  Suppose the two-class categorical predictor gender is presented using two allocated codes: 99 (male) 

and 100 (female). After specifying this variable either as a factor or as a categorical covariate, SPSS will 

create (2-1) = 1 dummy variable for this categorical predictor. By default, it first identifies 100 as the last 

level of this predictor because 100 (for female) > 99 (for male), then it specifies this level (female) as the 

reference level by assigning values of 0 to the dummy variable, while the other level (male) is coded as 1. 

It is this newly created dummy variable for gender that is used in the regression model. Furthermore, it is 

this dummy variable (not the original gender variable) that has a regression coefficient to estimate. The 

interpretation of the regression coefficient estimate for this dummy-coded gender predictor variable 

should be made for the male category as is compared with the female category (i.e., reference level). 

  With the allocated codes of 99 and 100 described for the gender variable, this coding process and the 

final dummy coding result should remain the same regardless of its allocated codes: As the default option, 

the last level or, in ascending alpha-numeric order, the highest coding is selected as the reference level 

before the dummy variable is created for the other level of the two-class categorical predictor. This is 

even true when the allocated codes are 0 and 1; the same two values that are used in the 0-1 dummy 

coding scheme.  

  Suppose that the gender variable is originally allocated two numeric codes: 0 for male and 1 for 

female. This is similar to the previous example where 99 was allocated to male and 100 to female in the 

sense that the male category is always allocated the lower coding (i.e., 99 and 0, respectively), whereas 

the female category is allocated the higher coding (i.e., 100 and 1, respectively). For the second case, after 

this gender variable is designated as categorical in a SPSS regression procedure with an automatic 

dummy-coding capability, the procedure identifies the last level or by default, in ascending alpha-numeric 

order, the higher code of 1 (i.e., the female category) as the reference level and assigns values of 0 to the 

new dummy variable to be internally computer-generated. The other (non-reference) level of the dummy 

variable will be created for the other category (i.e., the male category) that is originally allocated the code 

of 0, so that the male category is now coded as 1 in the newly-generated dummy variable. So, in this new 

dummy variable, the coding of the gender variable is reversed from the original coding scheme. The 

dummy variable can then be used as a direct input for a regression model. When it comes to parameter 
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  Figure 1. A Screen Shot of Data. 

 

interpretation of the dummy variable, it should be made for the male category (i.e., coded as 1 in the new 

variable) as is compared with the female category (i.e., coded as 0 in the new variable). 

  Such a change in coding may be difficult to spot for practitioners of regression analysis, particularly 

those who are not familiar with SPSS procedures that can perform dummy-coding automatically. When a 

practitioner who knows about the 0-1 coding intentionally allocates 0 to male and 1 to female because the 

interest is in the female group rather than the male group, the above-described coding reversal in some 

SPSS procedures with an automatic dummy-coding capability causes the final parameter estimate to focus 

on the male group, instead. When this coding change goes unnoticed, the interpretation of the parameter 

estimate is very likely to be made still regarding the female group to stay consistent with the original 

coding, which of course is incorrect. An example follows that demonstrates this point. 

 

Heuristic Example 

  The data analyzed here as an example comes from Kutner et al. (2004). The data are results from an 

economist who studied 10 mutual firms and 10 stock firms. The economist was most interested in the 

relationship between the elapsed time for the innovation to be adopted (Y), size of firm (X1), and type of 

firm (XType). Type of firm (XType) is a two-class categorical predictor, so it has to be recoded into a 

numeric variable X2. Y is expressed in number of months and X1 in millions of dollars. 

  Figure 1 presents a 

screenshot of the data set 

that has a total of five 

columns. In the data set, 

the first two columns are 

the dependent variable 

(ElapsedTime_y) and one 

of the two predictors 

(X1_Size). They are not 

categorical, so no special 

recoding is needed for any 

of them. The next 3 

columns are all about the 

other predictor variable; 

type of firm. The column 

called X2_Type presents 

the predictor variable in 

string format. And the 

other two columns present 

this predictor in numeric 

format with the column 

called X2_Type99100 using 

the allocated codes of 99 

and 100 and the column 

called X2_Type01 using the 

allocated codes of 0 and 1. 

In both numeric columns, 

the lower code (99 and 0) is assigned to the mutual category and the higher code (100 and 1) is assigned 

to the stock category. Two distinct sets of allocated codes are used here for the purpose of comparing the 

final modeling results. It is anticipated that, if done properly, the results should be the same because the 

values allocated to represent company type are just numeric codes without any substantive meaning. 

  To concisely present the information without having to burden the readers with unnecessary details, a 

simple, first-order regression model is fitted here that does not contain any complex terms like two-way 

interactions: 

          Mean Y = α + β1*X1 + β2*X2           (1) 
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 Figure 2. A Screenshot of Entering X2_Type99100. 

 

where Y is the number of months for the innovation to be adopted, X1 is the (non-categorical) company 

size variable measured in millions of dollars, and X2 is the categorical company type variable. This 

company type variable could take one of the two forms: 1) A string variable in the form of letters (e.g., 

X2_Type in Figure 1), and 2) a numeric variable with allocated codes (e.g., X2_Type99100, and 

X2_Type01 in Figure 1). 

 This model is estimated in SPSS in four different ways using two different procedures. Each way of 

fitting the model features a different approach to the categorical predictor representing type of company. 

The two procedures used here are the REGRESSION procedure and the GENLIN procedure. They are 

briefly compared below: 

 The former procedure is designed for multiple linear regression based on general linear 

models. The procedure requires all inputs should be numeric, because it is not capable of 

automatically handling a categorical predictor in string format. Additionally, this procedure can 

analyze dummy indicators and/or numeric values of a non-categorical predictor that are actual 

measures of an attribute, but it does not allow the use of allocated codes representing classes of 

a categorical predictor. The only exception is when the allocated codes for the classes of a 

binary categorical predictor are selected to be the same as the dummy codes for that predictor. 

 The latter procedure is designed for multiple regression based on generalized linear models 

that incorporate the type of models for the previous procedure as a special case. Not only is this 

procedure capable of handling a broader family of regression models, but it is also able to do the 

two things that the previous procedure cannot do: 1) Handling categorical predictors in non-

numeric format, and 2) Handling allocated codes by automatically converting them to dummy 

codes in the form of 0 and 1. 

With that described about the two procedures, they are used to estimate Equation 1 in four 

different ways. During the four analyses, the REGRESSION procedure uses the X2_Type01 

variable whereas the GENLIN procedure uses each of the three variables (X2_Type, 

X2_Type99100, and X2_Type01) as predictors in each of three regressions. 

Note that when using the GENLIN procedure, both X2_Type99100, and X2_Type01 are entered 

as Factors under the Predictors tab. This is so because this paper assumes the following: It is 

intuitive for a practitioner to think that either one of the two (X2_Type99100, and X2_Type01) 

has a categorical nature because it represents a categorical predictor: Type of company and, 

with that thinking in mind, he or she is likely to tell SPSS about the belief by entering either of 

the two into the program as a factor. Figures 2 and 3 are screenshots of the Predictors tab when 

entering X2_Type99100, and X2_Type01, respectively. In the interest of space, the screenshots 

of the other two (more straightforward) analyses are omitted from here. 

 

The modeling results from all 

four analyses are presented in 

Table 1. The focus is on the 

parameter estimate for the 

predictor representing company 

type. As is indicated, all four 

analyses have produced similar 

results. The four estimates for the 

parameter of the corresponding 

predictor indicating company 

type are identical in absolute 

value. It is just that the parameter 

estimate from the REGRESSION 

procedure is (+8.055) whereas all 

others are (-8.055). Such a 

difference is due to the fact that 

the two procedures by default use 

different reference levels. The 
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 Figure 3. A Screenshot of Entering X2_Type01. 

 

 
 Figure 4. Analyzing X2_Type01 as a Noncategorical Covariate. 

REGRESSION procedure uses 

X2_Type01=0 (mutual companies) as 

the reference level and the parameter 

estimate for the company type 

variable measures the change in the 

outcome for stock companies as is 

compared to mutual companies. The 

GENLIN procedure does exactly the 

opposite by default because it uses 

the X2_Type01=1 (or 

X2_Type99100=100, X2_Type = 

Stock) as the reference level, or the 

last level given an ascending alpha-

numeric order of categorical values. 

So, the parameter estimate for the 

company type variable of each 

analysis under the GENLIN 

procedure measures the change in the 

outcome for mutual companies as is 

compared to stock companies. 

Because the direction of change for 

the company type predictor is 

opposite to each other under the two 

procedures, the estimates for the 

corresponding parameter have 

opposite signs, but are identical in 

absolute value.   

  Special attention should be paid 

to the first and fourth analysis. In the 

first analysis, X2_Type01 is analyzed 

in the REGRESSION procedure as 

an input for the Independent(s) box. 

In the fourth analysis, the same 

variable is analyzed in the GENLIN 

procedure (using its default settings) 

as an input in the Factors box under 

the Predictors tab. Although it is the 

same predictor (X2_Type01) that is 

used in both analyses that aim to fit 

the same regression model as is 

described by Equation 1, the 

parameter estimates are exactly 

opposite to each other due to the 

reasons outlined above: ((+8.055) in 

the first analysis versus (-8.055) in the fourth analysis). Both estimates are correct and are equivalent of 

each other, but they should be interpreted from different perspectives. That is, (+8.055) indicates that, on 

average, stock companies need 8.055 more months than mutual companies in adopting an innovation 

whereas (-8.055) suggests the average amount of time mutual companies take to adopt an innovation is 

8.055 months less than stock companies. 

  In fact, it would have been unnecessary to declare X2_Type01 as categorical because its allocated 

codes have already been selected to be identical to its dummy codes. In such a case, this variable could be 

just used as a (non-categorical) covariate in the GENLIN procedure. Figure 4 provides another analysis of 

the model in Equation 1 using the GENLIN procedure. In this analysis, the X2_Type01 variable is entered 
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into the same box as the X1_Size variable, which is different from analyses 2, 3, and 4. This time, the 

parameter estimate for the company type variable becomes (+8.055), the same result as analysis 1. In this 

case, the interpretation should be made consistently, as noted with the original coding of the X2_Type01 

variable, because no coding reversal has been done. 

  Another point that is worth noting is, as long as the order of the coding remains the same, the choice 

of allocated codes for classes of a categorical predictor does not affect the parameter estimates. The third 

and the fourth analyses use different allocated codes for the two categories of the respective company 

type variable, but their parameter estimates are the same: (-8.055). 
 

 

Table 1. Analysis Results from Two SPSS Procedures 

Items 

                           SPSS Statistics Procedure Used 

 REGRESSION  GENLIN 

Analysis  Analysis 1  Analysis 2 Analysis 3 Analysis 4 

Variable  X2_Type01  X2_Type X2_Type99100 X2_Type01 

Data type  Numeric  String Numeric Numeric 

Estimate  (+8.055)  (-8.055) (-8.055) (-8.055) 

Base level  X2_Type01=0  X2_Type=Stock X2_Type99100=100 X2_Type01=1 

 

Discussion 

  The paper focuses on the coding reversal issue that happens to binary categorical predictors in some 

SPSS procedures that have an automatic dummy coding capability. The paper alerts practitioners of 

regression analysis to this issue, particularly when the allocated codes for the binary predictor are selected 

to be the same as the codes for the 0-1 dummy coding scheme. Although there is nothing wrong to think 

of this binary predictor as categorical in this situation, it requires special attention to find out what 

category it is that is being used as the reference level by SPSS if the predictor is indeed declared as 

categorical in the computer program. 

  When analyzing a two-class categorical predictor that has already been dummy-coded in a SPSS 

procedure with an automatic dummy-coding capability, the best strategy is not to let the program recode it 

again. To prevent the program from performing the recoding automatically, the categorical predictor 

under discussion should be used as a (non-categorical) covariate but not as a factor or a categorical 

covariate. 

  With the conclusion drawn based on SPSS, it may also be generalized to other statistics programs. 

Like SPSS, a few Statistical Analysis System (SAS) procedures by default take a similar approach to a 

declared categorical predictor; selecting its last category in ascending alpha-numeric order as the 

reference level, coding it into 0, and using 1 to represent all other non-reference categories. Therefore, the 

aforementioned analyses 2 to 4 where a two-level predictor is declared as categorical can be duplicated 

using such SAS procedures that include PROC GLM and PROC GENMOD, which allow the 

specification of a predictor as categorical using the CLASS statement (SAS Documentation, 2010). In 

these three analyses using either SAS procedure, the issue of coding reversal as described in this paper 

also exists. Analysis 1 where a two-level categorical predictor presented in 0 and 1 is analyzed as a non-

categorical covariate can be duplicated using either of the above SAS procedures (without declaring the 

predictor as categorical) or using another one called PROC REG; the counterpart of the REGRESSION 

procedure in SPSS. 

  However, there are also procedures in SAS that work differently than PROC GLM or PROC 

GENMOD, and among them is PROC LOGISTIC for logistic regression analysis. With PROC 

LOGISTIC, after declaring a two-level predictor already in the form of 0 and 1 as categorical, the 

interpretation of its parameter estimate should be made relative to the average effect across both levels 

rather than relative to an internal, computer-generated 0 category that in fact does not exist with PROC 

LOGISTIC. This is so because PROC LOGISTIC uses a different dummy coding scheme than the other 

two procedures. Whereas PROC GLM and PROC GENMOD use the 0-1 coding, PROC LOGISTIC 

performs the (-1)-1 coding where the last category in ascending alpha-numeric order is coded as (-1), 

instead of 0 (SAS Documentation, 2010). Further, the last category is no longer the reference level with 

which the other category is compared. It is the average effect across both levels of the categorical 
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predictor that serves as the baseline of comparison for its two categories. Another statistics program that 

handles a declared categorical predictor in the same manner as PROC LOGISTIC in SAS is JMP (SAS 

Institute Inc., 2008). Several of JMP’s regression modules (like the Fit Model module) by default also 

perform the (-1)-1 coding and code into (-1) the last category in ascending alpha-numeric order. Although 

the issue around the (-1)-1 coding for a declared categorical predictor in a statistics program does not 

quite fall into the coding reversal issue as discussed in this paper, both cases are likely to cause the 

original coding of the categorical predictor to change without any alert. Therefore, cautions should be 

taken when interpreting such parameter estimates. 

  Finally, the last statistics program that should be discussed here is STATA because it is almost as 

comprehensive and popular as SPSS and SAS. STATA provides a xi command that is capable of using 

the 0-1 coding scheme to automatically create dummy variables that can next be analyzed by the regress 

command for regression modeling. Unlike SPSS, whose default setting in many of its procedures is to 

pick up the last category in ascending alpha-numeric order as the reference, the xi command in STATA 

by default does exactly the opposite by selecting the first category as the reference (Hamilton, 2004). 

Therefore, the coding reversal issue for a declared two-level categorical predictor already in the form of 0 

and 1 as described in the paper does not exist with the xi command in STATA. 
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