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There are numerous General Linear Model (GLM) statistical designs that may require multiple hypothesis 

testing (MHT) procedures that control the Type I error inflation that occurs with multiple tests. This study 

investigated familywise error rates (FWER) and statistical power rates of several alpha-adjustment MHT 

procedures in factorial ANOVA, but results apply broadly to GLM procedures. Of four MHT procedures 

investigated, the Hochberg procedure performed most efficiently in terms of Type I error and power, 

slightly better than Holm. The Holm procedure, however, may be the better choice because of less 

restrictive assumptions. FWER concerns were raised with the Benjamini-Hochberg procedure. 

 n educational research, many statistical analyses are conducted using null hypothesis significance 

tests. Often, only a single null hypothesis is tested. For example, an investigator might test whether a 

group mean differs from a specified value or if there is any significant difference between an 

intervention and a control. To answer these research questions, various types of t tests could be adopted 

under a given level of significance, or α. In statistics, if the null hypothesis is incorrectly rejected, Type I 

error occurs. That is, there is a 5% of chance that researchers can make a Type I error for a single 

hypothesis test when α = .05. 

 However, when k multiple hypotheses are tested, the k separate null hypothesis significance tests are 

often performed each at α = .05. The probability of making at least one Type I error when multiple, 

independent true null hypotheses are tested is defined as p=1−(1− α)
k
, where α is the nominal Type I 

error rate (often .05) and k is the number of independent hypothesis tests performed (Hochberg & 

Tamhane, 1987; Maxwell & Delaney, 2000; Schochet, 2008; Stevens, 2002; Toothaker, 1993). For 

example, if there are four independent tests (k = 4), the probability of finding at least one spurious impact 

is .19, .40 for 10 tests, and .87 for 40 tests (Schochet). Therefore, the Type I error rate is inflated across 

multiple hypothesis tests (MHT). 

 Many researchers are familiar with post hoc multiple comparison procedures, which are able to 

maintain the familywise Type I error rate at α when a set of post hoc comparisons is made among sample 

means, following a significant one-way ANOVA. These procedures (e.g., Tukey; Scheffé) adjust nominal 

alpha for each test so that the probability that at least one of the significant null hypotheses is a Type I 

error remains at a given familywise alpha. 

 However, multiple comparison procedures (MCPs) tested in one-way ANOVA represent only one 

area that uses MHT. In fact, MHT can be conducted in several other areas, such as (a) multiple tests of 

correlations among variables, (b) univariate and multivariate post hoc tests in MANOVA methods, (c) 

multiple chi-square tests in differential item functioning, (d) tests of multiple coefficients in multiple 

regression, (e) repeated measures post hoc tests, and (f) tests of multiple sources of variation in factorial 

ANOVA. Several kinds of general purpose MHT procedures have been made available for researchers, 

including the Bonferroni procedure, the Holm (1979) procedure, the Hochberg (1988) procedure, and the 

Benjamini-Hochberg (1995) procedure. Like MCP methods, the use of general MHT procedures is to 

control the Type I error rate when testing multiple hypotheses simultaneously. 

 Several scholars have suggested that the selection of MHT procedures is mainly based on the Type I 

error rate and statistical power (Hochberg & Benjamini, 1990; Kirk, 1995). As Kirk stated, "Other things 

equal, a researcher wants to use a procedure that both controls the Type I error rate at an acceptable level 

and provides maximum power" (p. 123). As Keren and Lewis (1993) stated, "Ideally, we would like to 

select a method that provides a powerful test while maintaining adequate Type I error control, requires 

few statistical assumptions, and is easy to apply" (p. 56). Therefore, Type I error rates and statistical 

power rates were investigated to evaluate several MHT procedures in this study. 
 

Type I Error Rates 

 Type I error occurs when a true null hypothesis is falsely rejected (e.g., Stevens, 1999). There are two 

major kinds of Type I error rates: (a) the per test error rate (PTER), and (b) familywise error rate (FWER) 

(Hochberg & Tamhane, 1987; Ryan, 1959; Shaffer, 1995; Toothaker, 1993). The error rate per test is also 
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 Figure 1. Definition of Errors 

called error rate per comparison when working with MCPs. PTER is the probability that any one of the 

hypothesis tests is falsely rejected (Hinkle, Wiersma, & Jurs, 2003; Ryan, 1959), whereas FWER is the 

probability that at least one statistical null hypothesis is incorrectly rejected in a given family (Hochberg 

& Tamhane; Ryan, 1959; Shaffer; Toothaker). Part of the complexity of handling FWER is due to the 

uncertain and varying definitions of "family." 

 Ryan (1959) and Miller (1981) argued that the family of hypotheses includes all those tested on the 

results from a single experiment. Maxwell and Delaney (2000) proposed that each main effect and 

interaction in a factorial ANOVA should constitute its own family. However, several researchers also 

suggested treating all tests in the factorial designs as one family (Games, 1971; Ryan, 1959; Stevens, 

1999). Kirk (1995) stated that "a family of contrasts consists of those contrasts that are related in terms of 

their content and intended use" (p. 120). Ludbrook (1998) provided a more specific definition, a family 

should include "all those experimental observations that were, or could have been, analyzed statistically 

by global procedures" (p. 1033).  

 Relationship to Statistical Power. Statistical power is the probability to detect a significant effect 

when a hypothesis test is indeed false in the population. We know from Cohen (1988) and others that 

Type I error, effect size, sample size, and Type II error (and therefore statistical power) are functionally 

related. For example, given (a) an alpha level, (b) an expected effect size, (c) a sample size, then (d) 

statistical power can be determined for the analysis. 
 

False Discovery Rate 

 Another type of error rate, the False Discovery Rate (FDR), was introduced in Benjamini and 

Hochberg (1995). Figure 1 is adapted from Benjamini and Hochberg, who illustrated the FDR. In 

Figure 1, m0 is the number of true null hypotheses, m−m0 is the number of false null hypotheses, and m is 

the total number of hypothesis tests. U is the number of true correct acceptances, V is the number of false 

rejections (i.e., Type I errors), T is the 

number of false acceptances (i.e., Type 

II errors), and S is the number of 

correct rejections. The total number of 

acceptances is m−R, and R is total 

rejections. When all hypothesis tests 

are true null, m = m0. 

 The number of false rejections is 

only based on the true null hypotheses 

no matter how many false null hypotheses exist. Therefore, FWER can be thought of as the expected 

proportion of the false rejections over the number of true null hypotheses. It can be written as: 

)0|( 0

0

 m
m

V
EFWER  

 FDR is the proportion of false rejections of true null hypotheses from among the total rejections on all 

hypotheses, whether true or false in the population. Therefore, it is expressed as: 

}0|{  R
R

V
EFDR  

 Benjamini and Hochberg (1995) described FDR as the expected proportion of false rejections among 

all rejections. FDR may be desirable because, for example, a few errors of inference should be tolerable in 

exploratory research; thus, one can use the less stringent FDR method of control. Also, Shaffer (1995) 

suggested that "on the average, only a proportion α of the rejected hypotheses are true ones" (p. 567). 

FDR gives researchers another way to think about rejections. 

 When all null hypotheses are true (i.e., "completely null" scenario), FDR equals FWER and therefore 

“control of the FDR implies control of the FWER in the weak sense” (Benjamini & Hochberg, 1995, p. 

291). Whenever the number of true null (m0) is smaller than the number of total hypotheses (m), the FDR 

is smaller than or equal to the FWER. That is, controlling FDR also controls FWER. FDR is more 

powerful than FWER in many circumstances (Benjamini & Hochberg; Keselman, Cribbie, & Holland, 

2002; Schochet, 2008; William, Jones, & Tukey, 1999). 
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Whether to Adjust Alpha 

 There is a lack of consensus among scholars about whether to adjust the alpha level in social and 

behavioral science. Some researchers argue that alpha should never be adjusted. As O’Keefe (2003) 

stated, 

Adjusting the alpha level because of the number of tests conducted in a given study has no 

principled basis, commits one to absurd beliefs and policies, and reduces the statistical power, the 

practice of requiring or employing such adjustments should be abandoned. (p. 444) 

Indeed, without adequate definition of family, researchers can adjust alpha ad absurdum (e.g., lifetime 

alpha, doling out portions of alpha to users of national databases). 

 However, many researchers support adjusting alpha in research some or all of the time (Games, 1971; 

Keselman et al., 2002; Ryan, 1959, 1960; Westfall & Young, 1993). Keppel (1991) suggested that 

"familywise error is the inevitable penalty associated with conducting additional comparisons" (p. 247). 

As Hancock and Klockars (1996) stated, "the very existence of the plethora of MCP research implies that 

a number of researchers consider a familywise approach to be more appropriate" (p. 272). Some 

guidelines have been suggested. For example, What Works Clearinghouse (2008), the National Center for 

Education Statistics (2009), the National Assessment of Educational Progress, the Institute of Education 

Sciences, and others recommend adjusting alpha for multiple hypothesis tests (Schochet, 2008; Williams 

et al., 1999). 
 

Procedure in Multiple Hypothesis Testing 

 Hancock and Klockars (1996) indicated that "new methods have been created in the continued quest 

to bring the empirical alpha level closer to the nominal alpha level---that is, the quest to maximize the 

experimental power while control over the familywise error is maintained" (p. 270). Many MHT 

procedures have been derived in order to control the Type I error with statistical power. Some MHT 

procedures only control the Type I error rate when all null hypotheses are true in the population (i.e., the 

"completely null" case); other procedures work well also when there are some true null hypotheses and 

some false null hypotheses. The former situation is referred as weak control and the latter as strong 

control (Shaffer, 1995; Hochberg & Tamhane, 1987). 

 A three-way ANOVA example is adapted from Neter, Kutner, Nachtsheim, and Wasserman (1996) to 

help explain the techniques studied here (results reported in Table 1 and Table 2). The factors are gender 

of subject (factor A), body fat of subject (factor B), and smoking history (factor C). The dependent 

variable is the exercise tolerance (Y). Each factor has two levels. Finally, a total of seven hypotheses are 

tested simultaneously: three main effects (A, B, and C), three two-way interactions (AB, AC, and BC), and 

one three-way interaction (ABC). As these examples are explored, it should be noted that one can perform 

adjusted tests equivalently by comparing obtained significance values to adjusted alpha values or by 

comparing adjusted p values with nominal alpha. 

 Unadjusted Alpha. Traditionally, hypothesis testing is often conducted at a specified nominal alpha 

level for each test. Each p value is compared to the nominal alpha level in this method. For example, if 

.05 is set, all p values produced in one statistical analysis should be compared to .05 and final conclusions 

made based on those comparisons. However, Type I error rate inflation occurs when a set of hypotheses is 

tested simultaneously if each hypothesis test is compared to .05. The probability of making at least one 

Type I error when multiple and independent null hypotheses are true is p=1−(1− α)
k
, where overall 

nominal α is often .05 and k is the number of hypothesis tests (Hochberg & Tamhane, 1987; Maxwell & 

Delaney, 2000; Schochet, 2008; Stevens, 2002; Toothaker, 1993). All three main effects (A, B, and C) and 

one two-way interaction (BC) are significant at .05. For example, the Smoking History (Factor C) had a p 

= .012 which is less than the .05 nominal level of significance, and therefore the null hypothesis of equal 

means for that main effect is rejected. 

 Bonferroni. In the Bonferroni procedure, the nominal familywise alpha (α) level is divided by the 

number of hypothesis tests. Using this approach results in the actual FWER remaining below nominal 

familywise alpha. Consequently, each hypothesis is tested at the same alpha level αi = α/n, where n is the 

number of null hypothesis significance tests performed. The null hypothesis is rejected if the individual p 

value is less than α/n---or equivalently, if np is less than α then the null hypothesis is rejected. For the 

Neter et al. (1996) example above, each null hypothesis is rejected if the obtained 7p is less than .05. As a 

result, only the main effects A and B are significant, because their adjusted p values are less than the   
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Table 1. Three-Way ANOVA Output 

Source Sum of Squares df Mean Square F Ratio p values 

A 168.584 1 168.584 18.059 0.001 

B 242.570 1 242.570 25.984 0.000 

C 74.384 1 74.384 7.968 0.012 

AB 13.650 1 13.650 1.462 0.244 

AC 11.070 1 11.070 1.186 0.292 

BC 76.454 1 76.454 8.190 0.011 

ABC 1.870 1 1.870 0.200 0.660 

Error 149.367 16 9.335     

 

Table 2. Using the Bonferroni, Holm, Hochberg, and Benjamini-Hochberg Procedures 

Hypothesis 

Sorted 

unadjusted 

p value 

Bonferroni-

adjusted 

p value 

Holm-

adjusted 

p value 

Hochberg-

adjusted 

p value 

Benjamini-Hochberg- 

adjusted 

p value 

B       0.000*       0.000*       0.000*       0.000*             0.000* 

A       0.001*       0.007*       0.006*       0.006*             0.004* 

BC       0.011*       0.077       0.055       0.055*             0.026* 

C       0.012*       0.084       0.048       0.048*             0.021* 

AB       0.244       1.000       0.732       0.732             0.342 

AC       0.292       1.000       0.584       0.584             0.341 

ABC       0.660       1.000       0.660       0.660             0.660 

Note. * indicates significant test adjusted p < .05 (values of 1.000 represent adjusted p values ≥ 1.0). 
 

familywise alpha of .05. That is, Gender (Factor A) had unadjusted p = .001, so 7p = .007, which is less 

than α = .05. 

 The Bonferroni correction has become the standard and most well-known approach for controlling the 

FWER in the strong sense (Cai, 2006; Shaffer, 1995; Schochet, 2008). It is a flexible method because it 

can be applied to test any subset of hypotheses, both continuous and discrete data, and even correlated 

tests (Schochet). It is a simple but general procedure that does not require any constraining assumptions 

(Hochberg & Benjamini, 1990), but is conservative because the adjusted alpha level becomes very small 

if there are many hypothesis tests (Field, 2005; Games, 1971; Hancock & Klockars, 1996; Holm, 1979). 

Therefore, the Bonferroni procedure suffers from lower power in many situations (e.g., Hochberg & 

Benjamini; Schochet). 

 A number of modifications have been made to the original Bonferroni procedure. In particular, a 

number of sequential strategies have been developed that improve power slightly compared to the 

traditional Bonferroni, but at the cost of complexity (Hancock & Klockars, 1996; Shaffer, 1995). For 

example, sequential methods are not able to have simple confidence intervals like simultaneous 

procedures can (Hancock & Klockars; Holland & Copenhaver, 1987; Toothaker, 1993). We focus on two 

common approaches: Holm (1979) and Hochberg (1988). 

 Holm. Holm (1979) introduced a sequentially rejective Bonferroni procedure. Like the Bonferroni 

procedure, the Holm procedure has no constraining assumptions and controls the Type I error rate in a 

strong sense (Holland & Copenhaver, 1987; Schochet, 2008). It is called a "step-down" procedure in 

which the hypotheses are tested based on the ordered p values from the smallest to the largest (Kromrey 

& Dickinson, 1995). Holm’s approach is less conservative and more powerful than the classical 

Bonferroni procedure because of the sequentially adjusted p values in this method compared to 

Bonferroni’s adjustment fixed across all tests. The Holm procedure is currently the most powerful 

procedure for controlling the Type I error rate among procedures that do not need strong assumptions 

such as independence (Ge, Sealfon, Tseng, & Speed, 2007).  

 The p values for the n hypotheses being tested are ordered from the smallest to largest (p1 ≤ p2 ≤ ... ≤ 

pn). The smallest p value p1 is tested at α/n (i.e., the Bonferroni adjustment) and if p1 > α/n then that and 

all n hypotheses are not significant; otherwise, the null hypothesis is rejected and the next hypothesis is 

considered. The second smallest p value (p2) is tested at α/(n−1) and if p2 > α/(n−1) then that and all 
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subsequent tests are nonsignificant; otherwise, the null is rejected and the next smallest p value (p3) is 

considered. The test continues until pi > α/(n−i+1), where pi is the ith smallest p value [or equivalently, 

until (n−i+1)pi > α]. In the example, only main effects A and B are statistically significant using Holm's 

procedure because the third smallest unadjusted p value (.011 for interaction BC) is larger than the 

adjusted α of .01 [i.e., .05/(7−3+1), or as shown in Table 2, adjusted p = .055, which is larger than α = 

.05]. 

 Hochberg. Hochberg (1988) proposed another sequentially rejective Bonferroni procedure that is 

called a "step-up" procedure. This method has shown to be slightly more powerful than the Holm 

approach based on a Monte Carlo simulation in factorial designs (Kromrey & Dickinson, 1995). 

However, it lacks stability under certain conditions, for example, when the test statistics are dependent or 

correlated (Holland & Copenhaver, 1987; Schochet, 2008).  

 The p values of n tests are ordered from the largest to the smallest in Hochberg’s method (pn ≥ pn−1 ≥ 

... ≥ p2 ≥ p1). The largest p value (pn) is tested at α/1 and if pn < α then that and all the subsequent tests are 

rejected; otherwise, the next largest p value pn-1 is tested at α/2 and if pn−1 ≤ α/2 then that and all the 

subsequent hypotheses are rejected; otherwise, the third largest p value is examined. Generally, if pi < 

α/(n−i+1), where i is the ith smallest p value, that and all the subsequent hypotheses are rejected (or 

equivalently, (n−i+1)pi < α). In fact, the critical values in this procedure are the same as that in Holm’s 

method---the difference is the order with which the hypotheses are tested. In the example from Table 2, 

main effects A, B, and C as well as the interaction term BC are significant because the fourth smallest 

unadjusted p value (.012 for main effect C) is smaller than the adjusted α = .0125 (i.e., .05/(7−4+1)---or as 

shown in Table 2, adjusted p = .048, which is less than α = .05. 

 Benjamini-Hochberg. The Benjamini-Hochberg (1995) method (B-H) focuses on controlling FDR, 

which also controls FWER in a weak sense. Schochet (2008) reported that this "step-up" procedure has 

become increasingly popular among researchers. It has been shown to be more powerful than some 

FWER methods, such as the Bonferroni and the Holm procedures, especially when testing large numbers 

of hypothesis tests in a family (Keselman et al., 2002; Schochet). Williams et al. (1999) showed that the 

B-H method is more powerful than the Bonferroni procedure and the Hochberg method. The handbook of 

the National Assessment of Educational Progress (2009) indicates that the Benjamini-Hochberg FDR 

procedure is more suitable than other procedures. 

 The steps of B-H method are (a) to order the p values of the n tests from the smallest to the largest (p1 

≤ p2 ≤ ... ≤ pn), (b) to find the largest ith p value which satisfies pi ≤ (i/n)α (or equivalently npi/i ≤ α), and 

(c) to reject all statistical null hypotheses from the first to the ith hypothesis (Benjamini & Hochberg, 

1995; Cai, 2006; Keselman et al., 2002; Schochet, 2008). Therefore, in this example, the first four 

hypotheses are rejected: three main effects (A, B, and C) and one two-way interaction BC because the ith 

largest unadjusted p value that fulfills the pi ≤ (i/n)α condition is the .012 for main effect C (where 

adjusted α is .029---or equivalently the adjusted p is .021, as shown in Table 2). 

 It should be noted that a number of modified FDR procedures have been developed since 1995. For 

example, Benjamini and Hochberg (2000) developed an adaptive B-H method for when m0 is unknown. 

There are several other procedures which focus on the FDR under different conditions (Benjamini & Liu, 

1999; Benjamini & Yekutieli, 2001; Kwong, Holland, & Cheung, 2002; Storey, 2002; Troendle, 2000). 

However, the original Benjamini and Hochberg (1995) approach is the most commonly applied. 

 

Factorial ANOVA 

 Even though adjustments for multiple tests are not traditionally made for factorial ANOVA, the 

familywise Type I error rate inflates in factorial ANOVA because several F tests are usually conducted in 

the same factorial design simultaneously. The Bonferroni method was recommended in a factorial 

ANOVA design to control the Type I error rate by some researchers (Fletcher, Daw, & Young, 1989; 

Rosenthal & Rubin, 1984; Smith, Levine, Lachlan, & Fediuk; 2002; Stevens, 2002). Kromrey and 

Dickinson (1995) found that the Hochberg method performs slightly better than the Holm procedure in 

terms of power. Indeed, Kromrey and Dickinson determined that Bonferroni, Holm, and Hochberg all 

controlled the familywise Type I error rates better than the omnibus F test (used as protection for other 

tests) under partial null conditions. Smith et al. recommended the Bonferroni procedure because of its 

stability in controlling the Type I error rate under both complete null and partial null situations in three-

way and four-way balanced factorial designs.  
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Purpose of the Study 

 The purpose of this study was to evaluate four MHT procedures (the Bonferroni procedure, the Holm 

procedure, the Hochberg procedure, and the Benjamini-Hochberg procedure) in terms of Type I error 

rates in the balanced two-way, three-way, and four-way factorial ANOVA designs. No studies of 

Benjamini-Hochberg within factorial ANOVA had yet been conducted. The second purpose was to 

investigate the statistical power rate of these four MHT procedures in the balanced two-way and three-

way factorial ANOVA. For comparison, the Type I error rates and statistical power of the four MHT 

procedures were also compared to those rates obtained in the unadjusted alpha per test procedure, in 

which each p value from each test is compared to .05. 

 Very few, if any, researchers have investigated both FWER and FDR in the same study (none could 

be found). Because there is a functional relationship between Type I error and statistical power, it is 

important to understand the Type I error rates of FDR approaches (e.g., B-H). Before comparing the 

power rates of B-H with the Holm and Hochberg methods, we need to understand whether the higher 

power that has been found for B-H is related to an inflated FWER. It should also be noted that results 

from these balanced factorial ANOVA designs will generalize to other such independent analyses. 

 

Methodology 

 A Monte Carlo program was created using the computer statistical program R, which was used to 

simulate data needed to obtain the appropriate Type I error rates and statistical power rates. R is a 

computer statistical package and programming language available as open source software (see 

http://www.r-project.org/). All statistical analyses are performed using built-in R functions with the 

requirement of some additional R packages. 

 Two-way (2x2), three-way (2x2x2), and four-way (2x2x2x2) factorial ANOVA designs were studied. 

One dependent variable and two, three, or four factors were generated in the two-way, three-way, and 

four-way designs, respectively. Sample size was 32 per cell in the two-way and 16 per cell in the three-

way and four-way balanced designs. All statistical analyses were done with at least 10,000 replications as 

a Monte Carlo simulation in the R programming language. 

 Normally distributed dependent variables were generated in each cell using the function rnorm in R 

with cell means set for each pattern so that the necessary number of null hypotheses were true. In a 

multifactor ANOVA design, the number of true null hypotheses (m0) will vary in different scenarios. 

Several patterns of true null and false null effects were studied: 4 patterns in the two-way, 8 patterns in 

the three-way, and 16 patterns in the four-way design. All non-redundant patterns were used. That is, 

because the tests are considered independent in a balanced factorial ANOVA, only one pattern with two 

true null hypotheses is required, no matter which effects are the true null hypotheses. Therefore, for 

example, only four patterns are required in the two-way design to represent 0, 1, 2, and 3 true null 

hypotheses for the main effects and/or interaction effect. Where any null hypotheses were set as false for 

the population, medium effect sizes (.50) were used between the contrasted groups.  

 The cell means used for the patterns are shown in Table 3 and Table 4. All standard deviations were 

1.0. Different cell mean patterns produce different numbers of non-null (or true-null) effects. For 

example, there are three hypothesis tests in the two-way balanced design: two main effects (A and B) and 

one interaction effect (AB). For example, the cell means in pattern one are all equal to zero and therefore 

represent the completely null case where none of the effects are non-null. The cell means in pattern two 

are 0.0, 0.5, 0.0, and 0.5, resulting in true null hypotheses for one main effect and the interaction; the 

second main effect is therefore a false null hypothesis for the population (i.e., a real difference). 

 The factorial ANOVA analyses were conducted in R using built-in functions. Significance (p) values 

were obtained from each analysis and then adjusted as required for each adjustment procedure 

(Bonferroni, Holm, Hochberg, and Benjamini-Hochberg) were calculated in R using the function p.adjust. 

Familywise alpha was set at .05 for all analyses. 

 Three Type I error rates were studied: Samplewise familywise error rate (SFWER), Testwise FWER 

(TFWER), and false discovery rate (FDR). SFWER is measured as the proportion of samples in which 

any Type I error occurred. Although some researchers might call SFWER as defined here 

"experimentwise error rate," not all scholars agree that experimentwise error rate is the same as 

familywise error rate in multifactor designs (e.g., Maxwell & Delaney, 2000; Ryan, 1959). The argument   
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Table 3. Patterns of Means for 2-way Balanced Design 

Number of  

True Null 

Pattern 

Numbers 
Cell  

(1,1) 

Cell  

(1,2) 

Cell  

(2,1) 

Cell  

(2,2) 

 

True Effect 

3 1 0.00 0.00 0.00 0.00 A, B, AB 

2 2 0.00 0.50 0.00 0.50 A, AB 

1 3 0.50 1.00 0.00 0.50 AB 

0 4 0.00 0.00 1.00 0.00 None 

Note. n per cell is 32. Pattern 1 for Type I error rate and pattern 2-4 for statistical power. 

 

   Table 4. Patterns of means for the 3-way Balanced Design 

# of 

True 

Null 

Pattern 
Cell 

1,1,1 

Cell 

1,2,1 

Cell 

2,1,1 

Cell 

2,2,1 

Cell 

1,1,2 

Cell 

1,2,2 

Cell 

2,1,2 

Cell 

2,2,2 
True Effect 

7 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 all 

6 2 0.0 0.5 0.0 0.5 0.5 0.0 0.5 0.0 A,B,C,AB,AC,ABC 

5 3 1.0 0.5 0.5 0.0 0.5 0.0 1.0 0.5 A,C,AB,BC,ABC 

4 4 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 A,AB,AC,ABC 

3 5 1.0 0.0 1.0 1.0 0.0 0.0 0.0 1.0 B,AC,ABC 

2 6 0.5 0.5 0.0 −1.0 1.0 0.0 0.5 0.5 A,ABC 

1 7 0.5 0.5 1.0 1.0 1.0 −1.0 0.5 0.5 AC 

0 8 1.0 0.0 0.0 1.0 −1.0 0.0 0.0 1.0 None 

Note. n per cell is 16. Pattern 1 for Type I error rate and pattern 2-7 for statistical power. 
 

depends on the definition of family, that is, whether there is a single or several families in one factorial 

experiment. Here, "samplewise" defines family based on the total number of null hypotheses tested within 

the sample (e.g., Games, 1971; Ryan, 1959; Stevens, 1999). Testwise FWER measured the rate of Type I 

errors committed at the test level. TFWER is defined as the proportion of all null hypothesis tests that 

resulted in a Type I error, resulting in an average per test Type I error rate. Within any one sample, there 

may be multiple true null hypotheses and therefore multiple possible errors; TFWER uses the count of all 

such errors in its calculation. False Discovery Rate (FDR) measured the proportion of total rejections that 

were Type I errors. Whereas TFWER is the proportion of false rejections out of the total number of true 

null hypotheses, FDR is the proportion of the false rejections out of the total number of rejections. The 

total number of rejections includes both correct and incorrect rejections of the null hypotheses. Using a 

somewhat parallel approach, three criteria for statistical power rates were employed: samplewise power, 

testwise power, and true discovery rate. Samplewise Power (SPOWER) measured the number of samples 

that resulted in any correctly rejected null hypotheses (no power rate was calculated for samples in which 

all false null hypotheses were correctly rejected). More specifically, SPOWER is defined as the 

probability of detecting at least one significant effect in samples that have more than one false null 

hypothesis. This definition follows from Kirk's (1995) statement that "power refers to the probability of 

rejecting a false null hypothesis" (p. 58), rather than a definition based on Type II error. Testwise Power 

(TPOWER) provided a measure of correct rejections at the individual hypothesis test level. TPower is 

defined as the probability of detecting significant results from among all false null hypotheses, which can 

be considered the average power based for all false null tests. True Discovery Rate (TDR) provided the 

proportion of all rejections that were correctly rejected. These definitions mirror those discussed by others 

in the context of MCPs (e.g., Kirk; Kromrey & Dickinson, 1995; Toothaker, 1993): any-pairs power, all-

pairs power, and per-pair power. 

 

Results 

Summary of Type I Error Rates 

 All MHT procedures were found to have advantages over the unadjusted alpha per test procedure in 

terms of controlling the Type I error inflation. Both the Holm and Hochberg procedures were able to 

control the Type I error rates at .05, with Hochberg performing slightly better in this regard. The 

Bonferroni procedure was able to control Type I error, but was much more conservative than the other 
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approaches. None of these results are surprising when put into context of the literature. These results held 

up across the two-way, three-way, and four-way ANOVA designs and can be seen in Tables 5-7 and 

Figures 2-7. 

 However, it is interesting to note that while the Holm and Hochberg procedures are able to control 

FWER within a range near .05, and Bonferroni was able to keep FWER below .05, there was no such 

"control" for FDR. That is, no method controlled FDR within range of or below a certain given value (see 

Figure 3 and Figure 6). Further, all methods designed to control FWER also controlled FDR. 

Interestingly, the B-H approach allowed more false discoveries than Holm, Hochberg, or Bonferroni. 

 The most important result---which was not found elsewhere in the literature---is that the SFWER 

from the B-H procedure became inflated under certain conditions, sometimes severely so (see Tables 5, 6, 

and 7, and Figures 2, 4, and 7). Specifically, in the middle numbers of true null hypotheses (i.e., 2 true in 

the two-way design, 3-5 true in the three-way design, and 5-11 true in the four-way design), SFWER 

increased above the nominal familywise alpha level. For example, while actual SFWER was only .058 in 

the two-way analysis, it increased to .091 in the 4 true condition of the three-way design and increased to 

an incredible .192 in the four-way design. This result was not found in the extant literature. These results 

for SFWER for B-H calls into serious question any claims about higher power for that procedure. It was 

true, however, that the B-H controlled SFWER in the weak sense (when the completely null was true or 

almost true), and also when very few null hypotheses were true (e.g., only 1-2 null hypotheses were true 

in the population). 

 

Summary of Statistical Power Rates 
 Similar to the results for the Type I error rates, the results presented here for statistical power 

generally supported what has been reported in the literature. The B-H procedure showed the highest 

power of the MHT procedures in most situations. Hochberg showed a very slight power advantage over 

Holm for both SPOWER and TPOWER. Bonferroni had the lowest power of the MHT procedures across 

all conditions. These results can be seen in Tables 8-9 and Figures 8-10. 

 What has not been reported previously is the TDR results presented in Tables 8-9 and Figure 10. 

Because the B-H procedure results in the highest level of FDR, it also results in the lowest level of true 

discoveries (TDR) among the MHT procedures. 

 Most importantly, perhaps, is the supplemental analysis presented in Figure 11. These results were 

created using a slightly relaxed nominal alpha for Bonferroni, Holm, and Hochberg (α = .07) while using 

α = .05 for the Benjamini-Hochberg procedure. This supplemental Monte Carlo was performed to 

investigate the higher actual SFWER found for the B-H procedure above. Clearly, when nominal alpha is 

relaxed just a little (from .05 to .07), the SPOWER for both Holm and Hochberg procedures exceeds the 

power for the B-H approach. Indeed, even the SPOWER for the Bonferroni technique exceeds the B-H 

power when (α = .07) is used as familywise nominal alpha for the Bonferroni approach. 

 

Table 5. Type I Error Rates in 2-Way Balanced Design with 20,000 Replications 

Number of 

True Null H0 Error Rates Unadjusted Bonferroni Holm Hochberg B-H 

3  

SFWER 0.1393 0.0476 0.0476 0.0478 0.0483 

TFWER 0.0486 0.0162 0.0164 0.0166 0.0172 

FDR 1.0000 1.0000 1.0000 1.0000 1.0000 

2  

SFWER 0.0974 0.0329 0.0440 0.0456 0.0578 

TFWER 0.0499 0.0166 0.0228 0.0239 0.0301 

FDR 0.1106 0.0479 0.0645 0.0674 0.0829 

1  

SFWER 0.0509 0.0166 0.0371 0.0416 0.0438 

TFWER 0.0509 0.0166 0.0371 0.0416 0.0438 

FDR 0.0307 0.0124 0.0260 0.0288 0.0291 
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Table 6. Type I Error Rates in 3-Way Balanced Design with 20,000 Replications 

Number of 

True Null H0 Error Rates Unadjusted Bonferroni Holm Hochberg B-H 

7  

SFWER 0.2913 0.0479 0.0479 0.0479 0.0491 

TFWER 0.0492 0.0071 0.0071 0.0071 0.0078 

FDR 1.0000 1.0000 1.0000 1.0000 1.0000 

6  

SFWER 0.2627 0.0400 0.0443 0.0446 0.0682 

TFWER 0.0504 0.0068 0.0077 0.0077 0.0125 

FDR 0.2731 0.0702 0.0782 0.0787 0.1203 

5  

SFWER 0.2217 0.0360 0.0427 0.0431 0.0809 

TFWER 0.0493 0.0073 0.0088 0.0089 0.0175 

FDR 0.1334 0.0326 0.0384 0.0387 0.0674 

4  

SFWER 0.1883 0.0297 0.0404 0.0411 0.0909 

TFWER 0.0509 0.0075 0.0103 0.0105 0.0244 

FDR 0.0780 0.0182 0.0237 0.0240 0.0473 

3  

SFWER 0.1396 0.0201 0.0334 0.0346 0.0803 

TFWER 0.0492 0.0068 0.0115 0.0120 0.0283 

FDR 0.0442 0.0093 0.0147 0.0152 0.0298 

2  

SFWER 0.0934 0.0140 0.0277 0.0298 0.0645 

TFWER 0.0482 0.0070 0.0143 0.0158 0.0335 

FDR 0.0234 0.0051 0.0094 0.0103 0.0182 

1  

SFWER 0.0511 0.0065 0.0208 0.0270 0.0407 

TFWER 0.0511 0.0065 0.0208 0.0270 0.0407 

FDR 0.0105 0.0020 0.0055 0.0070 0.0090 

 
Figure 2. Samplewise familywise error rates in 2-way balanced design with 20,000 replications. 

              
Figure 3. Samplewise false discovery rates in 2-way balanced design with 20,000 replications.  
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Table 7. Samplewise Type I Error Rates in Four-Way Balanced Design with 20,000 Replications 

Number of 

True Null H0 Error Rates Unadjusted Bonferroni Holm Hochberg B-H 

15 SFWER .5329 .0472 .0472 .0472 .0482 

14 SFWER .5084 .0468 .0496 .0496 .0902 

13 SFWER .4847 .0439 .0508 .0508 .1216 

12 SFWER .4591 .0390 .0488 .0489 .1481 

11 SFWER .4359 .0362 .0496 .0496 .1720 

10 SFWER .3991 .0325 .0483 .0483 .1804 

9 SFWER .3732 .0296 .0484 .0484 .1918 

8 SFWER .3350 .0264 .0473 .0474 .1880 

7 SFWER .3000 .0217 .0478 .0478 .1923 

6 SFWER .2682 .0220 .0520 .0520 .1888 

5 SFWER .2260 .0156 .0420 .0426 .1640 

4 SFWER .1795 .0137 .0376 .0382 .1384 

3 SFWER .1426 .0099 .0336 .0350 .1164 

2 SFWER .0942 .0069 .0200 .0207 .0764 

1 SFWER .0484 .0036 .0097 .0101 .0395 
 

Table 8. Statistical Power Rates in 2-Way Balanced Design with 20,000 Replications 

Number of 

False Null H0 Power Rates Unadjusted Bonferroni Holm Hochberg B-H 

1  

SPOWER 0.8029 0.6578 0.6600 0.6612 0.6646 

TPOWER 0.8029 0.6578 0.6600 0.6612 0.6646 

TDR 0.8894 0.9521 0.9355 0.9326 0.9171 

2  

SPOWER 0.9572 0.8784 0.8790 0.8828 0.8878 

TPOWER 0.8029 0.6586 0.6956 0.7011 0.7297 

TDR 0.9693 0.9876 0.9740 0.9712 0.9709 

3  

SPOWER 0.9919 0.9578 0.9578 0.9629 0.9659 

TPOWER 0.7997 0.6535 0.7474 0.7622 0.7745 

TDR 1.0000 1.0000 1.0000 1.0000 1.0000 

 

           
 

Figure 4. Samplewise familywise error rates in 3-way balanced design with 20,000 replications 
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Table 9. Statistical Power Rates in 3-Way Balanced Design with 20,000 Replications 

Number of 

False Null H0 
Power Rates Unadjusted Bonferroni Holm Hochberg B-H 

1 

SPOWER 0.8041 0.5407 0.5417 0.5419 0.5493 

TPOWER 0.8041 0.5407 0.5417 0.5419 0.5493 

TDR 0.7269 0.9298 0.9218 0.9213 0.8797 

2 

SPOWER 0.9607 0.7842 0.7849 0.7856 0.7987 

TPOWER 0.8005 0.5411 0.5523 0.5529 0.6061 

TDR 0.8666 0.9674 0.9616 0.9613 0.9326 

3  

SPOWER 0.9922 0.8949 0.8952 0.8961 0.9105 

TPOWER 0.8022 0.5408 0.5669 0.5684 0.6540 

TDR 0.9220 0.9818 0.9763 0.9760 0.9527 

4  

SPOWER 0.9979 0.9469 0.9470 0.9475 0.9596 

TPOWER 0.7980 0.5373 0.5786 0.5814 0.6893 

TDR 0.9558 0.9907 0.9853 0.9848 0.9702 

5  

SPOWER 0.9997 0.9761 0.9761 0.9766 0.9839 

TPOWER 0.8035 0.5411 0.6011 0.6063 0.7247 

TDR 0.9766 0.9949 0.9906 0.9897 0.9818 

6  

SPOWER 0.9999 0.9859 0.9859 0.9865 0.9924 

TPOWER 0.8025 0.5395 0.6239 0.6361 0.7495 

TDR 0.9895 0.9980 0.9945 0.9930 0.9910 

7  

SPOWER 1.0000 0.9940 0.9940 0.9947 0.9969 

TPOWER 0.8033 0.5408 0.6605 0.6894 0.7729 

TDR 1.0000 1.0000 1.0000 1.0000 1.0000 

 

 

             
 

Figure 5. Testwise familywise error rates in 3-way balanced design with 20,000 replications 
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Figure 6. False discovery rates in 3-way balanced design with 20,000 replications. 

 
 
Figure 7. Samplewise familywise error rates in 4-way balanced design with 20,000 replications. 

 
Figure 8. Samplewise statistical power rates in 3-way balanced design with 20,000 replications. 
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Figure 9. Testwise statistical power rates in 3-way balanced design with 20,000 replications. 

 

 
Figure 10. True discovery rates in 3-way balanced design with 20,000 replications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Samplewise statistical power rates in 3-way balanced design with 20,000 replications, with 

nominal alpha .05 for BH and .07 for other methods. 
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Conclusions 

 Being an important statistical design, factorial ANOVA is used broadly in educational research. 

However, more importantly, the uncorrelated effects in balanced factorial designs allow this study to 

provide generalizability to other statistical situations that meet the assumption of independence. That is, 

these results apply to any General Linear Model (GLM) statistical analysis with multiple uncorrelated 

hypothesis tests. Indeed, some MHT methods (e.g., Hochberg and Benjamini-Hochberg) require 

independence of tests. The Hochberg procedure worked best in this study overall, slightly better than 

Holm. However, due to the independence assumption required by Hochberg, the Holm procedure may be 

the best choice if independence of tests is not certain, which may be true in a number of situations. 

 Previous literature shows many great contributions to MCPs to control Type I error inflation in one-

way ANOVA; however, inflation of Type I error rates in factorial ANOVA is often not recognized in 

behavioral science (Halderson & Glasnapp, 1974; Kromrey & Dickinson, 1995). Even though Keppel 

(1991) noted that it is common practice in psychology to disregard the increase in familywise error rate 

associated with the tests in factorial ANOVA, more discussion and consideration of the issue are needed. 

It is necessary for researchers to consider further Type I error rate inflation in factorial ANOVA (Smith et 

al., 2002; Stevens, 2002) and other general linear model designs such as tests of multiple regression 

coefficients (Mundfrom, Perrett, Schaffer, Piccone, & Rozeboom, 2006; Neter et al., 1996) or multiple 

dependent variables in MANOVA post hoc testing (Stevens, 2002). For example, Mundfrom et al. found 

Type I error inflation for unadjusted t tests used for testing individual regression coefficients, as much as 

6 times larger than the nominal alpha when 8 predictors were in the model. They noted, however, that the 

Bonferroni adjustment was too conservative in the regression scenarios they examined. 

 The Benjamini-Hochberg (1995) procedure has received positive recommendations in recent 

literature. Indeed, it showed the greatest power here, but at the risk of higher SFWER. While designed to 

control FDR rather than to control Type I error, it is not fair to credit the Benjamini-Hochberg procedure 

with higher power (as many have done) if it comes at the risk of inflated Type I errors. For example, we 

are able to achieve similar (even higher) power rates with the Holm and Hochberg procedures simply by 

increasing the nominal alpha to .07, still below the Type I error inflation often obtained using Benjamini-

Hochberg. There are philosophical reasons that must be considered in regard to whether to adjust alpha 

for multiple hypothesis tests; however, these decisions must also be made with informed consideration of 

the statistical impact affiliated with the procedures. 

 Researchers should have a better understanding about FDR. There are not many studies that have 

been found to investigate a good value for FDR (Benjamini & Hochberg, 1995; Williams, et al., 1999). 

The Type I error should be controlled at .05, but for FDR, it is not clear that the smaller is the better, or 

that it also should be or can be controlled at a nominal value. Similarly, further consideration of the 

usefulness of TDR may be warranted. Also, this study did not include a measure of samplewise FDR, 

which might prove useful as scholars continue to unravel the differences between FWER and FDR. 

 Investigating unbalanced designs will help determine how well these methods work with correlated 

tests. We believe that less-sophisticated researchers will apply the Hochberg and Benjamini-Hochberg 

methods---because of the generally favorable recommendations they have received---even with non-

independent hypothesis tests.  

 Because there are different opinions about how to define family in factorial ANOVA (and indeed, in 

many other types of statistical analyses), future studies may define the effects as separate families. All 

hypothesis tests were regarded as a single family in this study, but family can also be defined in terms of 

main effects and interaction effects separately. Also, the sample size per cell was fixed in this study, but 

future studies might compare the Type I error rate and statistical power rate with different, unbalanced 

sample sizes per cell. The assumptions of factorial ANOVA were not violated in this study, so future 

studies might investigate situations where the assumptions are violated. 
 

Practical Implications and Recommendations 

 The current study showed that  FWER procedures are able to control FDR in a conservative manner. 

That is, the B-H procedure is not the only method in terms of controlling FDR. The B-H procedure can 

control the FWER only in a weak sense. Therefore, FWER procedures can be recommended instead of 

using the B-H procedure. Although some researchers may be concerned about the FWER, as Storey 
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(2003) has noted, "The FWER offers an extremely strict criterion which is not always appropriate" (p. 

2014). Stevens (2002) has suggested using a liberal level of alpha, for example, .10 or .15 in MHT, which 

is equivalent to an FDR approach with its "weak control" of FWER. That is, the liberal alpha level can 

lead to results just as powerful, if not more powerful, than those obtained using FDR approaches. 

 Finally, although scholars have different opinions about adjusting alpha, many have agreed that MHT 

procedures are useful statistical tools (Hewes, 2003; O’Keefe, 2003; Tukey, 1991). The use of MHT 

procedures depends on whether researchers choose to adjust alpha. It is a philosophical issue and 

researchers have to make their own decisions, perhaps based on the context of their relevant literature 

base. When a researcher can clearly define a family of tests within a study; however, it seems very clear 

that some sort of alpha-adjustment procedure must be used. If the alpha should be adjusted, then how to 

adjust the alpha relates to the definition of family and the focal unit of Type I error (i.e., whether to 

control FWER or FDR). As Tukey suggested, there is no unique answer toward controlling the Type I 

error inflation, but the results reported here help inform this conversation. 
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