Multiple *R* IS the Square Root of R^2 : Multiple Correlation Coefficient Using Matrix Formulation

T. Mark Beasley

University of Alabama at Birmingham

Birmingham/Atlanta VA Geriatric Research, Education, & Clinical Center

By substituting the matrices necessary to compute Mean Corrected Sums of Squares and Cross-Products into the Pearson correlation scalar formula and utilizing the idempotent properties of partitioned matrices, it is demonstrated that computationally the Multiple *R* IS the square root of the Model R^2 .

hile preparing for my preliminary examinations to qualify as a doctoral candidate, I worked through many practice questions. One such question was: "Why is the Multiple Correlation Coefficient, *R*, always positive?" I was told by fellow students that: "The Multiple Correlation Coefficient is the square root of the Multiple Coefficient of Determination, $R = \sqrt{R^2}$." was not a "good enough" answer. Something more elaborate was needed. A more verbose response would be as follows.

The Multiple Correlation Coefficient can be defined as the Pearson Correlation between the outcome variable, y, and the predicted values, \hat{y} , from regressing y onto a set of x variables. The predicted values, \hat{y} , determined from the Ordinary Least Squares (OLS) regression solution are calculated as: $\hat{y} = b_0 + b_1 x_1 + ... + b_k x_k$. The OLS regression solution determines regression coefficients and predicted values that minimize the Sum of Squared Residuals ($\Sigma(v-\hat{v})^2$), thus yielding the best fit of \hat{y} for y. Therefore, the OLS regression solutions will project \hat{y} into the same space as v. For example, suppose a simple linear regression with one regressor, x_1 . If x_1 is negatively (inversely) correlated with y, the regression slope for $x_1(b_1)$ will be negative. This can be seen in the scalar formula for the slope in simple regression: $b_1 = r_{y1}(S_y/S_1)$; where r_{y1} is the Pearson correlation between y and x_1 ; S_y and S_1 are the standard deviations of y and x_1 , respectively. When the predicted values are calculated, the negative slope reverses x_1 and projects \hat{y} into the same direction as y. In contrast to the negative correlation between y and x_1 , the Pearson Correlation between y, and the predicted values, \hat{y} , $R_{y}\hat{y}$, will be positive. This property generalizes to multiple regression, where x variables that have negative partial relationships with y, will have negative partial regression coefficients that will project \hat{y} into the same space (direction) as y. Thus, the Multiple Correlation Coefficient is always greater than or equal to zero $(R_{\nu}\hat{v} \ge 0)$.

As wordy and potentially convincing as this may seem, a more mathematical approach using the matrix formulation of multiple regression is used to demonstrate why the Multiple Correlation Coefficient is always positive $(R_y \hat{y} \ge 0)$ and **IS** equal to the square root of R^2 computationally. Table 1 reports the data for a basic k = 4 x variable regression problem with a small sample size of N=10. This sample size to variables ratio is not recommended in applied statistical practice, but rather these data are intended to provide concrete illustrations. In the notation that follows, lower-case bold font denotes vectors or variables (e.g., \mathbf{x}_1); upper-case bold font denotes matrices (e.g., \mathbf{X}_1 ; \mathbf{H}_0), and italics are used for other statistical terms (r_{y1}) .

Matrix Approach to Pearson Correlation

The Pearson Correlation can be defined in many ways. For the following illustrations, the Pearson Correlation will be calculated as the Mean Corrected Cross-Product (numerator) in ratio to the square root of Mean Corrected Sums of Squares for each variable (denominator). As an example, the Pearson Correlation between y and x_1 yields the following scalar formula:

$$r_{y1} = \frac{\sum(y - \bar{y})(\mathbf{x}_1 - \bar{x}_1)}{\sqrt{[\sum(y - \bar{y})^2]}\sqrt{[\sum(\mathbf{x}_1 - \bar{x}_1)^2]}} \quad ; \tag{1}$$

where \bar{y} and \bar{x}_1 are means for y and x_1 , respectively.

To Mean Correct the Sums of Squares and Cross-Products, suppose fitting an "intercept-only" regression (i.e., null) model by using an Nx1 vector of ones, \mathbf{x}_0 , as the design matrix. Under OLS estimation, the intercept (b_0) is simply the mean of $\mathbf{y}(\bar{\mathbf{y}})$:

General Linear Model Journal, 2019, Vol. 45(1)

which in this case is $\overline{y} = 19$ (see Table 1).

In scalar notation, the residuals for y removing the effect of the mean of y (i.e., mean centered deviations) are computed as:

$$e_{y} = \mathbf{y} - b_{0}\mathbf{x}_{0}$$

$$e_{y} = \mathbf{y} - \hat{\mathbf{y}}$$

$$e_{y} = \mathbf{y} - \bar{\mathbf{y}}.$$
(3)

Based on the normal equation solution, the OLS regression coefficient in equation (2) is solved as:

 $\widehat{\mathbf{y}} = \mathbf{x}_0 b_0$.

$$b_0 = (\mathbf{x_0}' \mathbf{x_0})^{-1} \mathbf{x_0}' \mathbf{y}$$
.

(4)

The predicted values for model (2) can be solved as:

Substituting equation (4):

$$\widehat{\mathbf{y}} = \mathbf{x}_0 (\mathbf{x}_0' \mathbf{x}_0)^{-1} \mathbf{x}_0' \mathbf{y} \,. \tag{5}$$

The Hat matrix for \mathbf{x}_0 is defined as:

$$\mathbf{H}_{0} = \mathbf{x}_{0}(\mathbf{x}_{0}'\mathbf{x}_{0})^{-1}\mathbf{x}_{0}', \qquad (6)$$

which is an NxN matrix with all values equaling 1/N (i.e., 1/10). Therefore by substituting (6), the predicted values can be represented as:

$$\widehat{\mathbf{y}} = \overline{\mathbf{y}} = \mathbf{H}_0 \mathbf{y} , \qquad (7)$$

which is equal to Nx1 vector where every value equals \overline{y} . The residuals (e_y) are computed as: $e_y = y - \hat{y}$.

Substituting equation (7):

$$\boldsymbol{e}_{\boldsymbol{y}} = \mathbf{y} - \mathbf{H}_0 \mathbf{y} \tag{8}$$

and using matrix algebra manipulation:

$$\boldsymbol{e}_{\boldsymbol{y}} = (\mathbf{I} - \mathbf{H}_0) \mathbf{y} \ . \tag{9}$$

where I is an *N*-dimensional Identity Matrix. Using this formulation, the Mean Corrected Sums of Squares (CSS) for y is equal to:

$$\operatorname{CSS}_{y} = \sum (\boldsymbol{y} - \bar{\boldsymbol{y}})^{2} = \sum \boldsymbol{e}_{y}^{2} = \mathbf{y}' (\mathbf{I} - \mathbf{H}_{0})' (\mathbf{I} - \mathbf{H}_{0}) \mathbf{y} . \tag{10}$$

Both I and H_0 are symmetric and idempotent. A symmetric matrix has the property that it is equal to its transpose; A' = A. An idempotent matrix has the property that it equals its square: $A^2 = AA = A$. From these properties, $(I - H_0)$ is also symmetric and idempotent:

$$(\mathbf{I} - \mathbf{H}_0)'(\mathbf{I} - \mathbf{H}_0) = \mathbf{I} - 2\mathbf{I} \mathbf{H}_0 + \mathbf{H}_0 \mathbf{H}_0 = \mathbf{I} - 2\mathbf{H}_0 + \mathbf{H}_0 = (\mathbf{I} - \mathbf{H}_0) .$$
(11)

Thus, equation (10) reduces to:

$$\operatorname{CSS}_{y} = \sum (\boldsymbol{y} - \bar{\boldsymbol{y}})^{2} = \sum \boldsymbol{e}_{y}^{2} = \mathbf{y}' (\mathbf{I} - \mathbf{H}_{0}) \mathbf{y} .$$
(12)

Similarly, the mean centered deviations for x_1 can be defined as:

$$\mathbf{r}_1 = (\mathbf{I} - \mathbf{H}_0)\mathbf{x}_1 \,. \tag{13}$$

with Mean Corrected Sums of Squares equal to:

$$CSS_1 = \sum (\mathbf{x}_1 - \bar{\mathbf{x}}_1)^2 = \sum \boldsymbol{e}_1^2 = \mathbf{x}_1' (\mathbf{I} - \mathbf{H}_0) \mathbf{x}_1.$$
(14)
(12) (13) and (14) into equation (1) yields:

Substituting the expressions (9), (12), (13), and (14) into equation (1) yields:
$$e_{y'}e_{y_1}$$

$$R_{Y.1} = r_{y\hat{y}_1} = \frac{y_{y_1}}{\sqrt{CSS_y}\sqrt{CSS_1}}$$

$$R_{Y.1} = r_{y1} = \frac{y'(I-H_0)'(I-H_0)x_1}{\sqrt{[y'(I-H_0)y][x_1'(I-H_0)x_1]}}.$$
(15)

With $(I - H_0)$ being symmetric and idempotent (see eq. 11), equation (15) reduces to:

$$R_{Y.1} = r_{y1} = \frac{\mathbf{y}'(\mathbf{I} - \mathbf{H}_0)'\mathbf{x}_1}{\sqrt{[\mathbf{y}'(\mathbf{I} - \mathbf{H}_0)\mathbf{y}][\mathbf{x}'_1(\mathbf{I} - \mathbf{H}_0)\mathbf{x}_1]}}.$$
 (16)

The output from SAS[®] PROC CORR in Table 1 shows that the bivariate Pearson correlation between y and x_1 is $r_{y1} = -0.15301$. It also shows that the Mean Corrected Sums of Squares for y and x_1 are $CSS_y = \sum(\mathbf{y} - \bar{y})^2 = \mathbf{y}'(\mathbf{I}-\mathbf{H}_0)\mathbf{y} = 136$ and $CSS_1 = \sum(\mathbf{x}_1 - \bar{x}_1)^2 = \mathbf{x}_1'(\mathbf{I}-\mathbf{H}_0)\mathbf{x}_1 = 38$, respectively. The Mean Corrected Cross-Product between y and x_1 is $CCP_{y1} = \sum(\mathbf{y} - \bar{y})(\mathbf{x}_1 - \bar{x}_1) = \mathbf{y}'(\mathbf{I}-\mathbf{H}_0)\mathbf{x}_1 = -11$. Thus, the Pearson correlation between y and \mathbf{x}_1 using either equation (1) or (16) is $r_{y1} = -11/(\sqrt{(136)(38)} = -0.15301$.

Table 1. Data and Descriptive Statistics (Mean, SD, Mean Corrected Sums of Squares and Cross-Products and Pearson Correlation Matrices. Modified output from SAS[®] PROC CORR).

Vari x1 x2 x3 x4 y		N 10 10 10 10 10	Mean 14 14 21 16 19		Simple Std Dev 2.05480 2.40370 1.82574 2.35702 3.88730	7)) 1 2	tistics Sum 140 140 210 160 190	Minimum 11 10 18 12	Maximum 17 17 24 19
С	SSCP M			0		2	4		
x1		x1 38		x2 26	x3 -1		×4 0	У -11	
x2		26		52	-3		22	19	
x3		-1		-3	3(18	14	
x4 Y		0 -11		22 19	18 14		50 38	38 136	
У									
		Pe			r unde			s, N = 10	
x1	×1 1.00 0.0	000	x2 0.584 0.93		x3 -0.0296 1.000		x4 0.0000 0.673	0 -0.15	y 301
x2	0.58		1.000	00	-0.0759		0.4314		
x3	-0.02 0.9		-0.075		1.0000)()	0.4647 0.175		
x4	0.00 1.0		0.431 0.21		0.464 0.175		1.0000	0 0.46 0.1	
У	-0.15 0.6	301 730	0.225 0.53		0.2191 0.542		0.46082		000
data	R2;								
	t x0	x1	x2	xЗ	x4	у;			
card		1 4	1.0	0.0	1.0	1 C			
	1 1	14 11	10 12	20 19	12 14	16 15			
	1	15	13	22	17	12			
	1	15	16	21	13	17			
	1	17	17	23	18	19			
	1 1	13 14	16 15	20 22	19 18	21 22			
	1	17	16	18	15	21			
	1	12	14	21	17	23			
	1	12	11 D2	24	17	24			
;pro	c corr	aata=	KZ CSS	cp;v	ar x1 x2	2 X 3 1	x4 y; ru	n;	

Simple Linear Regression

Suppose regressing y on to \mathbf{x}_1 with the \mathbf{x}_0 vector of ones included to estimate an intercept. The Nx2 design matrix is $\mathbf{X}_1 = \mathbf{x}_0 | \mathbf{x}_1$; where the | symbol represent horizontal concatenation of the \mathbf{x}_0 and \mathbf{x}_1 vectors. The regression model is:

$$\mathbf{y} = \mathbf{X}_{1}\mathbf{b}_{1} + \mathbf{e}_{y.1} \mathbf{y} = b_{0}\mathbf{x}_{0} + b_{1}\mathbf{x}_{1} + \mathbf{e}_{y.1} ,$$
 (17)

where $e_{y,1}$ are the residuals for y removing the effect of \mathbf{x}_1 . The OLS solution for the regression coefficients is:

$$\mathbf{b}_1 = (\mathbf{X}_1' \mathbf{X}_1)^{-1} \mathbf{X}_1' \mathbf{y} = b_0$$
(18)
$$b_1 = b_0$$
(18)

The predicted values for model (17) are solved as:

 $\widehat{\mathbf{y}}_1 = \mathbf{X}_1 \mathbf{b}_1$. Substituting equation (18):

$$\widehat{\boldsymbol{y}}_1 = \mathbf{X}_1 (\mathbf{X}_1' \mathbf{X}_1)^{-1} \mathbf{X}_1' \mathbf{y} .$$
⁽²⁰⁾

(19)

The Hat Matrix for X_1 is formed as:

$$\mathbf{H}_1 = \mathbf{X}_1 (\mathbf{X}_1' \mathbf{X}_1)^{-1} \mathbf{X}_1'.$$
(21)

Substituting equation (21):

$$\widehat{\boldsymbol{y}}_1 = \mathbf{H}_1 \mathbf{y}$$
.

 $\boldsymbol{e}_{y.1} = \mathbf{y} - \widehat{\boldsymbol{y}}_1$.

The residuals $(e_{y,1})$ are computed as:

Substituting equation (21):

$$\boldsymbol{e}_{y.1} = \mathbf{y} - \mathbf{H}_1 \mathbf{y}$$

$$\boldsymbol{e}_{y.1} = (\mathbf{I} - \mathbf{H}_1) \mathbf{y} .$$
(22)

Similar to the results in (11), $(I - H_1)$ is symmetric and idempotent, thus, the Residual Sums of Squares equal:

$$SS_{E.1} = \sum (y - \hat{y}_1)^2 = \sum e_{y.1}^2 = y'(I - H_1)y.$$
(23)

The scalar formula for the Regression Model Sum of Squares (SS_{M.1}) is Mean-Corrected:

$$SS_{M.1} = \sum (\hat{y}_1 - \overline{y})^2 .$$
⁽²⁴⁾

Since $\hat{y}_1 = \mathbf{H}_1 \mathbf{y}$ and $\overline{\mathbf{y}} = \mathbf{H}_0 \mathbf{y}$:

$$e_{\hat{y}_1} = (\hat{y}_1 - \overline{y}) = H_1 y - H_0 y$$

$$e_{\hat{y}_1} = (\hat{y}_1 - \overline{y}) = (H_1 - H_0) y$$

Thus, the Regression Model Sum of Squares (SS_{M.1}) in matrix form is

$$SS_{M,1} = \mathbf{y}'(\mathbf{H}_1 - \mathbf{H}_0)'(\mathbf{H}_1 - \mathbf{H}_0)\mathbf{y} .$$
(25)

One property of partitioned matrices is that the partition, X_m , multiplied by the Hat matrix of a "fuller" X matrix (H_F) is equal to the reduced X_m partition (see Myers & Milton, 1991, Lemma 4.2.2). In this case, x_0 pre-multiplied by H_1 results in: $H_1x_0 = x_0$. This results in the "fuller" Hat matrix (H_1) multiplied by the "reduced" Hat matrix (H_0) being equal to the "reduced" Hat matrix (H_0). Due to this property:

$$\mathbf{H}_{1} - \mathbf{H}_{0})'(\mathbf{H}_{1} - \mathbf{H}_{0}) = \mathbf{H}_{1}\mathbf{H}_{1} - 2\mathbf{H}_{1}\mathbf{H}_{0} + \mathbf{H}_{0}\mathbf{H}_{0} = \mathbf{H}_{1} - 2\mathbf{H}_{0} + \mathbf{H}_{0} = (\mathbf{H}_{1} - \mathbf{H}_{0}).$$
 (26)

Thus, $(\mathbf{H}_1 - \mathbf{H}_0)$ is symmetric and idempotent and the Regression Model Sum of Squares (SS_{M.1}) in equation (25) reduces to:

$$SS_{M,1} = \sum (\widehat{\boldsymbol{y}}_1 - \overline{\boldsymbol{y}})^2 = \sum \boldsymbol{e}_{\widehat{\boldsymbol{y}}_1}^2 = \mathbf{y}'(\mathbf{H}_1 - \mathbf{H}_0)\mathbf{y}.$$
(27)

The first panel of Table 2 shows the Analysis of Variance (ANOVA) Source Table for the Sums of Squares in term of the Hat Matrices used to compute each value. The second panel shows code and output from SAS[®] PROC REG. The regression coefficients from regressing y onto x_1 is $\hat{y} = 23.05263 - 0.28947 x_1$.

The output also indicates that the Model and Error (Residual) Sums of Squares are $SS_{M.1} = \sum (\hat{y}_1 - \overline{y})^2$ = $\mathbf{y}'(\mathbf{H}_1 - \mathbf{H}_0)\mathbf{y} = 3.18421$ and $SS_{E.1} = \sum (\mathbf{y} - \hat{y}_1)^2 = \mathbf{y}'(\mathbf{I}-\mathbf{H}_0)\mathbf{y} = 132.81579$, respectively. Therefore, the Model $R_{Y,1}^2 = (3.18421/136) = 0.02341$ and the Multiple Correlation Coefficient is $R_{Y,1} = 0.15301$. **Table 2.** Analysis of Variance (ANOVA) Source Table for the k = 1 predictor model and output from SAS PROC REG.

		S	Sum of Squares				
Source		Scalar	Matrix	Value	df	Mean-Square	F
SS_{M1234}	Model (\mathbf{X}_1)	$\sum (\hat{y}_1 - \bar{y})^2$	$\mathbf{y}'(\mathbf{H}_1 - \mathbf{H}_0)\mathbf{y}$	3.18421	1	3.18421	0.19180
$SS_{E.1234}$	Residual	$\sum (y - \hat{y}_1)^2$	$\mathbf{y}'(\mathbf{I} - \mathbf{H}_1)\mathbf{y}$	132.81579	8	16.60197	
SSTOTAL	Total	$\sum (y - \overline{y})^2$	y'(I - H ₀)y	136.00000	9		

Note: Total Sums of Square for this and all other models is equal to the Mean Corrected Sums of 136.

 \mathbf{H}_0 is the Hat matrix for the "intercept-only" model; $\mathbf{H}_0 = \mathbf{x}_0 (\mathbf{x}_0 \mathbf{x}_0)^{-1} \mathbf{x}_0$.

 \mathbf{H}_1 is the Hat matrix for the k=1 predictor model with Design Matrix $\mathbf{X}_1 = \mathbf{x}_0 | \mathbf{x}_1$; $\mathbf{H}_1 = \mathbf{X}_1 (\mathbf{X}_1 \mathbf{X}_1)^{-1} \mathbf{X}_1$.

proc reg data=R2; model y = x1 / clb stb; output out=R2 1 predicted=yhat1 residual=ey 1;run;

Analysis of Variance

-			Sum of	Mean		
Source		DF	Squares	Square	F Value	Pr > F
Model		1	3.18421	3.18421	0.19	0.6730
Error		8	132.81579	16.60197		
Corrected	Total	9	136.00000			
	Root MSE		4.07455	R-Square	0.0234	
	Dependent	Mean	19.00000	Adj R-Sq	-0.0987	
	Parameter	Standard			Standardized	
Variable	Estimate	Error	t Value	Pr > t	Estimate	95% Confidence Limits
Intercept	23.05263	9.34299	2.47	0.0389	0	1.50766 44.59760
x1	-0.28947	0.66098	-0.44	0.6730	-0.15301	-1.81370 1.23475

Table 3. Mean Corrected Sums of Squares and Cross-Products and Pearson Correlation Matrices for **y** and the predicted values (\hat{y}_1) and residuals ($e_{y,1}$) from the k = 1 regression model. Modified output from SAS[®] PROC CORR.

<pre>proc corr data=R2_1 cov csscp;var yhat1 ey_1 y;run;</pre>									
			Simple Sta	atistic	CS				
Variable	Ν	Mean	Std Dev	Sum	Minimum	Maximum			
yhatl	10	19	0.59481	190	18.13158	19.86842			
ey_1			3.84152		-6.71053	4.42105			
У	10	19	3.88730	190	12.00000	24.00000			
CSSCP Matrix									
		yhat1		ey_1		У			
yhat1 3.1842105			0.00						
ey_1	ey_1 0.000000								
У	3.18	42105	132.81	57895	136.0000000				
	Pearson Correlation Coefficients, N = 10 Prob > r under H0: Rho=0								
			yhat1		ey 1	y			
yhat1			1.00000		0.00000	0.15301			
Predicted	Value c	of y			1.0000	0.6730			
ey 1			0.0000	-	L.00000	0.98822			
Residual			1.0000			<.0001			
У			0.15301		0.98822	1.00000			
			0.6730		<.0001				

PROC REG as well most other statistical software allow the user to save the predicted values (\hat{y}) and residuals (*e*). The output from SAS[®] PROC CORR in Table 3 shows that the Mean Corrected Sums of Squares for y, $\mathbf{e}_{y.1}$, and \hat{y} are CSS_y = $\mathbf{y}'(\mathbf{I}-\mathbf{H}_0)\mathbf{y} = 136$, SS_{E.1} = $\mathbf{y}'(\mathbf{I}-\mathbf{H}_1)\mathbf{y} = 132.81579$, and CSS_{\hat{y}} = $\sum(\hat{y}_1 - \overline{y})^2 = \mathbf{y}'(\mathbf{H}_1-\mathbf{H}_0)\mathbf{y} = 3.18421$, respectively. Note that the Mean Corrected Cross-Product between y and \hat{y} is CCP_{y \hat{y}} = 3.18421, which is equal to CSS_{\hat{y}}. Thus, the Pearson correlation between y and \hat{y} is $r_{y\hat{y}}=R_{y.1}=3.18421/(\sqrt{(136)(3.18421)})=0.15301$. In the case of simple regression, the Multiple *R* is equal to the absolute value of the Pearson Correlation, as well as being equal to the square root of the Model R^2 .

Multiple Linear Regression

Regressing y on to \mathbf{x}_1 , \mathbf{x}_2 , \mathbf{x}_3 , and \mathbf{x}_4 , the *N*x5 design matrix is: $\mathbf{X}_{1234} = \mathbf{x}_0 |\mathbf{x}_1| \mathbf{x}_2 |\mathbf{x}_3| \mathbf{x}_4$. The regression model is:

$$\mathbf{y} = \mathbf{X}_{1234} \mathbf{b}_{1234} + \mathbf{e}_{y.1234}$$

$$\mathbf{y} = b_0 \mathbf{x}_0 + b_1 \mathbf{x}_1 + b_2 \mathbf{x}_2 + b_3 \mathbf{x}_3 + b_4 \mathbf{x}_4 + \mathbf{e}_{y.1234}, \qquad (28)$$

where $e_{y.1234}$ are the residuals for y removing the effects of x_1 , x_2 , x_3 , and x_4 . The OLS solution for the regression coefficients is:

$$\mathbf{b}_{1234} = (\mathbf{X}_{1234}'\mathbf{X}_{1234})^{-1}\mathbf{X}_{1234}'\mathbf{y} = \begin{bmatrix} b_0 & b_1 & b_2 & b_3 & b_4 \end{bmatrix}'$$
. (29)
By substituting (29), the predicted values for model (28) are solved as:

$$\widehat{\boldsymbol{y}}_{1234} = \mathbf{X}_{1234} (\mathbf{X}_{1234}' \mathbf{X}_{1234})^{-1} \mathbf{X}_{1234}' \mathbf{y} .$$
(30)

The Hat Matrix for X_{1234} is defined as:

$$\mathbf{H}_{1234} = \mathbf{X}_{1234} (\mathbf{X}_{1234}' \mathbf{X}_{1234})^{-1} \mathbf{X}_{1234}' .$$
(31)

Substituting equation (31):

$$\widehat{\boldsymbol{y}}_{1234} = \mathbf{H}_{1234} \mathbf{y} \; .$$

General Linear Model Journal, 2019, Vol. 45(1)

The residuals ($e_{y.1234}$) are computed as:

Substituting equation (31):

$$\begin{array}{ll} e_{y.1234} = & \mathbf{y} - \mathbf{H}_{1234} \mathbf{y} \\ e_{y.1234} = & (\mathbf{I} - \mathbf{H}_{1234}) \mathbf{y} \end{array}$$
(32)

Similar to the results in (11) and (23), $(I - H_{1234})$ is symmetric and idempotent with Residual Sums of Squares:

$$SS_{E.1234} = \sum (\mathbf{y} - \hat{\mathbf{y}}_{1234})^2 = \sum e_{\mathbf{y}.1234}^2 = \mathbf{y}' (\mathbf{I} - \mathbf{H}_{1234}) \mathbf{y} .$$
(33)

The scalar formula for the Regression Model Sum of Squares ($SS_{M.1234}$) is:

 $e_{y.1234} = \mathbf{y} - \hat{\mathbf{y}}_{1234}$.

$$SS_{M.1234} = \sum (\widehat{\boldsymbol{y}}_{1234} - \overline{\boldsymbol{y}})^2 .$$
(34)

Since $\hat{y}_{1234} = \mathbf{H}_{1234}\mathbf{y}$ and $\overline{\mathbf{y}} = \mathbf{H}_0\mathbf{y}$:

$$e_{\hat{y}_{1234}} = (\hat{y}_{1234} - \overline{y}) = \mathbf{H}_{1234}\mathbf{y} - \mathbf{H}_{0}\mathbf{y}$$

$$e_{\hat{y}_{1234}} = (\hat{y}_{1234} - \overline{y}) = (\mathbf{H}_{1234} - \mathbf{H}_{0})\mathbf{y} .$$
(35)

Thus, the Regression Model Sum of Squares $(SS_{M.1234})$ in matrix form is:

$$SS_{M.1} = \mathbf{y}'(\mathbf{H}_{1234} - \mathbf{H}_0)'(\mathbf{H}_{1234} - \mathbf{H}_0)\mathbf{y}.$$
(36)

Due to idempotent properties of partitioned matrices shown in (26), the "fuller" Hat matrix (\mathbf{H}_{1234}) multiplied by the "reduced" Hat matrix (\mathbf{H}_0) is equal to the "reduced" Hat matrix (\mathbf{H}_0). Thus, ($\mathbf{H}_{1234} - \mathbf{H}_0$) is also symmetric and idempotent:

$$(\mathbf{H}_{1234} - \mathbf{H}_0)'(\mathbf{H}_{1234} - \mathbf{H}_0) = \mathbf{H}_{1234}\mathbf{H}_{1234} - 2 \mathbf{H}_{1234}\mathbf{H}_0 + \mathbf{H}_0\mathbf{H}_0$$

= $\mathbf{H}_{1234} - 2\mathbf{H}_0 + \mathbf{H}_0 = (\mathbf{H}_{1234} - \mathbf{H}_0)$ (37)

Thus, the Regression Model Sum of Squares $(SS_{M,1})$ in equation (36) reduces to:

$$SS_{M.1234} = \sum (\hat{y}_{1234} - \overline{y})^2 = \sum e_{\hat{y}_{1234}}^2 = y'(H_{1234} - H_0)y.$$
(38)

The first panel of Table 4 shows the ANOVA Source Table for the Sums of Squares in term of Hat Matrices. The second panel shows code and output from SAS[®] PROC REG. The regression coefficients from regressing **y** onto \mathbf{X}_{1234} is $\hat{y} = 8.82664 - 0.61858\mathbf{x}_1 + 0.48924\mathbf{x}_2 + 0.21445\mathbf{x}_3 + 0.46753\mathbf{x}_4$. The output also indicates that the Model and Error (Residual) Sums of Squares are SS_{M.1234} = 36.86844 and SS_{E.1234} = 99.13156, respectively. Therefore, the Model $R_{Y.1}^2 = (36.86844/136) = 0.27109$ and the Multiple Correlation Coefficient is $R_{Y.1} = 0.52066$.

The output from SAS[®] PROC CORR in Table 5 shows that the Mean Corrected Sums of Squares for **y**, $\mathbf{e}_{y,1}$, and $\hat{\mathbf{y}}$ are CSS_y = 136, SS_{E.1} = 99.13156, and CSS_{\hat{y}} = 36.86844, respectively. The Mean Corrected Cross-Product between **y** and $\hat{\mathbf{y}}$ is equal to CCP_{y \hat{y}} = 3.18421, which is equal to CSS_{\hat{y}}. Thus, the Pearson correlation between **y** and $\hat{\mathbf{y}}$ is $r_{y\hat{y}} = R_{y,1} = 36.86844/(\sqrt{(136)(36.86844)}) = 0.52066$. In both simple and multiple linear regression, the Model Sums of Squares are equal to the cross-product of **y** and $\hat{\mathbf{y}}$. The previous examples provide concrete examples that demonstrate that the Mean Corrected Cross-Product between **y** and $\hat{\mathbf{y}}$ (CCP_{y \hat{y}}) is equal to the Mean Corrected Sum of Squares for $\hat{\mathbf{y}}$ (CSS_{\hat{y}}). Next matrix formulation will be used to demonstrate why this results in Multiple *R* equaling the square root of the Model R^2 computationally.

Matrix Approach to Multiple Correlation

Most regression texts point out the Model R^2 can be calculated at the ratio of SS_{MODEL}/SS_{TOTAL}:

$$R_{Y.1234}^{2} = \frac{SS_{M.1234}}{SS_{Total}} = \frac{\mathbf{y}'(\mathbf{H}_{1234} - \mathbf{H}_{0})\mathbf{y}}{\mathbf{y}'(\mathbf{I} - \mathbf{H}_{0})\mathbf{y}} = \frac{36.8684448}{136} = 0.2711.$$
(39)

However, there are many matrix representations that can be used to compute the Model R^2 and Multiple R.

Again, the Multiple Correlation is the Pearson Correlation of y with the predicted value, \hat{y} , which will be calculated as the Mean Corrected Cross-Product in ratio to the square root of Mean Corrected Sums of Squares for each variable. For this four-predictor regression model, the scalar formula for the Pearson correlation between y and \hat{y}_{1234} is:

$$R_{Y.1234} = r_{y\hat{y}_{1234}} = \frac{\sum(y - \bar{y})(\hat{y}_{1234} - \bar{y}_{1234})}{\sqrt{[\sum(y - \bar{y})^2 \sum(\hat{y}_{1234} - \bar{y}_{1234})^2]}},$$
(40)

General Linear Model Journal, 2019, Vol. 45(1) 29

where \overline{y}_{1234} is the mean for the predicted values, \hat{y}_{1234} . From regression theory, the expected value of the predicted values is equal to the expected value of y; thus, the mean of the predicted values equals the mean of y (e.g., Draper & Smith, 1998). Thus, formula (40) becomes

$$R_{Y.1234} = r_{y\hat{y}_{1234}} = \frac{\sum(y - \bar{y})(\hat{y}_{1234} - \bar{y})}{\sqrt{[\sum(y - \bar{y})^2 \sum(\hat{y}_{1234} - \bar{y})^2]}},$$
(41)

Thus, to Mean Correct \hat{y} :

Since $\hat{y}_{1234} = \mathbf{H}_{1234}\mathbf{y}$ and $\bar{y} = \mathbf{H}_0\mathbf{y}$:

$$e_{\hat{y}_{1234}} = y_{1234} - y$$

$$e_{\hat{y}_{1234}} = H_{1234}y - H_0y$$

$$e_{\hat{y}_{1234}} = (H_{1234} - H_0)y$$
(42)

Thus, the Mean Corrected Sum of Squares for \hat{y}_{1234} is equal to:

$$\text{CSS}_{\hat{y}} = \mathbf{y}'(\mathbf{H}_{1234} - \mathbf{H}_0)'(\mathbf{H}_{1234} - \mathbf{H}_0)\mathbf{y}$$

which due to idempotent properties shown in (36) is equal to:

$$\mathrm{CSS}_{\hat{\mathbf{y}}} = \mathbf{y}'(\mathbf{H}_{1234} - \mathbf{H}_0)\mathbf{y} .$$
(43)

Thus, the Mean Corrected Sum of Squares for \hat{y}_{1234} is equal to the Regression Model Sum of Squares (SS_{M.1234}) in equation (38) and the Mean Corrected Cross-Product between y and \hat{y} (CCP_{yŷ}). Substituting the matrix formulations for e_y (9), $e_{\hat{y}_{1234}}$ (32), CSS_y (12) and CSS_ŷ (43) (or SS_{M.1234} (38)):

$$R_{Y.1234} = r_{y\hat{y}_{1234}} = \frac{e_{y}'e_{\hat{y}_{1234}}}{\sqrt{CSS_{y}}\sqrt{CSS_{\hat{y}}}}$$

$$R_{Y.1234} = r_{y\hat{y}_{1234}} = \frac{y'(I-H_{0})'(H_{1234}-H_{0})y}{\sqrt{y'(I-H_{0})y}\sqrt{y'(H_{1234}-H_{0})y}}$$
(44)

Due to idempotent properties of partitioned matrices (see eqs. 26 & 37), the entity in the middle of the numerator reduces to:

$$(\mathbf{I} - \mathbf{H}_0)'(\mathbf{H}_{1234} - \mathbf{H}_0) = \mathbf{I}\mathbf{H}_{1234} - \mathbf{I}\mathbf{H}_0 - \mathbf{H}_0\mathbf{H}_{1234} + \mathbf{H}_0\mathbf{H}_0 = \mathbf{H}_{1234} - \mathbf{H}_0 - \mathbf{H}_0 + \mathbf{H}_0 = (\mathbf{H}_{1234} - \mathbf{H}_0)$$
(45)

Therefore, the Multiple Correlation Coefficient (*R*) in equation (44) reduces to:

$$R_{Y.1234} = r_{y\hat{y}_{1234}} = \frac{y'(I-H_0)'(H_{1234}-H_0)y}{\sqrt{y'(I-H_0)y}\sqrt{y'(H_{1234}-H_0)y}} = \frac{y'(H_{1234}-H_0)y}{\sqrt{y'(I-H_0)y}\sqrt{y'(H_{1234}-H_0)y}} = \frac{36.8684448}{\sqrt{136}\sqrt{36.8684448}} = 0.2711.$$
(46)

Note the numerator **IS** the Sum of Squares for the Regression Model (SS_{M.1234}), and thus, the Multiple R is always greater than or equal to zero (i.e., always positive). Further, the square root of numerator, $\mathbf{y}'(\mathbf{H}_{1234}-\mathbf{H}_0)\mathbf{y}$, appears in the denominator, thus reducing equation (46) to:

$$R_{Y.1234} = r_{y\hat{y}_{1234}} = \frac{y'(H_{1234} - H_0)y}{\sqrt{y'(I - H_0)y}\sqrt{y'(H_{1234} - H_0)y}} = \frac{\sqrt{y'(H_{1234} - H_0)y}}{\sqrt{y'(I - H_0)y}}$$
$$= \sqrt{\frac{y'(H_{1234} - H_0)y}{y'(I - H_0)y}} = \sqrt{\frac{36.8684448}{136}} = \sqrt{0.2711} = \sqrt{R_{Y.1234}^2} = 0.52066 \quad (47)$$

Thus, by substituting the matrices necessary to compute Mean Corrected Sums of Squares and Cross-Products into the Pearson correlation formula (40) and utilizing the idempotent properties of partitioned matrices, it can be shown that computationally the Multiple *R* IS the square root of the Model R^2 .

References					
Draper, N. R., & Smith, H. (1998). Applied Regression Analysis (3rd ed.). New: York: John Wiley & Sons.					
Myers, R. H., & Milton, J. S. (1991). A First Course in the Theory of Linear Models. Boston; PWS-Kent.					

Send correspondence to:	T. Mark Beasley
	University of Alabama at Birmingham
	Email: mbeasley@uab.edu

Table 4. Analysis of Variance (ANOVA) Source Table for the $k = 4$ predictor	model and output from SAS PROC REG.

Sum of Squares									
Source		Scalar	Matrix	Value	df	Mean-Square	F		
SS_{M1234}	Model (X ₁₂₃₄)	$\sum (\hat{y}_{1234} - \bar{y})^2$	y'(H ₁₂₃₄ - H ₀)y	36.86844	4	3.18421	0.46489		
$SS_{E.1234}$	Residual	$\sum (y - \hat{y}_{1234})^2$	y '(I – H ₁₂₃₄) y	99.13156	5	16.60197			
SS _{TOTAL}	Total	$\sum (y - \bar{y})^2$	$y'(I - H_0)y = 1$	36.00000	9				

Note: Total Sums of Square for this and all other models is equal to the Mean Corrected Sums of 136.

 \mathbf{H}_0 is the Hat matrix for the "intercept-only" model; $\mathbf{H}_0 = \mathbf{x}_0(\mathbf{x}_0'\mathbf{x}_0)^{-1}\mathbf{x}_0'$.

 H_{1234} is the Hat matrix for the *k*=4 predictor model with Design Matrix $X_{1234} = x_0|x_1|x_2|x_3|x_4$; $H_1 = X_{1234}(X_{1234}X_{1234})^{-1}X_{1234}$.

proc reg data=R2; model y = x1 x2 x3 x4/ clb stb scorr2; output out=R2 1234 predicted=yhat1234 residual=ey 1234;run;

Analysis of Variance

M E	ource odel rror orrected To	otal	DF 4 5 9	Sum o Square 36.8684 99.1315 136.0000	s Squ 4 9.21 6 19.82	711 0.4		
		Root MSE Dependent	Mean	4.4526 19.0000	±			
		Coeff Var	nean	23.4351		0.5120		
						Squared		
	Parameter	Standard			Standardized	Semi-partial		
Variable	Estimate	Error	t Value	Pr > t	Estimate	Corr Type II	95% Confid	ence Limits
Intercept	8.82664	20.70312	0.43	0.6876	0	•	-44.39243	62.04571
x1	-0.61858	0.98458	-0.63	0.5574	-0.32698	0.05754	-3.14952	1.91237
x2	0.48924	0.99389	0.49	0.6434	0.30252	0.03532	-2.06562	3.04411
xЗ	0.21445	1.01558	0.21	0.8411	0.10072	0.00650	-2.39618	2.82509
x4	0.46753	0.92616	0.50	0.6352	0.28348	0.03715	-1.91325	2.84831

Table 5. Mean Corrected Sums of Squares and Cross-Products and Pearson Correlation Matrices for y, predicted values (\hat{y}_{1234}), and residuals ($e_{y.1234}$) from the k=4 regression model. Output from SAS[®] PROC CORR.

proc corr da	ta=R2_1234	csscp;var	yhat1234	ey_1234	y; run;
Variable yhat1234	N Mean 10 19				
ynaci234 ey_1234 y	10 0		0		4.11969
CSSCP Matr		1004	a 10	2.4	
_	36.868 0.000 36.868	4448 0000	ey_12 0.00000 99.13155 99.13155	00 52	y 36.8684448 99.1315552 136.0000000
	Pearson	Correlatior Prob > r			= 10
yhat1234 Predicted Va	lue of y	yhat1234 1.00000) 0	y_1234 .00000 1.0000	y 0.52066 0.1228
ey_1234 Residual		0.00000 1.0000		.00000	0.85376 0.0017
У		0.52066		.85376 0.0017	1.00000