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Multiple R IS the Square Root of R2: 
Multiple Correlation Coefficient Using Matrix Formulation 

T. Mark Beasley 
University of Alabama at Birmingham 

Birmingham/Atlanta VA Geriatric Research, Education, & Clinical Center 
By substituting the matrices necessary to compute Mean Corrected Sums of Squares and Cross-Products 
into the Pearson correlation scalar formula and utilizing the idempotent properties of partitioned matrices, 
it is demonstrated that computationally the Multiple R IS the square root of the Model R2.  

 hile preparing for my preliminary examinations to qualify as a doctoral candidate, I worked 
through many practice questions. One such question was: “Why is the Multiple Correlation 
Coefficient, R, always positive?” I was told by fellow students that: “The Multiple Correlation 

Coefficient is the square root of the Multiple Coefficient of Determination, R = √𝑅𝑅2.” was not a “good 
enough” answer. Something more elaborate was needed. A more verbose response would be as follows. 
 

The Multiple Correlation Coefficient can be defined as the Pearson Correlation between the 
outcome variable, y, and the predicted values, 𝑦𝑦�, from regressing y onto a set of x variables. The 
predicted values, 𝑦𝑦�, determined from the Ordinary Least Squares (OLS) regression solution are 
calculated as: 𝑦𝑦� = b0 + b1x1 + … + bkxk. The OLS regression solution determines regression 
coefficients and predicted values that minimize the Sum of Squared Residuals (Σ(y-𝑦𝑦�)2), thus 
yielding the best fit of 𝑦𝑦� for y. Therefore, the OLS regression solutions will project 𝑦𝑦� into the 
same space as y. For example, suppose a simple linear regression with one regressor, x1. If x1 is 
negatively (inversely) correlated with y, the regression slope for x1 (b1) will be negative. This can 
be seen in the scalar formula for the slope in simple regression: b1 = ry1(Sy/S1); where ry1 is the 
Pearson correlation between y and x1; Sy and S1 are the standard deviations of y and x1, 
respectively. When the predicted values are calculated, the negative slope reverses x1 and projects 
𝑦𝑦� into the same direction as y. In contrast to the negative correlation between y and x1, the Pearson 
Correlation between y, and the predicted values, 𝑦𝑦�, Ry𝑦𝑦�, will be positive. This property generalizes 
to multiple regression, where x variables that have negative partial relationships with y, will have 
negative partial regression coefficients that will project 𝑦𝑦� into the same space (direction) as y. 
Thus, the Multiple Correlation Coefficient is always greater than or equal to zero (Ry𝑦𝑦� ≥ 0). 

 

  As wordy and potentially convincing as this may seem, a more mathematical approach using the matrix 
formulation of multiple regression is used to demonstrate why the Multiple Correlation Coefficient is 
always positive (Ry𝑦𝑦� ≥ 0) and IS equal to the square root of R2 computationally. Table 1 reports the data for 
a basic k = 4 x variable regression problem with a small sample size of N=10. This sample size to variables 
ratio is not recommended in applied statistical practice, but rather these data are intended to provide 
concrete illustrations. In the notation that follows, lower-case bold font denotes vectors or variables (e.g., 
x1); upper-case bold font denotes matrices (e.g., X1; H0), and italics are used for other statistical terms (ry1). 
 

Matrix Approach to Pearson Correlation 
  The Pearson Correlation can be defined in many ways. For the following illustrations, the Pearson 
Correlation will be calculated as the Mean Corrected Cross-Product (numerator) in ratio to the square root 
of Mean Corrected Sums of Squares for each variable (denominator). As an example, the Pearson 
Correlation between y and x1 yields the following scalar formula: 
         𝑟𝑟𝑦𝑦1 = ∑(𝐲𝐲 − 𝑦𝑦�)(𝐱𝐱1− �̅�𝑥1)

�[∑(𝒚𝒚 − 𝑦𝑦�)2]�[∑(𝐱𝐱1− �̅�𝑥1)2
  ;        (1) 

where 𝑦𝑦� and �̅�𝑥1are means for y and x1, respectively.  
 To Mean Correct the Sums of Squares and Cross-Products, suppose fitting an “intercept-only” 
regression (i.e., null) model by using an Nx1 vector of ones, x0, as the design matrix. Under OLS estimation, 
the intercept (b0) is simply the mean of y (𝑦𝑦�): 
          y = b0x0  +  ey          
          y =   𝒚𝒚�   +  ey          
          y =   𝑦𝑦�  +  ey ;            (2) 
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which in this case is 𝑦𝑦� = 19 (see Table 1).  
  In scalar notation, the residuals for y removing the effect of the mean of y (i.e., mean centered 
deviations) are computed as: 
          ey =  y - b0x0          
          ey =  y -  𝒚𝒚�              (3) 
          ey =   y -   𝑦𝑦� .           
Based on the normal equation solution, the OLS regression coefficient in equation (2) is solved as: 
           b0 = (x0´x0)-1x0´y .           (4) 
The predicted values for model (2) can be solved as:  
          𝒚𝒚� = x0b0 .    
Substituting equation (4): 
           𝒚𝒚� =  x0(x0´x0)-1x0´y .          (5) 
The Hat matrix for x0 is defined as: 
           H0 = x0(x0´x0)-1x0´ ,            (6) 
which is an NxN matrix with all values equaling 1/N (i.e., 1/10). Therefore by substituting (6), the predicted 
values can be represented as: 
          𝒚𝒚� = 𝒚𝒚� = H0y ,            (7) 
which is equal to Nx1 vector where every value equals 𝑦𝑦�. The residuals (ey) are computed as:  
          ey = y -  𝒚𝒚� .           
Substituting equation (7): 
          ey = y - H0y              (8) 
and using matrix algebra manipulation: 
          ey = (I - H0)y .            (9) 
where I is an N-dimensional Identity Matrix. Using this formulation, the Mean Corrected Sums of 
Squares (CSS) for y is equal to: 
         CSSy = ∑(𝒚𝒚 −  𝑦𝑦�)2 = ∑𝒆𝒆𝑦𝑦2  = y´(I - H0)´(I - H0)y .        (10) 
Both I and H0 are symmetric and idempotent. A symmetric matrix has the property that it is equal to its 
transpose; A΄ = A. An idempotent matrix has the property that it equals its square: A2 = AA = A. From 
these properties, (I – H0) is also symmetric and idempotent: 
     (I - H0)´(I - H0) = II -2I H0 +  H0H0  = I -2H0 + H0    = (I - H0) .           (11) 
Thus, equation (10) reduces to: 
        CSSy = ∑(𝒚𝒚 −  𝑦𝑦�)2 = ∑𝒆𝒆𝑦𝑦2  = y´(I - H0)y .           (12) 
Similarly, the mean centered deviations for x1 can be defined as:  
           e1 = (I - H0)x1 .                 (13) 
with Mean Corrected Sums of Squares equal to: 
        CSS1  = ∑( 𝐱𝐱1 −  �̅�𝑥1)2 =  ∑𝒆𝒆12 = x1´(I - H0) x1 .           (14) 
Substituting the expressions (9), (12), (13), and (14) into equation (1) yields: 

       𝑅𝑅𝑌𝑌.1 = 𝑟𝑟𝑦𝑦𝑦𝑦�1 =  
𝒆𝒆𝑦𝑦΄𝒆𝒆𝑦𝑦�1

�CSS𝒚𝒚�CSS1
         

        𝑅𝑅𝑌𝑌.1 = 𝑟𝑟𝑦𝑦1 = 𝐲𝐲´(𝐈𝐈−𝐇𝐇0)´(𝐈𝐈−𝐇𝐇0)𝐱𝐱1

�[𝐲𝐲´(𝐈𝐈−𝐇𝐇0)𝐲𝐲][𝐱𝐱1´ (𝐈𝐈−𝐇𝐇0)𝐱𝐱1]
 .             (15) 

With (I – H0) being symmetric and idempotent (see eq. 11), equation (15) reduces to: 

        𝑅𝑅𝑌𝑌.1 = 𝑟𝑟𝑦𝑦1 = 𝐲𝐲´(𝐈𝐈−𝐇𝐇0)´𝐱𝐱1

�[𝐲𝐲´(𝐈𝐈−𝐇𝐇0)𝐲𝐲][𝐱𝐱1´ (𝐈𝐈−𝐇𝐇0)𝐱𝐱1]
  .            (16) 

The output from SAS® PROC CORR in Table 1 shows that the bivariate Pearson correlation between y and 
x1 is ry1 = -0.15301. It also shows that the Mean Corrected Sums of Squares for y and x1 are CSSy = 
∑(𝒚𝒚 −  𝑦𝑦�)2 = y΄(I-H0)y =136 and CSS1 = ∑( 𝐱𝐱1 −  �̅�𝑥1)2 =  x1΄(I-H0)x1 = 38, respectively. The Mean 
Corrected Cross-Product between y and x1 is CCPy1 = ∑(𝐲𝐲 −  𝑦𝑦�)( 𝐱𝐱1 −  �̅�𝑥1) = y΄(I-H0)x1 = -11. Thus, the 
Pearson correlation between y and x1 using either equation (1) or (16) is ry1 = -11/(�(136)(38) = -0.15301.  
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Table 1. Data and Descriptive Statistics (Mean, SD, Mean Corrected Sums of Squares and Cross-Products 
and Pearson Correlation Matrices. Modified output from SAS® PROC CORR). 
 

                            Simple Statistics 
Variable   N     Mean      Std Dev     Sum    Minimum  Maximum 
x1        10      14       2.05480     140      11      17 
x2        10      14       2.40370     140      10      17 
x3        10      21       1.82574     210      18      24 
x4        10      16       2.35702     160      12      19 
y         10      19       3.88730     190      
 

   CSSCP Matrix 
            x1        x2        x3        x4         y 
  x1        38        26        -1         0       -11 
  x2        26        52        -3        22        19 
  x3        -1        -3        30        18        14 
  x4         0        22        18        50        38 
  y        -11        19        14        38       136 
 

              Pearson Correlation Coefficients, N = 10 
                   Prob > |r| under H0: Rho=0 
 

        x1         x2          x3          x4         y 
x1    1.00000    0.58490   -0.02962    0.00000   -0.15301 
       0.0757     0.9353     1.0000     0.6730 
 

x2    0.58490    1.00000   -0.07596    0.43146    0.22593 
       0.0757                0.8348     0.2131     0.5302 
 

x3   -0.02962   -0.07596    1.00000    0.46476    0.21918 
       0.9353     0.8348                0.1759     0.5429 
 

x4    0.00000    0.43146    0.46476    1.00000    0.46082 
       1.0000     0.2131     0.1759                0.1801 
 

y    -0.15301    0.22593    0.21918    0.46082    1.00000 
       0.6730     0.5302     0.5429     0.1801 

 
data R2; 
input x0   x1    x2   x3     x4     y;     
cards; 
    1    14    10    20    12    16 
    1    11    12    19    14    15 
    1    15    13    22    17    12 
    1    15    16    21    13    17 
    1    17    17    23    18    19 
    1    13    16    20    19    21 
    1    14    15    22    18    22 
    1    17    16    18    15    21 
    1    12    14    21    17    23 
    1    12    11    24    17    24      
;proc corr data=R2 csscp;var x1 x2 x3 x4 y;run; 
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Simple Linear Regression 
  Suppose regressing y on to x1 with the x0 vector of ones included to estimate an intercept. The Nx2 
design matrix is X1 =  x0|x1; where the | symbol represent horizontal concatenation of the x0 and x1 vectors. 
The regression model is:  
         y =    X1b1   +  ey.1           
          y =   b0x0  +  b1x1  +  ey.1  ,             (17) 
where ey.1 are the residuals for y removing the effect of x1.  
The OLS solution for the regression coefficients is: 
         b1 = (X1´X1)-1X1´y  = b0             (18) 
                b1  .   
The predicted values for model (17) are solved as:  
         𝒚𝒚�1 = X1b1 .                    (19) 
Substituting equation (18): 
         𝒚𝒚�1 = X1(X1´X1)-1X1´y .               (20) 
The Hat Matrix for X1 is formed as: 
          H1 = X1(X1´X1)-1X1´.                (21) 
Substituting equation (21): 
         𝒚𝒚�1 = H1y . 
The residuals (ey.1) are computed as:  
         ey.1 = y -  𝒚𝒚�1 .               
Substituting equation (21): 
         ey.1 = y – H1y                
         ey.1 = (I – H1)y .                 (22) 
Similar to the results in (11), (I – H1) is symmetric and idempotent, thus, the Residual Sums of Squares 
equal: 
        SSE.1  = ∑(𝒚𝒚 −  𝒚𝒚�𝟏𝟏)2  =  ∑𝒆𝒆𝑦𝑦.1

2  = y´(I – H1)y .           (23) 
  The scalar formula for the Regression Model Sum of Squares (SSM.1) is Mean-Corrected: 
         SSM.1 = ∑(𝒚𝒚�1 − 𝒚𝒚�)2 .                 (24) 
Since 𝒚𝒚�1 = H1y and  𝒚𝒚� = H0y: 
         𝒆𝒆𝑦𝑦�1 = (𝒚𝒚�1 − 𝒚𝒚�) =  H1y - H0y         
         𝒆𝒆𝑦𝑦�1 = (𝒚𝒚�1 − 𝒚𝒚�) = (H1 - H0)y  .         
Thus, the Regression Model Sum of Squares (SSM.1) in matrix form is 
        SSM.1 = y´(H1 – H0)´(H1 – H0)y .              (25) 
One property of partitioned matrices is that the partition, Xm, multiplied by the Hat matrix of a “fuller” X 
matrix (HF) is equal to the reduced Xm partition (see Myers & Milton, 1991, Lemma 4.2.2). In this case, x0 
pre-multiplied by H1 results in: H1x0  = x0. This results in the “fuller” Hat matrix (H1) multiplied by the 
“reduced” Hat matrix (H0) being equal to the “reduced” Hat matrix (H0). Due to this property: 
      (H1 – H0)΄(H1 – H0)  = H1H1 –2 H1H0  + H0H0 
             =     H1     –  2H0     + H0     =   (H1 – H0) .         (26) 
Thus, (H1 – H0) is symmetric and idempotent and the Regression Model Sum of Squares (SSM.1) in equation 
(25) reduces to: 
        SSM.1 = ∑(𝒚𝒚�1 − 𝒚𝒚�)2   =  ∑𝒆𝒆𝑦𝑦�1

2  = y´(H1 – H0)y .           (27) 
  The first panel of Table 2 shows the Analysis of Variance (ANOVA) Source Table for the Sums of 
Squares in term of the Hat Matrices used to compute each value. The second panel shows code and output 
from SAS® PROC REG. The regression coefficients from regressing y onto x1 is 𝑦𝑦� = 23.05263 – 0.28947x1.   
  The output also indicates that the Model and Error (Residual) Sums of Squares are SSM.1 = ∑(𝒚𝒚�1 − 𝒚𝒚�)2 
= y´(H1 – H0)y = 3.18421 and SSE.1 = ∑(𝒚𝒚 − 𝒚𝒚�1)2 = y΄(I-H0)y = 132.81579, respectively. Therefore, the 
Model 𝑅𝑅𝑌𝑌.1

2   = (3.18421/136) = 0.02341 and the Multiple Correlation Coefficient is 𝑅𝑅𝑌𝑌.1 = 0.15301.     
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Table 2. Analysis of Variance (ANOVA) Source Table for the k =1 predictor model and output from SAS PROC REG. 
 
             Sum of Squares 
 Source          Scalar       Matrix        Value   df  Mean-Square   F    
  SSM1234  Model (X1)  ∑(𝑦𝑦�1  −  𝑦𝑦�)2  y´(H1 - H0)y      3.18421   1    3.18421   0.19180 

  SSE.1234   Residual    ∑(𝑦𝑦 − 𝑦𝑦�1 )2    y´(I – H1)y  132.81579   8  16.60197 

  SSTOTAL    Total    ∑(𝑦𝑦 −  𝑦𝑦�)2    y´(I - H0)y  136.00000   9 

  Note:  Total Sums of Square for this and all other models is equal to the Mean Corrected Sums of 136. 

   H0 is the Hat matrix for the “intercept-only” model; H0 = x0(x0´x0)-1x0´ . 

   H1 is the Hat matrix for the k=1 predictor model with Design Matrix X1 = x0|x1 ; H1 = X1(X1´X1)-1X1´   . 
 
proc reg data=R2; model y = x1 / clb stb; 
output out=R2_1 predicted=yhat1 residual=ey_1;run; 
 
Analysis of Variance 
                                     Sum of           Mean 
 Source                   DF        Squares         Square    F Value    Pr > F 
 Model                     1        3.18421        3.18421       0.19    0.6730 
 Error                     8      132.81579       16.60197 
 Corrected Total           9      136.00000 
 
              Root MSE              4.07455    R-Square     0.0234 
              Dependent Mean       19.00000    Adj R-Sq    -0.0987 
 
             Parameter   Standard                         Standardized 
Variable     Estimate       Error    t Value    Pr > |t|      Estimate   95% Confidence Limits 
Intercept    23.05263     9.34299       2.47      0.0389            0    1.50766     44.59760 
x1           -0.28947     0.66098      -0.44      0.6730     -0.15301   -1.81370      1.23475 
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Table 3. Mean Corrected Sums of Squares and Cross-Products and Pearson Correlation Matrices for y and 
the predicted values (𝒚𝒚�1) and residuals (ey.1) from the k = 1 regression model. Modified output from SAS® 
PROC CORR. 
 

proc corr data=R2_1 cov csscp;var yhat1 ey_1 y;run; 
 

                          Simple Statistics 
Variable    N     Mean   Std Dev     Sum    Minimum     Maximum 
yhat1      10      19    0.59481     190   18.13158    19.86842 
ey_1       10       0    3.84152       0   -6.71053     4.42105 
y          10      19    3.88730     190   12.00000    24.00000 
 
  CSSCP Matrix 
                 yhat1              ey_1                 y 
  yhat1      3.1842105         0.0000000         3.1842105 
  ey_1       0.0000000       132.8157895       132.8157895 
  y          3.1842105       132.8157895       136.0000000 
 
          Pearson Correlation Coefficients, N = 10 
                  Prob > |r| under H0: Rho=0 
 

                             yhat1          ey_1             y 
yhat1                      1.00000       0.00000       0.15301 
Predicted Value of y                      1.0000        0.6730 
 

ey_1                       0.00000       1.00000       0.98822 
Residual                    1.0000                      <.0001 
 

y                          0.15301       0.98822       1.00000 
                            0.6730        <.0001 
 

PROC REG as well most other statistical software allow the user to save the predicted values (𝒚𝒚�) and 
residuals (e). The output from SAS® PROC CORR in Table 3 shows that the Mean Corrected Sums of 
Squares for y, ey.1, and 𝒚𝒚� are CSSy = y΄(I-H0)y = 136, SSE.1 = y΄(I-H1)y = 132.81579, and CSS𝑦𝑦�  = 
∑(𝒚𝒚�1 − 𝒚𝒚�)2 = y΄(H1-H0)y = 3.18421, respectively. Note that the Mean Corrected Cross-Product between y 
and 𝒚𝒚� is CCP𝑦𝑦𝑦𝑦�  = 3.18421, which is equal to CSS𝑦𝑦� . Thus, the Pearson correlation between y and 𝒚𝒚� is 
𝑟𝑟𝑦𝑦𝑦𝑦�=Ry.1=3.18421/(�(136)(3.18421) = 0.15301. In the case of simple regression, the Multiple R is equal 
to the absolute value of the Pearson Correlation, as well as being equal to the square root of the Model R2. 
 

Multiple Linear Regression 
  Regressing y on to x1, x2, x3, and x4, the Nx5 design matrix is: X1234 = x0|x1|x2|x3|x4.  
The regression model is:  
      y = X1234b1234  +  ey.1234           
      y = b0x0  + b1x1  + b2x2  + b3x3  + b4x4 + ey.1234 ,           (28) 
where ey.1234 are the residuals for y removing the effects of x1, x2, x3, and x4.  
The OLS solution for the regression coefficients is: 
      b1234 = (X1234´X1234)-1X1234´y  = [b0   b1   b2   b3   b4 ]΄ .   (29) 
By substituting (29), the predicted values for model (28) are solved as:  
        𝒚𝒚�1234 = X1234(X1234´X1234)-1X1234´y .              (30) 
The Hat Matrix for X1234 is defined as: 
         H1234 = X1234(X1234´X1234)-1X1234´ .               (31) 
Substituting equation (31): 
        𝒚𝒚�1234 = H1234y . 
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The residuals (ey.1234) are computed as:  
        ey.1234 = y -  𝒚𝒚�1234  .             
Substituting equation (31): 
        ey.1234 = y – H1234y             
        ey.1234 = (I – H1234)y  .                (32) 
Similar to the results in (11) and (23), (I – H1234) is symmetric and idempotent with Residual Sums of 
Squares: 
       SSE.1234 = ∑(𝒚𝒚 −  𝒚𝒚�𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏)2 =  ∑𝑒𝑒y.1234

2  = y´(I – H1234)y .          (33) 
 The scalar formula for the Regression Model Sum of Squares (SSM.1234) is: 
        SSM.1234 = ∑(𝒚𝒚�1234 − 𝒚𝒚�)2 .                (34) 
Since 𝒚𝒚�1234 = H1234y and  𝒚𝒚� = H0y: 
        𝒆𝒆𝑦𝑦�1234  = (𝒚𝒚�1234 − 𝒚𝒚�) = H1234y - H0y       
        𝒆𝒆𝑦𝑦�1231  = (𝒚𝒚�1234 − 𝒚𝒚�) = (H1234 - H0)y  .            (35) 
Thus, the Regression Model Sum of Squares (SSM.1234) in matrix form is: 
       SSM.1 = y´(H1234 – H0)´(H1234 – H0)y .             (36) 
Due to idempotent properties of partitioned matrices shown in (26), the “fuller” Hat matrix (H1234) 
multiplied by the “reduced” Hat matrix (H0) is equal to the “reduced” Hat matrix (H0). Thus, (H1234 – H0) 
is also symmetric and idempotent: 
     (H1234 – H0)΄(H1234 – H0)  = H1234H1234 –2 H1234H0  + H0H0 
             =     H1234     –       2H0      +   H0      =   (H1234 – H0)       (37) 
Thus, the Regression Model Sum of Squares (SSM.1) in equation (36) reduces to: 
       SSM.1234 = ∑(𝒚𝒚�1234 − 𝒚𝒚�)2 =  ∑𝒆𝒆𝑦𝑦�1234

2  = y´(H1234 – H0)y .          (38) 
 The first panel of Table 4 shows the ANOVA Source Table for the Sums of Squares in term of Hat 
Matrices. The second panel shows code and output from SAS® PROC REG. The regression coefficients 
from regressing y onto X1234 is 𝑦𝑦� = 8.82664 – 0.61858x1 + 0.48924x2 + 0.21445x3 + 0.46753x4. The output 
also indicates that the Model and Error (Residual) Sums of Squares are SSM.1234 = 36.86844 and SSE.1234 = 
99.13156, respectively. Therefore, the Model 𝑅𝑅𝑌𝑌.1

2  = (36.86844/136) = 0.27109 and the Multiple Correlation 
Coefficient is 𝑅𝑅𝑌𝑌.1 = 0.52066.  
  The output from SAS® PROC CORR in Table 5 shows that the Mean Corrected Sums of Squares for 
y, ey.1, and 𝒚𝒚� are CSSy = 136, SSE.1 = 99.13156, and CSS𝑦𝑦�  = 36.86844, respectively. The Mean Corrected 
Cross-Product between y and 𝒚𝒚� is equal to CCP𝑦𝑦𝑦𝑦�  = 3.18421, which is equal to CSS𝑦𝑦� . Thus, the Pearson 
correlation between y and 𝒚𝒚� is 𝑟𝑟𝑦𝑦𝑦𝑦�= Ry.1 = 36.86844/(�(136)(36.86844)) = 0.52066. In both simple and 
multiple linear regression, the Model Sums of Squares are equal to the cross-product of y and 𝒚𝒚�. The 
previous examples provide concrete examples that demonstrate that the Mean Corrected Cross-Product 
between y and 𝒚𝒚� (CCP𝑦𝑦𝑦𝑦�) is equal to the Mean Corrected Sum of Squares for 𝒚𝒚� (CSS𝑦𝑦�). Next matrix 
formulation will be used to demonstrate why this results in Multiple R equaling the square root of the Model 
R2 computationally. 
 

Matrix Approach to Multiple Correlation 
  Most regression texts point out the Model R2 can be calculated at the ratio of SSMODEL/SSTOTAL: 

     𝑅𝑅𝑌𝑌.1234
2  = 

SSM.1234
SSTotal

 = 𝐲𝐲´(𝐇𝐇𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 − 𝐇𝐇𝟎𝟎)𝐲𝐲
𝐲𝐲´(𝐈𝐈 − 𝐇𝐇𝟎𝟎)𝐲𝐲

 = 36.8684448
136

 = 0.2711.         (39) 

However, there are many matrix representations that can be used to compute the Model R2 and Multiple R.
 Again, the Multiple Correlation is the Pearson Correlation of y with the predicted value, 𝒚𝒚�,  which will 
be calculated as the Mean Corrected Cross-Product in ratio to the square root of Mean Corrected Sums of 
Squares for each variable. For this four-predictor regression model, the scalar formula for the Pearson 
correlation between y and 𝒚𝒚�1234 is: 

    𝑅𝑅𝑌𝑌.1234 = 𝑟𝑟𝑦𝑦𝑦𝑦�1234 = ∑(𝐲𝐲 − 𝑦𝑦�)(𝒚𝒚�1234−𝒚𝒚�1234 )
�[∑(𝒚𝒚 − 𝑦𝑦�)2 ∑(𝒚𝒚�1234 − 𝒚𝒚�1234)2]

 ,            (40) 
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where 𝒚𝒚�1234 is the mean for the predicted values, 𝒚𝒚�1234. From regression theory, the expected value of the 
predicted values is equal to the expected value of y; thus, the mean of the predicted values equals the mean 
of y (e.g., Draper & Smith, 1998). Thus, formula (40) becomes 

     𝑅𝑅𝑌𝑌.1234 = 𝑟𝑟𝑦𝑦𝑦𝑦�1234 = ∑(𝐲𝐲 − 𝑦𝑦�)(𝒚𝒚�1234− 𝑦𝑦� )
�[∑(𝒚𝒚 − 𝑦𝑦�)2 ∑(𝒚𝒚�1234 −  𝑦𝑦�)2]

 ,            (41) 

Thus, to Mean Correct 𝒚𝒚�:  
          𝒆𝒆𝑦𝑦�1234  = 𝒚𝒚�1234 - 𝑦𝑦�           
Since 𝒚𝒚�1234 = H1234y and 𝑦𝑦� = H0y: 
          𝒆𝒆𝑦𝑦�1234  = H1234y - H0y           
          𝒆𝒆𝑦𝑦�1234  = (H1234 - H0)y              (42) 
Thus, the Mean Corrected Sum of Squares for 𝒚𝒚�1234 is equal to: 
          CSS𝑦𝑦�  = y´(H1234 – H0)´(H1234 – H0)y ,   
which due to idempotent properties shown in (36) is equal to: 
         CSS𝑦𝑦�  = y´(H1234 – H0)y .                 (43) 
Thus, the Mean Corrected Sum of Squares for 𝒚𝒚�1234 is equal to the Regression Model Sum of Squares 
(SSM.1234) in equation (38) and the Mean Corrected Cross-Product between y and 𝒚𝒚� (CCP𝑦𝑦𝑦𝑦�). Substituting 
the matrix formulations for ey (9), 𝒆𝒆𝑦𝑦�1234 (32), CSSy (12) and CSS𝑦𝑦�  (43) (or SSM.1234 (38)):  

     𝑅𝑅𝑌𝑌.1234 = 𝑟𝑟𝑦𝑦𝑦𝑦�1234 =  
𝒆𝒆𝑦𝑦΄𝒆𝒆𝑦𝑦�1234

�CSS𝒚𝒚�CSS𝑦𝑦�
         

     𝑅𝑅𝑌𝑌.1234 = 𝑟𝑟𝑦𝑦𝑦𝑦�1234 =  𝐲𝐲´(𝐈𝐈−𝐇𝐇𝟎𝟎)΄(𝐇𝐇𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏−𝐇𝐇𝟎𝟎)𝐲𝐲
�𝐲𝐲´(𝐈𝐈−𝐇𝐇𝟎𝟎)𝐲𝐲�𝐲𝐲´(𝐇𝐇𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏−𝐇𝐇𝟎𝟎)𝐲𝐲

             (44) 

Due to idempotent properties of partitioned matrices (see eqs. 26 & 37), the entity in the middle of the 
numerator reduces to: 
   (I – H0)΄(H1234 – H0)  = IH1234 – IH0  –H0H1234 + H0H0 
            = H1234  –   H0  –    H0        +    H0       =     (H1234 – H0)       (45) 
Therefore, the Multiple Correlation Coefficient (R) in equation (44) reduces to: 

   𝑅𝑅𝑌𝑌.1234 = 𝑟𝑟𝑦𝑦𝑦𝑦�1234 =  𝐲𝐲´(𝐈𝐈−𝐇𝐇𝟎𝟎)΄(𝐇𝐇1234−𝐇𝐇𝟎𝟎)𝐲𝐲
�𝐲𝐲´(𝐈𝐈−𝐇𝐇𝟎𝟎)𝐲𝐲�𝐲𝐲´(𝐇𝐇𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏−𝐇𝐇𝟎𝟎)𝐲𝐲

   =  𝐲𝐲´(𝐇𝐇𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏−𝐇𝐇𝟎𝟎)𝐲𝐲
�𝐲𝐲´(𝐈𝐈−𝐇𝐇𝟎𝟎)𝐲𝐲�𝐲𝐲´(𝐇𝐇𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏−𝐇𝐇𝟎𝟎)𝐲𝐲

  

          = 
𝟏𝟏𝟑𝟑.𝟖𝟖𝟑𝟑𝟖𝟖𝟏𝟏𝟏𝟏𝟏𝟏𝟖𝟖

√𝟏𝟏𝟏𝟏𝟑𝟑√𝟏𝟏𝟑𝟑.𝟖𝟖𝟑𝟑𝟖𝟖𝟏𝟏𝟏𝟏𝟏𝟏𝟖𝟖
    = 0.2711.              (46) 

  Note the numerator IS the Sum of Squares for the Regression Model (SSM.1234), and thus, the Multiple 
R is always greater than or equal to zero (i.e., always positive). Further, the square root of numerator, 
y´(H1234–H0)y, appears in the denominator, thus reducing equation (46) to: 

   𝑅𝑅𝑌𝑌.1234 = 𝑟𝑟𝑦𝑦𝑦𝑦�1234 =   𝐲𝐲´(𝐇𝐇𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏−𝐇𝐇𝟎𝟎)𝐲𝐲
�𝐲𝐲´(𝐈𝐈−𝐇𝐇𝟎𝟎)𝐲𝐲�𝐲𝐲´(𝐇𝐇𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏−𝐇𝐇𝟎𝟎)𝐲𝐲

   =  �𝐲𝐲´(𝐇𝐇𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏−𝐇𝐇𝟎𝟎)𝐲𝐲
�𝐲𝐲´(𝐈𝐈−𝐇𝐇𝟎𝟎)𝐲𝐲

  

      =  �𝐲𝐲´(𝐇𝐇𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 − 𝐇𝐇𝟎𝟎)𝐲𝐲
𝐲𝐲´(𝐈𝐈 − 𝐇𝐇𝟎𝟎)𝐲𝐲

     = �𝟏𝟏𝟑𝟑.𝟖𝟖𝟑𝟑𝟖𝟖𝟏𝟏𝟏𝟏𝟏𝟏𝟖𝟖
𝟏𝟏𝟏𝟏𝟑𝟑

 = √0.2711 = �𝑅𝑅𝑌𝑌.1234
2  = 0.52066    (47) 

Thus, by substituting the matrices necessary to compute Mean Corrected Sums of Squares and Cross-
Products into the Pearson correlation formula (40) and utilizing the idempotent properties of partitioned 
matrices, it can be shown that computationally the Multiple R IS the square root of the Model R2. 
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Table 4. Analysis of Variance (ANOVA) Source Table for the k = 4 predictor model and output from SAS PROC REG. 
 

             Sum of Squares 
 Source          Scalar        Matrix        Value   df  Mean-Square   F    
  SSM1234  Model (X1234)  ∑(𝑦𝑦�1234  −  𝑦𝑦�)2  y´(H1234 - H0)y   36.86844   4    3.18421   0.46489 

  SSE.1234   Residual    ∑(𝑦𝑦 − 𝑦𝑦�1234 )2     y´(I – H1234)y   99.13156   5  16.60197 

  SSTOTAL    Total       ∑(𝑦𝑦 −  𝑦𝑦�)2       y´(I - H0)y  136.00000    9 

 Note:  Total Sums of Square for this and all other models is equal to the Mean Corrected Sums of 136. 

   H0 is the Hat matrix for the “intercept-only” model; H0 = x0(x0´x0)-1x0´. 

   H1234 is the Hat matrix for the k=4 predictor model with Design Matrix X1234 = x0|x1|x2|x3|x4 ; H1 = X1234(X1234´X1234)-1X1234´. 
 

proc reg data=R2; model y = x1 x2 x3 x4/ clb stb scorr2; 
output out=R2_1234 predicted=yhat1234 residual=ey_1234;run; 
 

Analysis of Variance 
                                             Sum of           Mean 
         Source                   DF        Squares         Square    F Value    Pr > F 
         Model                     4       36.86844        9.21711       0.46    0.7610 
         Error                     5       99.13156       19.82631 
         Corrected Total           9      136.00000 
 

                      Root MSE              4.45267    R-Square     0.2711 
                      Dependent Mean       19.00000    Adj R-Sq    -0.3120 
                      Coeff Var            23.43513 
 

                                                                           Squared 
            Parameter    Standard                      Standardized   Semi-partial 
 Variable    Estimate       Error   t Value   Pr > |t|     Estimate   Corr Type II  95% Confidence Limits 
 Intercept    8.82664    20.70312      0.43     0.6876            0          .     -44.39243  62.04571 
 x1          -0.61858     0.98458     -0.63     0.5574     -0.32698    0.05754      -3.14952   1.91237 
 x2           0.48924     0.99389      0.49     0.6434      0.30252    0.03532      -2.06562   3.04411 
 x3           0.21445     1.01558      0.21     0.8411      0.10072    0.00650      -2.39618   2.82509 
 x4           0.46753     0.92616      0.50     0.6352      0.28348    0.03715      -1.91325   2.84831 
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Table 5. Mean Corrected Sums of Squares and Cross-Products and Pearson Correlation Matrices for y, 
predicted values (𝒚𝒚�1234), and residuals (ey.1234) from the k=4 regression model.  
Output from SAS® PROC CORR. 
 
proc corr data=R2_1234  csscp;var yhat1234 ey_1234 y;run; 
 

                         Simple Statistics 
Variable      N   Mean  Std Dev     Sum     Minimum     Maximum 
yhat1234     10    19   2.02398     190    14.95845    21.78520 
ey_1234      10     0   3.31883       0    -6.57416     4.11969 
y            10    19   3.88730     190    12.00000    24.00000 
 

  CSSCP Matrix 
                  yhat1234           ey_1234                 y 
    yhat1234    36.8684448         0.0000000        36.8684448 
    ey_1234      0.0000000        99.1315552        99.1315552 
    y           36.8684448        99.1315552       136.0000000 
 

               Pearson Correlation Coefficients, N = 10 
                        Prob > |r| under H0: Rho=0 
 

                          yhat1234       ey_1234             y 
yhat1234                   1.00000       0.00000       0.52066 
Predicted Value of y                      1.0000        0.1228 
 

ey_1234                    0.00000       1.00000       0.85376 
Residual                    1.0000                      0.0017 
 
y                          0.52066       0.85376       1.00000 
                            0.1228        0.0017 

 
 
 




