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Direct Effect = τ′      Mediated Effect =  αβ 

Total Effect = τ′ + αβ 

Figure 1. Path Analysis Model of Mediation. 
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In a mediation model, the a coefficient represents the relationship of the independent variable (X) to the 

mediator (Z) and the b coefficient represents the partial relationship of the mediator (Z) to the outcome 

(Y). The amount of mediation can be estimated as the product of the two sample coefficients (ab). 

Although it would seem that an increase in a would increase statistical power for product tests, it also 

increases the standard error of the product tests due to the necessary increase in the collinearity between X 

and Z. Thus, power can actually be decline with increases in a.   

he first and perhaps the most popular approach for assessing mediation is to fit a sequence of linear 

regression equations (Baron & Kenny, 1986). Let Yi denote the response for individual i, Zi an 

intermediate (potential mediator) variable, and Xi a potential causal factor of interest for individual 

i. Since all regression based tests for mediation can be expressed in terms of standardized regression 

coefficients (Pedhazur, 1997; MacKinnon et al., 1995), the three separate linear models can be expressed 

as:  

          Yi  = τXi + ε1i            (1) 

          Zi  = αXi + ε2i            (2) 

          Yi  = βZi + τ′Xi + ε3i            (3) 

where τ, α, β, and τ′ represent regression parameters estimated by sample coefficients t, a, b, and t′, 

respectively. The errors (ε’s) for each model are assumed to be normally distributed, uncorrelated, and to 

have mean zero and constant variance. Baron and Kenney (1986) consider the intermediate variable Z to 

be a mediator if: (1) H0(1): τ = 0 is rejected (Y is associated with X); (2) H0(2): α = 0 is rejected (Z is 

associated with X); and (3) H0(3): β = 0 is rejected (Y is associated with the Z conditional on X). The 

satisfaction of these conditions indicates that there is a mediating effect of X on Y through Z. If all three of 

these steps are met and H0(4): τ′ = 0 is rejected, then the data are consistent with the hypothesis that 

variable Z partially mediates the X-Y relationship, and if H0(4): τ′ = 0 is not rejected, then complete 

mediation is indicated.  

  Several authors have provided multiple examples of using a path analytic approach to solve the 

mediation analysis regression models simultaneously (e.g., Schumacker & Lomax, 1996; MacKinnon, 

2008). In the path analytic approach, the relationship between an independent variable, X, and the 

outcome, Y, is decomposed into direct and indirect (mediated) effects as shown in Figure 1. The amount 

of mediation (indirect effect) is defined as the reduction of the effect of the initial variable on the 

outcome, which can be estimated in two ways: (1) 

the difference between two sample regression 

coefficients [t - t′] or (2) the product of two sample 

regression coefficients [ab]. The difference in 

parameters is theoretically the same as the product 

of the effect of X on Z times the effect of Z on Y; 

thus it holds that αβ ≈ τ - τ′. MacKinnon, Warsi, and 

Dwyer (1995) demonstrated that the two sample 

estimates of mediation are identical (i.e., ab = [t - 

t′]) when (1) multiple regression (or path analysis) 

is used, (2) there are no missing data, and (3) the 

same covariates are in the equation.  
 

 

Product Tests of Mediation 

 Currently dozens of methods for testing for mediation have been proposed with no consensus on 

which is best (Albert, 2008; MacKinnon et al., 2002). From Baron and Kenny (1986) demonstrating 

complete mediation requires rejecting the first three null hypotheses and not rejecting the fourth. Other 

methods assess mediation by performing a single test of whether the association between X and Y is 

significantly smaller when Z is controlled (i.e., H0: [τ - τ′] = 0), but do not require the X-Y partial 

T 
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Table 1. Correlation Matrix (Upper Diagonal) and 

Standardized Mediation Coefficients (Lower Diagonal). 

 Y Z X 

Y 1.0000 0.61815 t =0.53093 

Z b = 0.46755 

(0.22643) 

1.0000 a = 0.58422 

 

X t′ = 0.25778 

(0.22643) 

a = 0.58422 

(0.19129) 

1.0000 

 

relationship (t′) to be non-significant (MacKinnon et al., 1995; McGuigan & Langholtz, 1988). Product 

tests use ab as the estimate of the mediation effect and perform a single test of H0: αβ = 0. Sobel (1982) 

proposed a test that presumes that α and β are independent, and thus, the squared standard error (SE) for 

the Sobel test is a weighted composite the squared standard errors for a and b coefficients, SE
2
(ab)S = 

b
2
SE

2
(a) + a

2
SE

2
(b). Other tests include the covariance of the a and b coefficients, which is typically small. 

For example, the Aroian (1947) test adds this covariance term, SE
2
(ab)A = b

2
SE

2
(a) + a

2
SE

2
(b) + SE

2
(a)SE

2
(b), 

which was recommended by Baron and Kenny (1986) because it does not make the unnecessary 

assumption that the product of SE
2
(a) and SE

2
(b) is vanishingly small. The Goodman (1960) test subtracts 

this covariance term, SE
2
(ab)G = b

2
SE

2
(a) + a

2
SE

2
(b) - SE

2
(a)SE

2
(b), to form an unbiased estimate of the 

variance of the mediated effect; however, this can yield  negative variance estimates. All three of these 

approaches divide ab by the SE(ab) to form a z-statistic and use to the unit normal distribution to obtain p-

values or calculate confidence intervals. The Sobel and Aroian tests have performed best in simulation 

studies (MacKinnon et al., 1995). Because most methods for testing mediation differ on how to define 

standard errors and confidence intervals, bootstrapped tests (Shrout & Bolger, 2002) and confidence 

intervals (Preacher & Hayes, 2008) are increasingly popular approaches; however, the Sobel normal 

theory test arguably remains one of the most widely-used test in mediation analysis. 
 
 

Data Example 

  Following the framework of a cost-benefit analysis presented by Leech and Onwuegbuzie (2004), two 

indices were implemented. The first index related to the cost per level of effectiveness (CE), where C was 

the direct cost of the program and E was the practical effect measured in terms of the raw difference in 

testing points (i.e., ISAT mathematics and reading). Note: the practical effect of the effect size measure in 

terms of testing points gained was based on average standard deviations from sample data trends found 

for ISAT mathematics elementary = 28.04, mathematics MS = 27.83, reading elementary = 27.51, and 

reading MS = 24.27 (Consortium on Chicago School Research, 2007). 

 The Appendix presents data for a simple example of a single mediator model with N = 20 cases. 

Suppose X is a binary variable representing a randomized treatment (e.g., treatment vs control) that has 

been standardized to have a mean of zero and variance of one. That is, for a two-group balanced design, 

effect codes of ± √      ⁄  are assigned to indicate group membership. Also suppose that Z and Y are 

standardized continuous variables that represent the mediator and outcome, respectively. Since all 

regression based tests for mediation can be expressed in terms of standardized regression coefficients and 

bivariate correlations (Pedhazur, 1997; MacKinnon et al., 1994), the upper diagonal of Table 1 reports the 

correlation matrix among these three variables and displays the standardized mediation coefficients from 

Regression Models 2 and 3 with their SEs (in parentheses) on the lower diagonal. Note that the bivariate 

correlations of X with Y and Z in Table 1 are equal to the standardized coefficients for Models 1 (t) and 2 

(a), respectively. The Appendix also contains SAS code and output for these analyses. 

 As can be seen the product of a and b is ab = 0.58422*0.46755 = 0.273152 and the estimated Total 

Effect [t = (t′ + ab) = (0.25778 + 0.273152) = 0.53093] reproduces the bivariate X-Y correlation and 

demonstrates that ab = [t - t′]. The Sobel squared standard error is SE
2

(ab)S = (0.46755
2
*0.19129

2
) + 

(0.58422
2
*0.22643

2
) = 0.0254984; thus the SE(ab)S = √          = 0.15968217, and the zS = 

(0.273152/0.15968217) = 1.71059838 with a two-tailed p-value = 0.08715528. The Aroian squared 

standard error adds the ab covariance term and 

is equal to SE
2
(ab)A = 0.0254984 + 

(0.19129
2
*0.22643

2
) = 0.02737448, which 

results in zA = 1.65094096 with a two-tailed p-

value = 0.09875063. The Goodman squared 

standard error subtracts this covariance term and 

is equal to SE
2
(ab)G = 0.0254984 - 

(0.19129
2
*0.22643

2
) = 0.02362231, which 

results in zG = 1.77722861 with a two-tailed p-

value = 0.07553063. All three test are not 

statistically significant at the α =  .   level. 
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Power of Product Tests 

  Power and sample size calculations for mediation analyses present a challenge because the power 

functions for the product tests depend on the strength of the associations of the mediator (Z) with the 

outcome (b), and the independent variable (a) and the distribution of their product. Hoyle and Kenney 

(1999, p. 201) briefly discuss power of testing H0(3): β = 0 and H0(4): τ′ = 0 as a function of the collinearity 

of X and Z. As they describe, the more variance in Z explained by X, the less variance in Z there is to 

contribute to uniquely explaining Y. That is, as a becomes large at some point b can be reduced. To 

elaborate, suppose an extreme example where a = 1 in a standardized Model 2. In this case, X explains 

100% of Z and therefore Z cannot uniquely account for Y (i.e., b would have to be zero due to the 

complete collinearity). Hoyle and Kenney state that the degree a affects the power of product tests is less 

clear because both a and b contribute to the product; however, they do not discuss this issue in terms of 

the SEs of the product test statistics and the tolerance (i.e., collinearity) of the predictors in Model 3.  

  It would seem that the power of product tests would increase with a, because the numerator, ab, 

increases and part of the denominator, SE
2

(a) = (1 - a
2
), decreases. What has not been noted, however, is 

that increases in a lead to increases in SE
2

(b) in the denominator of the product tests due to the necessary 

increase in the collinearity between X and Z. Thus, power can actually be reduced by increasing a. To 

explicate this issue, again assume all variables are standardized, and thus, all regression based tests for 

mediation can be expressed in terms of standardized regression coefficients and bivariate correlations. For 

Model 1, the explained variation, R
2
1 = t

2
 = (t′ + ab)

2
, the Mean Square Error (MSE) will be MSE1 = (1- 

R
2
1)(N-1)/(N-2) = (1 – t

2
)(N-1)/(N-2) and the squared standard error for the t coefficient is SE

2
(t) = [(1 - 

R
2
1)/(N-2)] = [(1 – t

2
)/(N-2)]. For Model 2, the R

2
2 = a

2
 and the squared standard error for the a coefficient 

is SE
2
(a) = [(1 - R

2
2)/(N-2)] = [(1 – a

2
)/(N-2)]. Because both of these models have a single predictor the 

tolerance is 1. 

 The R
2
 for a multiple (K) predictor standardized regression model can be calculated as the sum of the 

product between the k
th
 standardized regression coefficient ( ̂k) and the bivariate correlation (    

) 

between Y and the k
th
 predictor X: 

            R
2
 = ∑  ̂ 

   k    
              (4) 

(see Pedhazur, 1997). In matrix notation, (4) can be expressed as; R
2
 = B′RYX, where B′ is a 1 x K vector 

of standardized sample regression coefficients and RYX is a K x 1 vector of bivariate predictor-outcome 

(X-Y) correlations. For the K = 2 predictor Model 3, the vector of standardized sample regression 

coefficients is B′ = [ b  t′ ]; the sample estimates of β and τ′, respectively.  

  Although one would know the bivariate correlations from sample data, Models 1 – 3 are used to 

demonstrate how Model 2 affects collinearity in Model 3 and as a result affects the standard error of the 

product tests. Model 1 defines the population bivariate correlation of X with Y as τ. And although Model 3 

implies the population bivariate correlation of X with Y as τ = (τ′αβ), there is no direct knowledge of the 

population bivariate correlation of Z with Y, only the partial relationship β. Knowing that the standardized 

regression coefficients can be solved as: B =    
  RYX, where R

-1
XX is the inverse of the K x K matrix of 

correlation among the predictors (RXX). The K = 1 predictor Model 2 defines the population correlation 

among the two predictors in Model 3 (X and Z) as α, and thus, the   x   matrix of predictor sample 

correlations is: 

           RXX = [
  
  

]             (5) 

The vector K x 1 vector of bivariate predictor-outcome (X-Y) correlations can be solved as: 

            RYX = RXXB.             (6) 

Substituting (5) into (6),  

        RYX = RXX B  = [
  
  

] [
 
  
]= [

     

     
] .         (7) 

Then R
2
 can be solved as:  

      R
2
 = B′RXXB = B′RYX =  [ b  t′ ] [

     

     
] = [b

2
 + t′ab]+[ t′ab + t′

2
]     (8) 

Thus, the Full Model R
2
3 = t′

2
 + b

2
 + 2abt′ and MSE3 = (1- R

2
3)(N-1)/(N-3). This model has two 

predictors, and thus, the standard errors for each coefficient will affected by their tolerance (i.e., the 

correlation between the predictors X and Z). With a two predictor model both predictors have the same 
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Figure 2. Sobel, Aroian, and Goodman z-tests as a 

function of the X-Z relationship (a) for a Complete 

Mediation Model with N = 200. 

tolerance, which for Model 3 is equal to [1 - R
2

2] = [1 - a
2
]. The squared standard errors for both the b and 

t′ standardized coefficients are:  

        SE
2
(t′) = SE

2
(b) = (1 - R

2
3)/[(N-3)(1 - R

2
2)] = (1 – R

2
3)/[(N-3)(1 – a

2
)].    (9) 

  Thus, for the Sobel test, zS = ab/(SE(ab)S) = ab/(b
2
SE

2
(a) + a

2
SE

2
(b))

½
. 

          zS =  
  

√        

     
 

        
 
           

           

.          (10) 

For the Aroian and Goodman tests, the covariance of the a and b coefficients is: 

       SE
2
(a)SE

2
(b) = 

      

     
 

                  

           
 = 

                  

          
.     (11) 

Therefore, the Aroian test is zA = ab/(SE(ab)A) = ab/(b
2
SE

2
(a) + a

2
SE

2
(b)+ SE

2
(a)SE

2
(b))

½
, and thus,  

       zA = 
  

√        

     
 

      
 
           

     
 

  

(    )
 

 

     
 

        (12) 

The Goodman test is:  

         zG = 
  

√        

     
 

      
 
           

     
 

  

(    )
 

 

     
 

       (13) 

With a in the numerator and a
2
 and (1 – a

2
) in the denominator, it is apparent that these product tests are a 

nonlinear function of the a coefficient, and therefore, the magnitude and power of these three tests will 

not necessarily increase with a.  

  Figure 2 shows the magnitude for each 

test as a function of the a coefficient for a 

fixed sample size of N = 200 and partial 

coefficients of b = 0.1 and t′ = 0 (complete 

mediation). The three product tests reach a 

maximum between a = 0.2 and 0.3 and then 

decline and converge thereafter. Figure 3 

shows the statistical power of these product 

tests at a two-tailed α = .   significance 

level in the same complete mediation model. 

As would be expected from the test statistics 

in Figure 2, the Goodman test has slightly 

more power, which reaches a maximum of 

approximately 27% power at a = 0.20. The 

power functions of the Sobel and Aroian test 

are similar to each other and to the 

Goodman test. For a > 0.50 these power 

functions converge and decline towards α = 

0.05. Both Figures 2 and 3 demonstrate that 

magnitude and power of the product tests 

can decline with increases with a. Figure 3 

(right panel) shows statistical power at a 

two-tailed α = 0.05 for a partial mediation 

model with partial coefficients of b = 0.1 for 

t′ = 0.4. These results are similar to those in 

Figure 3 showing that power can decline with increases in a; however, it also demonstrates that product 

tests can more powerful as tests of partial mediation.  Figure 4 shows the statistical power of these 

product tests for a complete mediation model with a stronger Z-Y partial relationship (b = 0.3). As 

compared to Figure 3, Figure 4 shows that power the three tests are virtually identical and the point at 

which power reaches a maximum and then declines shifts to a larger value of a ≈  .  . 
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Figure 4. Power of Sobel, Aroian, and Goodman z-tests  

as a function a for a Complete Mediation Model at  

α =  .   significance level with N = 200. 

 
       a            a     
 

Figure 3. Power of Sobel, Aroian, and Goodman z-tests as a function of the X-Z relationship (a) for 

 Complete (Left Panel) and Partial (Left Panel) Mediation Models at α =  .   with N = 200. 
 

 Figure 5 shows the power of the same 

complete mediation model as Figure 3 (Right 

Panel) but with a smaller sample size of N = 25. 

As compared to Figure 4, Figure 5 shows show 

more separation between the power functions of 

the three product tests with the Goodman test 

having more power. The power of these tests 

reaches a maximum and then declines for a 

between 0.4 and 0.5, and then converge at 

approximately a ≈  .7. Thus, it appears that the 

sample size (N) also affects the point at which 

the a coefficient begins reducing the power of 

the product tests. To further investigate this 

issue, the power of the Goodman test in a 

complete mediation model with a strong Z-Y 

partial relationship (b = 0.85) with sample sizes 

of N =25, 50 and 75 was examined. Figure 6 

shows that the point at which the product test 

reach >99% power is at a = 0.8 for N = 25, a = 

0.6 for N = 50 and a = 0.5 for N = 75, which is 

to be expected.  The point at which the power of 

the product test begins to decline also differs. 

Thus, statistical power of the product tests can 

decline as a function of the a coefficient; 

however, the sample size will have some effect 

on this phenomenon.  
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Figure 5. Power of Sobel, Aroian, and Goodman  

z-tests as a function of a for a Complete Mediation  

Model at α =  .   with N = 25. 

 
Figure 6. Power of Goodman z-test as a function of a 

for a Complete Mediation Model at α =  .   with 

 N = 25, 50, and 75. 

Discussion 

  The major conclusion is that an increase in X-Z meditational relationship (a) leads to 

increases in the standard error of product tests due to the necessary increase in the collinearity 

between the X and Z predictors in Model 3. This is because the tolerance of the predictors in 

Model 3 (1 – a
2
) is a direct function of a. 

Although it would seem that the power of the 

product test would increase with a, power can 

actually be reduced by increasing a. In the 

conditions presented, but in other conditions 

examined but not reported, power usually 

reached a maximum and then began to decline 

with increases in a. For mediation models 

with stronger Z-Y partial relationship (b), the 

point at which power reaches a maximum 

tend to get shifted to a larger value of a; 

however sample size will have some effect on 

this value. 

  Regardless of the τ′ parameter, mediation 

does not occur when either the α or β (or 

both) parameters equal zero (i.e., mediation 

null hypothesis is true). For complete 

mediation models (τ′ = 0) both a and b can be 

large (> 0.9); however, if a = 1 then b ≡   

because X and Z would be completely 

collinear as predictors in Model 3. Yet, given 

the same product ab, power is a stronger 

function of b because increases in a also 

increase the standard error of the product 

tests. This is consistent with Hoyle and Kenny 

(1999) conclusion that the power of the 

product test of is maximal when b is 

somewhat larger than a. 

  Our findings also show that products tests 

are more powerful as tests of partial 

mediation. In partial mediation models where 

τ′ ≠  , the sample value of t′ places constraints 

on the values of a and b can take. That is, the 

values of a, b, and t′ must yield bivariate 

correlations among X, Y, and Z so that the 3x3 

correlation matrix is positive-definite (i.e., has 

all non-zero eigenvalues). Thus, holding a and 

b constant, for any t′ ≠   that is valid (positive 

definite 3x3 correlation matrix), then Model 3 

will explain more variation (R
2
3), which 

results in smaller SE
2

(b) and SE
2

(ab) and 

increased power for the product test. If t′ is 

large then the R
2

3 will not be reduced by 

adding Z to Model 3, it will be at least as 
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large as R
2

1 (R
2

3 ≥ R
2
1); however, a larger value of t′ will place constraints on the values of a, b, 

and the ab product. Furthermore, although larger values of t′ may still meet the criteria for partial 

mediation, it would seem counter to the conceptualization of mediation. 

  Under the conditions presented, the Goodman test demonstrated more power when the 

meditational relationships were smaller; however, it has been shown to have negative variance 

for correlation structures with a mixture of positive and negative coefficients and small samples 

sizes (N < 20), and we did not fully investigate negative values of the mediation parameters. 

Furthermore, the Sobel and Aroian tests have performed better than the Goodman test in more 

extensive simulation studies (MacKinnon et al., 1995). Also, the properties of difference tests 

(McGuigan & Langholtz, 1988) were not examined; however, MacKinnon et al. (1995) 

concluded that this test should not be used when the independent variable (X) is binary. Yet, 

whether one uses a product test or a difference test, the standard errors will increase as a function 

of the a coefficient because the product tests use SE
2

(b) and the difference test uses SE
2

(t′) as part 

of the denominator. Thus, it reasonable to expect the power of the difference test would also 

decline with a in many circumstances. 
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