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Monte Carlo (MC) researchers must determine how many replications or repeated samples to draw for 

each condition under investigation. MC experiments performed with too few replications may produce 

idiosyncratic results, but too many replications may be inefficient. The purpose of this paper is to examine 

the number of replications needed in MC experiments designed to investigate robustness and statistical 

power. A precision-based method for determining an appropriate number of replications, uniquely 

combined here with robustness criteria, is recommended. Using analytical and meta-Monte Carlo 

methods, implications of this precision-based method are considered and tables for the recommended 

number of replications based on the method are provided. Further, recommendations are made to enhance 

both the accuracy and consistency of MC studies of robustness and power using an adaptive, continuous 

criterion comparison method of programming combined with the precision-based approach. Ultimately, 

we show that tables provided here can also be used when MC researchers desire an appropriate number of 

replications for estimating both proportion parameters (e.g., Type I error, statistical power) and non-

proportion parameters (e.g., means, regression coefficients). 

 onte Carlo (MC) methods are used in statistics for various purposes, especially when analytical 

solutions or closed formulas are not possible or not easy (Mooney, 1997). In robustness studies 

of Type I error rates, MC researchers use computer simulation to draw many repeated samples 

of pseudorandom data from population distributions with known parameters such that the null hypothesis 

is true; therefore, all rejections of the null hypothesis are Type I errors. After many repeated samples, the 

proportion of rejections (π) estimates the actual probability of a Type I error under the studied conditions 

(e.g., violations of the statistic’s assumptions). Robustness is determined by how well π estimates the 

nominal Type I error rate, α. In MC studies of power, conditions are set such that null hypotheses are 

known to be false, where the proportion of the repeated samples in which the null hypothesis is correctly 

rejected is used to estimate statistical power. If desired, Type II error is then generally inferred as the 

complement to power (i.e., Type II error = 1 – power). In this case, robustness can then be determined by 

how well 1 – π estimates the nominal Type II error rate, β. 

  MC researchers must determine how many repeated samples (also called replications, trials, or 

iterations) to draw for each condition under investigation. MC experiments performed with too few 

replications may produce inaccurate, unstable, and idiosyncratic results, but too many replications may be 

inefficient (Hutchinson & Bandalos, 1997). That is, more replications result in more statistical power to 

detect departures from theory and more precision to estimate parameters, but there are diminishing returns 

as the number of replications increases. 

  The purpose of this paper is to examine the number of replications needed in MC experiments 

designed to investigate robustness and statistical power. A precision-based method for determining an 

appropriate number of replications, uniquely combined here with robustness criteria, is recommended. 

Using analytical and meta-Monte Carlo methods, implications of this precision-based method are 

considered and tables for the recommended number of replications based on the method are provided. 

Further, recommendations are made to enhance both the accuracy and consistency of MC studies of 

robustness and power using an adaptive, continuous criterion comparison method of programming 

combined with the precision-based approach. Ultimately, we also show a relationship between these 

results and non-proportion MC research. That is, tables provided here can also be used when MC 

researchers desire an appropriate number of replications for estimating both proportion parameters (e.g., 

Type I error, statistical power) and non-proportion parameters (e.g., means, correlations, regression 

coefficients). 

  MC researchers ultimately desire a true "population" value, π, for Type I or II error rate under the 

conditions studied. Because infinite replications cannot be run, however, MC researchers cannot obtain 

the true, theoretical "population" parameters for Type I or II error rates. Therefore, MC researchers must 

estimate a value as closely as is reasonable given the constraints of time and programming. They attempt 

to approximate this theoretical value empirically using the many repeated samples under their studied 
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conditions. Due to sampling error, however, MC researchers will obtain different empirical estimates of 

actual Type I or Type II error when using different sets of randomly generated samples (Hutchinson & 

Bandalos, 1997). That is, no set of repeated samples—no matter how many samples are simulated or 

replications are run—perfectly represents all possible samples, but the magnitude of differences among 

estimates of π diminishes with more replications (Fan, Felsovalyi, Sivo, & Keenan, 2002). We ran a 

preliminary meta-MC study like those reported below (i.e., an MC experiment repeated 100 times, using 

500 replications in each individual MC experiment) to examine Type I error rates for the pooled t test 

with equal group means, equal variances, equal sample sizes, and a decision criterion α = 0.05. From 

those 100 repeated MC experiments, even though the average value of π was very close to 0.05 as 

expected, the minimum proportion of incorrect Type I error rejections from one MC experiment was .034, 

while the maximum was 0.088. MC researchers would normally run only one simulation, not 100 like we 

did. Not knowing how idiosyncratic the results were, from a conservative 0.034 to an inflated .088 in 

these two extreme simulations, may result in MC researchers reaching incorrect conclusions about Type I 

error rate inflation. With 10,000 replications in each of 100 meta-MC simulations, empirical Type I error 

rates ranged from extremes of 0.046 to 0.056. 
 

Recommendations from the Literature 

  The number of replications in published MC experiments has varied from literally hundreds to 

hundreds of thousands and there seem to be no guidelines universally applied by MC researchers 

(Koehler, Brown, & Haneuse, 2009; Mooney, 1997). We performed a quick review of 44 Monte Carlo 

articles from Educational and Psychological Measurement from 2000 to 2014 that studied Type I error. 

Ten articles used 10,000 replications, 17 used 1,000, 5 used 500, and 12 used 100-200 replications. 

Burton, Altman, Royston, and Holder (2006) found similar results, with 1,000 and 10,000 being the most 

common choices of replications. Further, few MC authors report rationales for the number of replications 

used (Hauck & Anderson, 1984; Robey & Barcikowski, 1992). In our quick review, only four articles 

provided a rationale: two based loosely on Robey and Barcikowski and two that justified their number of 

replications with phrases like “to ensure stable results” (curiously, one used 1,000 replications to "ensure" 

stability and the other used 10,000). Based on a research synthesis, Mundfrom et al. (2011) suggested that 

approximately 5,000-8,000 appeared sufficient to produce stable Monte Carlo results, depending on the 

purpose of the research. Harwell, Stone, Hsu, and Kirisci (1996) concluded that “clearly, more research in 

this area is needed before there is a definitive answer concerning the number of replications that should be 

used, given the purpose and conditions of a particular MC study” (p. 112). Unfortunately, there has been 

little new scholarship even as computers become increasingly more powerful tools in educational MC 

research. The analytical and MC work provided in this paper may help provide guidelines and standards. 
 

Precision-Based Approach 

  Our focus is a precision-based approach for MC replications adapted from Díaz-Emparanza (1996, 

2002) and also from similar recommendations (e.g., Chung, 2004; Burton et al., 2006) that has not yet 

made its way into applied social science simulation literature, given the lack of reference to such methods 

in resources we have been able to find. Díaz-Emparanza recommended an accuracy criterion A, such that  

 𝐴 = 𝑡𝛼/2√
𝑝𝐻(1 − 𝑝𝐻)

𝑇
,  

 

        (1) 

where tα/2 is the two-tailed critical value of t used in a (1 – α)% confidence interval, pH is the expected 

probability or proportion, and T is the number of trials, or replications. When a confidence interval (CI) is 

built around an empirical result, it commonly takes the form ϴ ± CV(SE), where ϴ is any statistic, SE is 

the standard error for ϴ, and CV is the critical value of the test statistic required for the desired CI around 

ϴ. In Equation 1, A = CV(SE), making A the half-width of a CI for a proportion using a critical value for 

the t distribution. Based on this precision criterion, we can solve for the number of replications, T, so as to 

achieve a desired half-width, A: 

 𝑇 =
𝑡𝛼/2

2  𝑝𝐻(1 − 𝑝𝐻)

𝐴2
.               (2) 

We adapted Díaz-Emparanza’s (1996) formula using standardized (z) critical values because of the very 

large number of replications typically expected. 
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 𝑇 ≥
𝑧𝛼/2

2  𝜋(1 − 𝜋)

𝐻2
,               (3) 

where T is number of replications, zα/2 is the two-tailed critical value for the specified (1 – α)% confidence 

level, π is the expected proportion of Type I errors expected across repeated samples (often α), and H is 

the desired accuracy criterion based on the half-width (hence H) of the desired confidence interval.  

Díaz-Emparanza (1996) and others have not recommended particular precision criteria for the confidence 

interval. We chose to use a robustness criterion recommended by Bradley (1978) to further develop this 

precision-based approach to the number of replications needed in Monte Carlo experiments. The criterion 

proposed by Bradley can be used to determine whether a statistical test can be considered conservative or 

liberal under certain conditions. That is, we cannot expect actual, empirical Type I error rates (π) to be 

exactly the same as a priori, nominal Type I error rates (α) under all conditions. Bradley’s criterion helps 

scholars consider what it means for Type I error rates to lack robustness (i.e., be too inflated, or liberal, or 

be too low, or conservative). For example, when nominal α = 0.05, does the empirical Type I error rate 

become too liberal at π = 0.055, π = 0.06, π = 0.075, or perhaps π = 0.10? 

  Bradley (1978) recommended a stringent criterion interval of α ± 0.1α (or |π – α| ≤ α/10) for the 

accuracy of MC robustness study results. When α = 0.05, Bradley’s stringent half-width would be 

(0.1)(0.05) = 0.005 and the range within which Type I error rate would be considered maintained (i.e., 

neither liberal nor conservative) would therefore be 0.9α ≤ π ≤ 1.1α or [0.045, 0.055]. Bradley also 

suggested that “the most liberal criterion that I am able to take seriously” was α ± 0.5α (p. 146), 

corresponding to a range of [0.025, 0.075]. Robey and Barcikowski (1992) suggested α ± 0.25α. Although 

not specifically related to Monte Carlo research, Cochran (1952) offered α ± 0.2α for a comparison 

between nominal and empirical probabilities, indicating that the “disturbance [in π] is regarded as 

unimportant” when 0.04 ≤ π ≤ 0.06 (p. 328). Serlin (2000) recommended a range null hypothesis for 

testing robustness, with a criterion between Cochran and Bradley. All such criteria are relatively arbitrary, 

but mandatory, and therefore any approach to determining an appropriate number of replications in MC 

experiments must allow MC researchers to set their own criterion for precision. 

  By replacing the accuracy criterion H in Equation 3 with Bπ as implied by the above discussion, the 

Bradley-based CI can be reported more generally as π ± Bπ, where B represents a Bradley-type criterion 

and π is any given proportion (essentially an effect size, perhaps α, as used in the previous examples). 

Therefore, Bπ now represents the half-width of the desired confidence interval. With Bradley’s (1978) 

stringent criterion, B = 0.10 and π = 0.05, the resulting half-width is 0.005 as described above. It should 

be noted that estimating π here is not unlike an applied researcher choosing sample size based on α, 

power, and effect size—even though effect size is unknown and must be estimated in most applied 

research. Here, however, the expected π may act as the estimated effect size necessary for the number of 

replications “sample size” calculation in MC research. Often, the a priori estimate for empirical π may be 

nominal α, even though when assumptions are not met it may be impossible to know the actual π. 

In this paper, we explore the implications of choosing the number of MC replications, using a criterion 

like Bradley’s (1978) combined with a precision-based formula for the number of replications like 

Equation 3. This results in a minor adaptation to Equation 3 that defines our precision-based approach: 

 𝑇 ≥
𝑧𝛼/2

2  𝜋(1 − 𝜋)

(𝐵𝜋)2
.               (4) 

Therefore, using Equation 4, the number of replications required to create a 95% CI half-width of 

Bπ = 0.005, using B = 0.10 at estimated π = 0.05 and with z = 1.96 for a 95% confidence interval  

would be T = 7,299 (see Table 1).  

  Table 1 shows the number of replications required for a variety of conditions in order to obtain both 

95% and 99% confidence intervals using a half-width criterion relative in size to the proportion. We agree 

with Bradley that “if the α level has been properly chosen… because protection is truly needed at that 

level, then there should be no objection to a definition of robustness that makes the robustness criterion 

proportional to α” (p. 146). Table 2, however, shows the number of replications required for both 95% 

and 99% confidence intervals using an absolute half-width criterion, which may be preferred in certain 

circumstances. The primary practical difference between the relative and absolute approaches is that the 

absolute approach requires more replications for larger π, whereas the relative approach requires more   
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Table 1. Number of Replications Recommended using the Proportional Precision-Based Approach for 

Confidence Intervals for Type I Error or Statistical Power Based on Several Bradley-Type Accuracy 

Criteria and the Estimated (or Actual) Proportion, π 

  Bradley-type Criterion (𝐵) 

CI Proportion (𝜋) 0.10  0.20 0.25 0.50 

95% .01 38,030 9,508 6,085 1,521 

 .05 7,299 1,825 1,168 292 

 .10 3,457 864 553 138 

 .15 2,177 544 348 87 

 .20 1,537 384 246 62 

 .25 1,152 288 184 46 

 .30 896 224 143 36 

 .35 713 178 114 29 

 .40 576 144 92 23 

 .45 470 117 75 19 

 .50 384 96 62 15 

99% .01 65,686 16,421 10,510 2,627 

 .05 12,606 3,152 2,017 504 

 .10 5,971 1,493 955 239 

 .15 3,760 940 602 150 

 .20 2,654 664 425 106 

 .25 1,991 498 319 80 

 .30 1,548 387 248 62 

 .35 1,232 308 197 49 

 .40 995 249 159 40 

 .45 811 203 130 32 

 .50 664 166 106 27 

Note. Tabled values are calculated using Equation 4, where the half-width is calculated using the 

proportional accuracy criterion H = Bπ (e.g., when π = 0.05 and B = 0.10, then H = 0.005). It is 

recommended that the minimum of π and (1 - π) be used to enter the table. 
 

replications for smaller π. That is, for any given half-width, the absolute approach reaches the maximum 

number of replications at maximum variance π = 0.50 (see Table 2), whereas the relative approach 

reaches maximum replications at minimum π = 0.01 (in Table 1). However, it should be noted that MC 

researchers using an absolute approach may be willing to allow slightly larger confidence interval half-

widths for larger proportions, and therefore might choose replications based on the H = 0.020 or 

H = 0.025 column rather than the H = 0.005 column in Table 2. 

  Using relative half-width values in Table 1, an MC researcher may choose to use the nominal 𝛼 to 

ensure a generally sufficient number of replications, knowing that the number of replications needed for 

any inflated π would be smaller (e.g., T = 7,299 from the example above) or that for conservative π the B 

criterion would become only slightly larger, just a little above 0.20. With the absolute half-width values in 

Table 2, however, it may be most appropriate to choose the number of replications based on the 

maximum variance condition at π = 0.50 (e.g., T = 9,604 with H = 0.01). Using this maximum variance 

condition will ensure that all smaller proportions have sufficient numbers of replications. In both cases, 

we recommend using the minimum of π and (1 – π) in the tables. For example, if power of 0.80 is 

expected during the MC simulation, then the 1 – 0.80 = 0.20 would be used with both Table 1 and Table 

2, representing the Type II error rate. 
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Table 2. Number of Replications Recommended Using the Absolute Precision-Based Approach for 

Confidence Intervals for Type I Error or Statistical Power Based on Several Bradley-Type Accuracy 

Criteria and the Estimated (or Actual) Proportion, π 

  Absolute Half-Width (H) 

CI Proportion (𝜋) 0.005  0.010 0.020 0.025 

95% .01 1,521 380 95 61 

 .05 7,299 1,825 456 292 

 .10 13,829 3,457 864 553 

 .15 19,591 4,898 1,225 784 

 .20 24,585 6,146 1,537 983 

 .25 28,811 7,203 1,801 1,152 

 .30 32,268 8,067 2,017 1,291 

 .35 34,957 8,739 2,185 1,398 

 .40 36,878 9,220 2,305 1,475 

 .45 38,030 9,508 2,377 1,521 

 .50 38,415 9,604 2,401 1,537 

99% .01 2,627 657 164 105 

 .05 12,606 3,152 788 504 

 .10 23,886 5,971 1,493 955 

 .15 33,838 8,460 2,115 1,354 

 .20 42,463 10,616 2,654 1,699 

 .25 49,762 12,440 3,110 1,991 

 .30 55,733 13,933 3,483 2,229 

 .35 60,378 15,094 3,774 2,415 

 .40 63,695 15,924 3,981 2,548 

 .45 65,686 16,421 4,105 2,627 

 .50 66,349 16,587 4,147 2,654 

Note. Tabled values are calculated using Equation 3, where the half-width is calculated using the 

absolute accuracy criterion H as indicated in the table. It is recommended that the minimum of π and 

(1 - 𝜋) be used to enter the table. 
 

Methods 

  Tables 1 and 2 were based on the analytical work described above. MC methods were also used to 

examine the number of replications issue. The MC simulations (and meta-MC simulations) were used to 

illustrate and investigate the impact of using the precision-based approach to calculating T. MC 

simulations were used, in part, because the actual Type I error rates and power were not always known for 

the conditions studied. Both numerical and graphical methods are used to describe the results of several 

types of robustness and power studies. Note that for all simulations that follow, the interest is to illustrate 

the choice of replications, not to report interesting statistical results of the simulations. 

  Simulation 1. Different numbers of replications (T) were chosen from 100 to 1,000,000 (e.g., 100, 

250, 500, 1000, 2500, 5000, 10,000, etc.). Although one could simply use the first T replications (e.g., 

first 100 replications) from the 1,000,000 in order to achieve the same outcomes, separate simulations 

were actually run for this part of the work. Conditions were adapted from a study reported by Zimmerman 

(2004). A program in R (https://www.r-project.org/) was written to perform the simulations. 

Zimmerman’s study compared Student’s pooled-variance t test, Welch’s separate-variance t test, and a 

conditional choice based on Levene’s test of equality of variances (the R car package, https://cran.r-

project.org/web/packages/car/index.html, was used for Levene’s test).  

  We completely crossed three factors in the simulations: (a) total sample size was varied across two 

levels such that N = 60 and N = 30; (b) group size was varied across five levels such that Group 1 was 

five times larger than Group 2, twice as large, equal in size, half as large, and one-fifth as large as Group 

2; and (c) the variances in the groups were varied across three levels such that Group 1 and Group 2 had 

equal variances, Group 2 had variance twice as large as Group 1, and Group 2 had variance three times 

larger than Group 1. Seeds were created randomly for data generation and saved in an array such that a 

new seed was set for each condition (the built-in R Mersenne-Twister was used for uniform deviates). 

https://www.rproject.org/
https://cran.r-project.org/web/packages/car/index.html
https://cran.r-project.org/web/packages/car/index.html


Brooks, Diaz, & Johanson 

 

36                                                                                                        General Linear Model Journal, 2017, Vol. 43(1) 

Normally distributed data with a mean of 0.0 were generated as needed for each condition using the built-

in R Box-Muller transformation (the standard deviation for Group 1 was always 1.0). For each dataset 

generated, pooled-variance t, separate-variances t, and conditional t tests were performed. For the 

conditional t test, Levene’s test was first performed and if significant, then the separate-variances t test 

was performed; otherwise the pooled-variance t test was performed. All rejections of null hypotheses 

were counted. Because all means were set equal to 0.0, any t test rejection constituted a Type I error (but 

as group variances deviated, the analysis of Levene’s test became a test of power). 
 

  Simulation 2. Although there is no reason to suspect that Type I error rate will be impacted by 

within-groups sample size, Simulation 1 was repeated using N = 600 and N = 300 as total sample sizes. 

Fourteen different numbers of replications (T) were chosen: 100, 200, 400, 800, 1600, 3200, 6400, 12800, 

25600, 51200, 102400, 204800, 409600, and 819200. Although one could simply use the first T 

replications from 819,200 in order to achieve the same outcome, 14 separate simulations were run for this 

simulation. All other conditions remained the same. 
 

  Simulation 3. Meta-MC simulations were run by repeating the individual Monte Carlo experiments 

described above 100 times each. The number of replications was the same as those shown in Simulation 

2, but the maximum number of replications used was 6,400. That is, numbers of replications (T) varied as: 

100, 200, 400, 800, 1600, 3200, and 6400. Again all conditions adapted from Zimmerman (2004) 

remained as described in Simulation 1.  
 

  Simulation 4. A second set of meta-MC simulations was run with 1,000 meta-replications using the 

number of replications recommended for given π values, as described above. The π values were taken 

from Simulation 1 results with 819,200 replications, which was presumed to provide the best possible 

estimate of π. The numbers of replications (T) were taken from Tables 1 and 2 for B = 0.1, B = 0.2, 

B = 0.25, B = 0.5, and H = 0.02. 
 

  Simulation 5. Again, the conditions described above for quasi-replicating Zimmerman’s (2004) 

study, but for this simulation experiment, there was no fixed number of replications performed. Instead, 

the number of replications was continuously updated based on the current size of the standard error and 

half-width from the simulations (see Appendix A). That is, each time through the R program loop, the 

number of replications required for the current half-width was calculated using Equation 4. The program 

continued until either the number of replications was greater than required or an arbitrary maximum of 

25,600 replications was reached. Two scenarios were examined: (a) where the half-width was calculated 

relative to the current π and (b) where the half-width was calculated absolutely using the current π. See 

Appendix A for some of the code used for this study, which will run in R as given to produce output like 

Appendix B. 
 

  Simulation 6. An MC experiment was performed using the Mantel-Haenszel (MH) statistic in a 

differential item functioning (DIF) analysis. The analysis compared Type I error rates for MH with and 

without the continuity correction using data generated based on the 2PL IRT model with item 

discrimination parameters sampled from an N(1.1, 0.25) distribution and item difficulty parameters 

sampled from an N(0, 1) distribution. Sample size was set to N = 1,000 for both the reference group and 

the focal group. The reference group was set to have an average group ability 1 SD higher than the focal 

group (Paek, 2010; Price, 2014). 
 

Results 

  Several MC simulation experiments were performed. Results are provided to help illustrate the issues 

related to the number of replications used in those simulations. That is, results are reported here to help 

elucidate the issues related to number of replications, not to answer the original implied research 

questions that might have led to such MC experiments. For example, Figure 1 from Simulation 1 shows 

results from a replication of Zimmerman’s (2004) MC study comparing the pooled-variance t, separate-

variance t, and conditional t (based on Levene) with varying total N, n per group, and variance ratios. The 

number of replications increased from Figures 1(a) to 1(d), showing additional smoothing of estimated 

Type I error rates as more replications were used, where the smoother curves with 250,000 replications in 

Figure 1(d) likely approximate true theoretical relationships. 
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  By further examining individual conditions of the Zimmerman (2004) replication work displayed 

above in Simulation 1, we present Figure 2(a) as an example that shows 95% CIs around the Type I error 

point estimates. The number of replications represents the repeated samples performed prior to and 

including that point: 1,000 represents the first 1,000 replications while 10,000 represents the first 

10,000—including the first 1,000 replications. Figure 2(a) shows a slightly inflated condition with 

π approximately equal to .0675. Figure 2(b) shows the half-width of the CI at each number of replications 

for these MC data. The horizontal line at H = 0.005 crosses the curve at different numbers of replications, 

both above and below 10,000, depending on the sample size condition (see examples above).  

  Both Figures 2(c) and 2(d) clearly show a significant increase in precision as replications increase, 

but with diminishing improvement beyond 20,000 replications (on the x-axis as 40). Figure 2(c) shows a 

comparison from Simulation 6 between MH with and without the continuity correction. Below 30,000 

replications, the MH Type I error rate remains within confidence limits of 0.05, but becomes slightly 

inflated as the number of replications increases over 30,000. Similarly, with fewer than roughly 25,000 

replications, the MH with continuity correction appears to maintain Type I error within Bradley’s (1978) 

stringent criterion. However, with more than 25,000 replications, it becomes clearer that MH with the 

continuity correction is conservative based on Bradley’s criterion. Figure 2(d) shows the results of a 

power analysis for Levene's test from the Zimmerman replication, where actual power is approximately 

0.31. 

 

  

Figure 1(a). Type I error rates for several t-tests 

based on 100 replications when n1 = 40, n2 = 20, 

s1 = 1.0, and s2 varies. 

Figure 1(c). Type I error rates for several t-tests 

based on 10,000 replications when n1 = 40, 

n2 = 20, s1 = 1.0, and s2 varies. 

Figure 1(b). Type I error rates for several t-tests 

based on 1,000 replications when n1 = 40, n2 = 20, 

s1 = 1.0, and s2 varies. 

 
Figure 1(d). Type I error rates for several t-tests 

based on 250,000 replications when n1 = 40, 

n2 = 20, s1 = 1.0, and s2 varies. 
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  Figure 3(a) shows the estimates from Simulation 2 of the true Type I error rate for the pooled t test as 

the number of replications increases from 100 to 819,200 across three SD-ratio conditions. One 

interesting result shown in Figure 3(a) is that the Type I error rates do not become ordered correctly in 

this example until after 25,600 replications (i.e., with fewer than 25,600 replications, x-axis mark 9) it 

appears that the Type I error rate is higher for the 2:1 SD ratio than for the 3:1 SD ratio). The instability of 

results with less than 12,800 replications (x-axis mark of 8) is also visible. 

  Figure 3(b), from Simulation 2, shows the confidence intervals for results of the Welch-Satterthwaite 

t test  as the number of replications increase from 100 to 819,200 when variances are equal but the sample 

size in one group is very small (here, n1 = 25 and n2=5). Figure 3(b) shows that the Type I error rate with 

one very small sample appears to be maintained within confidence limits of .05 below 6,400 replications 

(x-axis mark of 7). However, beyond 6,400 replications, the empirical Type I error rate clearly remains 

above nominal α = .05, and outside Bradley's stringent criterion range of [0.045, 0.055]—and therefore 

would be considered liberal by some scholars. Similar results were found by Adusah and Brooks (2011). 

For comparison, Type I error rates for larger sample sizes (i.e., n1 = 250 and n2=50) are also shown for 

replications above 25,600. With larger sample sizes, the Type I error rate, π, remains as expected at 

α = 0.05.  

  

Figure 2(a). Type I error rates for the pooled t-

test when n1 = 40, n2 = 20, s1 = 1.0, and s2 = 3.0 

and the number of replications varies from 100 to 

25,000. 

 
Figure 2(c). Comparison between Mantel-

Haenszel with (MH_CC) and without (MH) the 

continuity correction when there is no DIF. 

Figure 2(b). Confidence Interval half-widths for 

Type I error rates of the pooled t-test for three 

sample size conditions when s1 = 1.0, and s2 = 3.0. 

Number of replications varies from 100 to 25,000. 

     
Figure 2(d). Statistical Power rates for the pooled 

t-test when n1 = 50, n2 = 10, s1 = 1.0, and s2 = 2.0. 

Number of replications varies from 100 to 25,000. 
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Figure 3(a). Type I error rate for the pooled t test 

as the number of replications increases from 100 

to 819,200 across three SD-ratio conditions with 

n1 = n2 = 15. 

 
 

Figure 3(b). 95% Confidence intervals for 

Welch-Satterthwaite t test  as replications increase 

from 100 to 819,200 when variances are equal but 

sample size in one group is very small (here, 

n1 = 25 and n2 = 5 for total N = 30 and n1 = 250 

and n2 = 50 for total N = 300). 
 

Table 3. Type I Error Results for 100 Meta-MC Simulations for the Pooled t Test 

Replications Mean Minimum Maximum 

Count 

Below 

B=0.10 

Criterion 

Count 

Above 

B=0.10 

Criterion 

Count 

Below 

B=0.50 

Criterion 

Count 

Above 

B=0.50 

Criterion 

100 .0470 .0100 .1000 49 31 49 21 

200 .0502 .0200 .0950 47 29 32 19 

400 .0495 .0250 .0750 46 26 24 15 

800 .0496 .0325 .0738 32 21 12 11 

1600 .0504 .0356 .0606 15 19 4 3 

3200 .0502 .0384 .0588 5 10 2 0 

6400 .0497 .0425 .0588 3 4 0 0 

Note. B=0.10 corresponds to Bradley's (1978) stringent criterion, whereas B=0.50 corresponds to his 

liberal criterion. Therefore, the counts represent the number of samples outside the Bradley-type criteria. 
 

 Table 3 shows the results for meta-MC simulations from Simulation 3 that were run with 100 

repeated replications of the same MC experiment. Here, 200 to 6,400 replications were each run 100 

times and the Type I error results were graphed, with horizontal lines at Bradley criteria of 0.10 and 0.20. 

Clearly, as the number of replications within each MC experiment increases across Figures 4(a) to 4(c), 

more Type I error rate estimates occur within these Bradley-type criteria. Table 3 shows results for the 

pooled t test across these numbers of replications, including how many times precisely the empirical Type 

I error rate fell outside Bradley’s stringent and liberal criteria. Figure 4(a) shows that many estimates are 

outside of Bradley's stringent range with 400 replications per MC experiment, but Figure 4(c) shows that 

very few are outside the range with 6,400 replications per MC experiment. Not surprisingly, more 

replications make a difference in terms of precision of our empirical estimates.  

  From Simulation 4, Table 4 shows similar results for the 1,000 meta-replication scenario, with T 

based on Equation 4 and π based on the empirical results of 819,200 replications. Also, Figures 5(a) to 

5(d) show the number of replications run in each meta-replication are centered as expected at nominal α = 

0.05. With each increase in the number of replications per MC experiment based on the adaptive formulas 

used, the precision increases based on the half-widths used in those calculations. That is, Figures 5(a) 

through 5(d) show that the adaptive Bradley-based approach recommended here will produce the 

expected level of precision based on the relevant half-widths chosen in each case.   
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Figure 4. 100 Meta-MC Replications with each MC Experiment having  

 
 
 

 

 
 

 

 

 
 

 

 

 

 

 

 
 

 

  4(a). 400 Replications.     4(b). 1,600 Replications.   4(c). 6,400 Replications. 
 

Table 4. Type I Error Results for 1,000 Meta-MC Simulations for the Pooled t with n1 = 25, n2 = 5, and 

Varying SD. 

𝜋 

Replications 

based on 

95% CI Mean Min Max 

Count 

Below 

B=0.10 

Criterion 

Count 

Above 

B=0.10 

Criterion 

Count 

Below 

H=0.02 

Criterion 

Count 

Above 

H=0.02 

Criterion 

.05005 292 .0496 .0137 .0890 409 284 43 57 

 456 .0497 .0175 .0811 320 265 26 37 

 1168 .0499 .0274 .0728 211 188 1 1 

 1825 .0500 .0318 .0663 179 166 0 0 

 7299 .0499 .0422 .0619 27 26 0 0 

.20599 384 .2057 .1510 .2708 175 151 175 185 

 983 .2065 .1556 .2462 32 61 32 61 

 1537 .2061 .1731 .2388 23 34 24 37 

.30243 224 .3037 .2188 .4152 138 179 257 263 

 896 .3018 .2589 .3482 23 24 96 103 

 2017 .3020 .2702 .3332 2 1 24 20 

Note. B=0.10 corresponds to a relative approach to number of replications based on Bradley's (1978) 

stringent criterion. The half-width will change adaptively and dynamically as new estimates for π are 

obtained. H=0.02 corresponds to an absolute confidence interval half-width value of 0.02. Here, H=0.02 

was chosen as a static value using B=0.10 and π=0.20 for the proportional accuracy criterion formula 

H=Bπ. Therefore, the counts represent the number of samples outside these criteria. 
 

  Finally, Appendix B from Simulation 5 shows results from adaptive, continuous criterion comparison 

approach to MC simulations combined with the precision-based approach, where the termination point is 

not based on number of replications but rather on the size of the confidence interval desired for the 

results. This adaptive process using code in Appendix A has been performed using estimates relative to π, 

but can be adapted to fit other approaches, such as using an absolute criterion based on π or nominal α. 

Appendix B output shows how the process proceeds. 
 

Discussion 

  This paper provides tables that Monte Carlo researchers can use to determine the appropriate number 

of replications to run for their MC experiments. Table 1 provides the recommended proportional approach 

to the number of replications using the precision-based approach. Table 2 provides the number of 

replications using the absolute approach. Finally, code was provided in Appendix A (with results in 

Appendix B) to demonstrate the combination of the precision-based approach with an adaptive, 

continuous criterion comparison method of programming.  
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Several conclusions can be derived from these results and figures. First, as implied by Mundfrom et al. 

(2011), the size of CI half-widths may reach an acceptable level (i.e., 0.005) somewhere below 10,000 

replications, under some conditions, as exemplified in Figure 2(b). The challenge is to find an appropriate 

number of replications to balance the internal validity and external validity of MC experiments when 

varying conditions require differing numbers of replications. That is, internal validity in MC research is 

closely associated with more precision of the true Type I or II error rates, which requires more 

replications. External validity, however, requires that more conditions be studied, which often requires 

more variables and therefore more cells to represent those conditions in the typical factorial design used 

in MC research. More cells with more replications may become unreasonable for any individual MC 

study. As in most research, a reasonable balance must be struck between internal and external validity. 

  Second, as expected, confidence intervals shown in Figure 2(a) include the expected empirical 

parameter (obtained from 819,200 replications, which should approximate the true theoretical parameter). 

In addition to accuracy, however, we want the confidence intervals for this parameter as small as 

reasonable. So while it is valuable to know that the confidence interval from any number of replications is 

likely to include the true theoretical parameter, it is more valuable to know this parameter within a smaller 

interval. We believe that Monte Carlo research reports must routinely include confidence intervals for the 

 

 

Figure 5(a). 1,000 Meta-MC replications using 

456 replications per MC experiment (based on 

H=0.020 set absolutely). 
 

 
Figure 5(c). 1,000 Meta-MC replications using 

1,825 replications per MC experiment (based on 

H=0.010 set relatively where B=0.20 and π=0.05). 

Figure 5(b). 1,000 Meta-MC replications using 

1,168 replications per MC experiment (based on 

H=0.0125 set relatively where B=0.25 and 

π=0.05). 

 
Figure 5(d). 1,000 Meta-MC replications using 

7,299 replications per MC experiment (based on 

H=0.005 set relatively where B=0.10 and π=0.05). 
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estimates provided based on the number of replications used. Alternatively, MC researchers could provide 

a statistical test of the difference of the empirical π from the nominal α (Robey & Barcikowski, 1992). 

Figures 2(a), 2(c), and 2(d) also show the same diminishing benefits for precision as Figure 2(b). 

  Third, as determined from results of simulations using different samples sizes within MC 

experiments, such as total N = 30 and total N = 300 in Figure 3(b), sample sizes within MC samples 

appear not to impact the precision of MC results. Figure 3(b) shows the confidence intervals for both total 

N conditions as relatively equal in width (beyond 12,800 replications, marked as 8 on the x-axis). We saw 

this repeatedly through across simulations. There may be reason to believe that additional data points 

within simulations would provide additional MC result precision, but in these examples that did not 

occur. While the estimates within samples may have smaller confidence intervals due to larger n, it is the 

estimates across samples that interest the MC researcher. These do not appear to be impacted by within-

sample n. 

  Fourth, Table 1 clearly indicates that studying smaller Type I error values with precision requires 

more replications (Gentle, 1998). Table 1 is similar, in this way, to the tables provided by Robey and 

Barcikowski (1992). As Robey and Barcikowski wrote: 

At first glance, some of the tabulated sample sizes appear to be enormous with respect to what 

is usually considered a large n. However, it must be remembered that the decision being 

weighed in a Monte Carlo robustness study concerns a point in the tail extremity of some 

unknown distribution. Were the point of interest to reside somewhere under the greater density 

of that distribution, the usual notion of large n would apply. (p. 287) 

  Fifth, for some MC investigations, precision is critically important. Figure 2(c) shows that comparing 

the Mantel-Haenszel statistic with and without the continuity correction results in relatively small 

differences in Type I error rates. In order to have confidence that these two statistics do indeed have 

different Type I error rates, greater precision is required. Under 10,000 replications the confidence 

intervals for both statistics contain .05. Because there appears to be a difference of only approximately 

.008 between the two statistics, more replications are required for confidence in that result. Indeed, until 

the number of replications increases beyond 30,000 we cannot be confident that the Mantel-Haenszel 

without continuity correction is actually ever-so-slightly inflated above α = 0.05. 
 

Recommendations 

  We make four primary recommendations based on our results. First, MC researchers need to be more 

complete in reporting their results, especially in regard to precision and confidence intervals for their 

estimates. Second, MC researchers can use more dynamic and adaptive programming to decide when to 

end their simulations rather than end their simulations after some predetermined number of replications. 

Third, we believe MC researchers can use pilot studies to help them determine a proper number of 

replications. That is, an additional step after verifying the program code could provide estimates to be 

used with tables provided here. Fourth, our results are based on approaches specifically designed for 

proportions as parameters. Minor modifications, however, will allow this precision-based approach to 

work with non-proportion parameters, such as means and regression coefficients. 

  Ultimately, if adaptive programming cannot be used and there is no strong rationale for π, we believe 

MC researchers should use Bradley's stringent criterion (i.e., π ± .1π) with Table 1. With α = .05, the 

recommended half-width based on the stringent Bradley-type criterion of .10 would be .005 (i.e., [.045, 

.055]). Therefore, Table 1 shows that 7,299 replications would be required for a desired 95% confidence 

interval. Another defensible option may be to use 3,152 replications for a 99% confidence interval with a 

Bradley-type criterion of .20 (i.e., [.04, .06] for α = .05). Finally, Table 2 implies that a generally safe 

choice (based on maximum variance of the proportions) would appear to be 10,000 replications (or more 

specifically, T = 9,604) for an absolute interval half-width of .01 (i.e., [.04, .06] for α = .05), or smaller, if 

a slightly larger half-width is acceptable (e.g., T = 2,401 or T = 1,537). This choice would safely ensure 

that all smaller proportions had more than enough replications for precision. However, as noted above, 

even more replications are needed when more precision is required. 
 

  Confidence Intervals. Despite calls for more detailed reporting of MC results (Hoaglin & Andrews, 

1975), few MC researchers analyze their data statistically or consider power. Given the large number of 

replications often used in MC research, perhaps more important than statistical analyses would be use of 
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confidence intervals. It would be instructive to know confidence intervals for results from any number of 

replications. Confidence intervals remind us that even results based on large numbers of replications are 

not infallible and—more importantly—are not true population or theoretical values (Koehler et al., 2009). 
 

  Continuous criterion comparison. Our recommended approach, presented with code in Appendix 

A, is the precision-based approach combined with a continuous criterion comparison approach. Finster 

(1987) suggested multi-stage approaches to MC studies, where the final number of replications is based 

on early or preliminary MC replications. Such an approach to MC research would allow the number of 

replications to be adjusted based on the precision of empirical estimates desired rather than based on some 

fixed number of replications. That is, scholars can create MC programs using an adaptive, continuous 

criterion comparison approach, where replications continue until a designated accuracy criterion is 

reached. The code dynamically adjusts the number of replications by adapting to the current estimate 

during the MC experiment so the final number of replications is based on the best constantly-changing 

estimate of π from the research itself. Instead of a single pilot study to obtain such an estimate, the 

estimate is continuously approximated more accurately with each new iteration of the programming loop. 

Therefore, rather than run a program until a predetermined number of replications is reached, our program 

runs until a predetermined level of precision is reached. 
 

  Pilot Studies. MC researchers need to verify their code, perhaps through what might resemble a 

series of pilot studies. That is, they need to verify the logic and accuracy of their programming at several 

levels (Bratley, Fox, & Schrage, 1987; Brooks, Barcikowski, & Robey, 1999). MC researchers should 

compare their results for individual datasets to hand calculations or results from other programs (e.g., 

whether the sample statistics were correct, whether the data were distributed as expected). They should 

also verify aggregated output over several replications to ensure that the right values are being saved 

correctly for final analysis later, including whether the correct number of rejections was recorded and 

whether the averaged statistical values were correct. They should verify that various programming 

concerns will not cause their programs to stop in the middle of a simulation or record incorrect 

information (e.g., division by zero, or indexes that are wrong or out of range). They should use error-

handling where possible to handle unusual situations such as zero variance, singular matrices, or failure to 

converge. They should ensure that all their results are theoretically sensible, even if they cannot compare 

them to other known results. For example, researchers can include conditions for which Type I error rates 

are known and therefore report Type I error rates even when studying power. Researchers can include 

equal variance conditions for which Type I error or power rates are known even when studying unequal 

variances to help provide confidence in the unequal variance results. Finally, MC researchers should 

perform sensitivity testing to ensure that changes in parameters result in reasonable differences.   

  After final program verification is satisfactorily complete, a final small-scale pilot study can be run to 

obtain estimates of the parameters to be studied. These pilot study results can be used with Table 1 or 

Table 2 provided here to determine an appropriate number of replications for the final study. Other related 

approaches that might provide evidence of stability include using “internal replication” to look at 5-10 

subsets within the total set of replications for evidence of consistency or to review trends across 

replications. Ideally, there should be stable averages or apparent asymptotes indicative of “sample-

independent” solutions, like the early trend leading to an eventual asymptote in Figures 2(a) and 2(d). 
 

  Non-Proportion Parameter Intervals. It should be noted that the methods above are applied 

exclusively to the Monte Carlo estimation of proportions, but we believe it would be reasonable to use a 

similar approach when MC researchers are attempting to obtain estimates of other non-proportion types of 

parameters. In such cases, the variance of the proportion in Equation 4, π(1 – π), would simply be 

replaced with an estimate of the variance of the non-proportion parameter, perhaps based on a reasonable 

coefficient of variation of approximately σ / µ = 0.20 (i.e., σ = 0.20µ). Additionally, the half-width would 

no longer be based on a Bradley-type criterion, but rather on some reasonable half-width (perhaps 5% of 

the σ estimate). Therefore, Equation 4 would become: 

 𝑇 ≥
𝑧𝛼/2

2  𝜎2

(. 05𝜎)2
. (5) 

 

  For µ = 50, we might use σ = 10 (and therefore σ
2
 = 100) and a half-width of H = 0.05σ = 0.50 in 

Equation 5 to determine that the required number of replications would be T = 1,537. Given the 
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relationship chosen here between σ and H (i.e., H = 0.05σ), this corresponds to the maximum variance 

situation in Table 2 (see the π = 0.50 row of H = 0.025 column in the 95% CI section). If we wish to 

choose a half-width for tighter confidence intervals, for example, if H = 0.04σ, then the number of 

replications would be T = 2,401, or for H = 0.02σ, the number is T = 9,604. Note that µ and σ can be any 

values because it is the relationship between σ and H that determines this congruence with the maximum 

variance situation for proportions in Table 2. Therefore, accordingly, we also recommend Table 2 as 

useful to determine the number of replications for non-proportion parameter estimates as well. 
 

Conclusion 

  MC experiments can use complicated factorial designs with many cells (e.g., five 5-way and many 3-

way designs were found in our quick review mentioned earlier). Each cell in a factorial design requires an 

appropriate number of replications, thereby quickly increasing the total number of replications required 

for the entire factorial MC experiment. Also, the number of replications may need to differ depending on 

the phenomenon being investigated (Harwell et al., 1996; Hutchinson & Bandalos, 1997). Robustness and 

power studies may require different numbers of replications than bias and precision studies or 

comparative studies. Potential meta-analyses of MC research require similar standards across studies—it 

is not reasonable to compare studies with 100 and 10,000 replications. Therefore, the number of 

replications—and the justification for that number based on the purpose of the study, statistical power, 

number of conditions studied, precision/stability, and/or the interpretability of results (e.g., 5-way 

interactions)—is critically important to MC research. 

  The number of MC replications need not necessarily be “as large as possible” to reach desired levels 

of accuracy. Even as computers have become faster and more powerful, so have the statistical methods 

being investigated become more sophisticated and difficult to compute. Therefore, choosing the number 

of replications well, for both precision and efficiency, still matters. The adaptive, continuous criterion 

comparison approach allows researchers to choose the number of replications for their purpose—perhaps 

at levels of precision that require fewer replications than the commonly used 10,000. For example, 

researchers might use fewer replications, sacrificing accuracy to allow for more conditions to be studied 

within factorial MC experiments and thereby enhancing external validity of MC studies (Schaffer & Kim, 

2007; Skrondal, 2000). More theoretical or definitive conclusions, however, require greater precision and 

therefore will require larger number of replications—whereas conclusions that result in more practical 

guidelines may require fewer. From a practical perspective, because a known robust alternative exists, it 

may be sufficient to know that the pooled t test is inflated when smaller groups have larger variance 

without knowing precisely how much. More precision from both Type I error and power studies would be 

required to determine that robust alternatives do indeed exist—or to recommend using the separate 

variances t test in all circumstances (as Zimmerman did in 2004 based on 50,000-200,000 replications).  
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APPENDIX A 

Key R code for adaptive simulations (not the complete program that was run) 

 

######################################################### 

# This code will run as is. With adjustments to c and  

# removing the comment (#) before the H calculation will  

# produce all of Appendix B 

######################################################### 

# set seed = 2016 to get the same results as Appendix B 

#--------------------------------------------------------- 

#rm(.Random.seed) 

library(car)      #needed for LeveneTest 

 

######################################################### 

# Initialize values needed for the simulations 

#--------------------------------------------------------- 

alpha    <- 0.05    #set nominal alpha 

Bradley  <- 0.10    #set choice of Bradley criterion 

minp     <- 0.001   #actual alpha (p) cannot be smaller than .001 

minreps  <- 500     #ensure some reasonable number of replications 

maxreps  <- 20000   #set max high but higher requires more time 

z        <- 1.96    #set critical value for desired CI width 

N        <- 60      #total sample size n1 + n2 

n1       <- 40      #change or run in a for loop to vary sample sizes 

n2       <- 20      #N - n1 = n2 

rejectsT <- NULL    #initialize vector (code below based on Pooled T) 

R        <- maxreps #R allows comparative condition to change 

i        <- 0       #initialize counter for while loop 

 

######################################################### 

# using c = 2 will reproduce Appendix B where c = 2 

# change c to 1 or 3 to produce all of Appendix B 

#--------------------------------------------------------- 

c  <- 2        #change or run in a for loop to vary variance ratios 

set.seed(2016) 

 

######################################################### 

#initialize rejection counts for PooledT, WelchT, Levene, Conditional 

#--------------------------------------------------------- 

countT <- countW <- countL <- countC <- 0 

 

########################################################## 

# Use a WHILE loop instead of FOR loop for ADAPTIVE number of  

# replications (usually a FOR loop with T replications) 

#--------------------------------------------------------- 

while (i < R & i < maxreps) 

{                              

  i <- i + 1 

  if (i > maxreps) {break}     #not wonderful coding but it works 

  x1  <- rnorm(n1,0,1)         #set means equal (uses z scores) 

  x2  <- rnorm(n2,0,c)         #set means equal, vary variance ratios 

  dv  <- c(x1,x2) 

  grp <- as.factor( c( rep(1,n1), rep(2,n2) ) ) 
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  x   <- data.frame(dv,grp)                   #needed for LeveneTest 

  x1  <- subset(x,select=dv,subset=grp==1)    #makes column vectors 

  x2  <- subset(x,select=dv,subset=grp==2) 

  statT <- t.test(x1,x2,alternative=c("two.sided"),mu=0,paired=FALSE, 

                  var.equal=TRUE,conf.level=0.95) 

  statW <- t.test(x1,x2,alternative=c("two.sided"),mu=0,paired=FALSE, 

                  var.equal=FALSE,conf.level=0.95) 

  statL <- car::leveneTest(y=x$dv, group=x$grp, center=median) 

  statF <- statL[1,2] 

  pT <- statT$p.value; rejT <- pT <= alpha  #decide whether rejected 

  pW <- statW$p.value; rejW <- pW <= alpha 

  pL <- statL[1,3]   ; rejL <- pL <= alpha 

  if (rejT) {countT <- countT + 1}          #if rejected, add to count 

  if (rejW) {countW <- countW + 1} 

  if (rejL) {countL <- countL + 1} 

  ifelse(rejL, rejC <- rejW, rejC <- rejT) 

  if (rejC) {countC <- countC + 1} 

  rejectsT[i] <- rejT 

  p1 <- round( countT/i,8)        #calculate dynamic Type I error rate 

  p2 <- round( mean(rejectsT),8)  #two ways for verification 

  p  <- p2                        #set p for easier next formulas 

  if (p > 1 - p) { p <- 1-p }     #make p always smaller than (1-p) 

  if (p < minp ) { p <- minp  }   #we don't want p = 0 

  H <- Bradley * p                #calculate RELATIVE H (Appendix B) 

# H <- 0.005                      #calculate ABSOLUTE H 

  R <- (p * (1-p) * (z^2) ) / H^2 #calculate dynamic number of reps 

  if (R < minreps) {R <- minreps} #make sure R is minimally reasonable 

 

########################################################## 

# Shows adaptive dynamic change in number of replications 

# as we get better and better estimates of the true proportion 

#--------------------------------------------------------- 

  if (i %% 1000 == 0 | i == 1) 

  { 

    Sys.sleep(0.0000001) 

    cat("  i = ", sprintf("%5i",i), "  p = ", sprintf("%0.4f",p),  

        "  H = ", sprintf("%0.4f",H), "  R = ", sprintf("%8.1f",R), 

        "\n",sep="") 

    flush.console() 

  } 

} 

 

########################################################## 

# end of while loop 

#--------------------------------------------------------- 

# Next line shows the final number of replications 

#--------------------------------------------------------- 
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cat("  i = ", sprintf("%5i",i),   "  p = ", sprintf("%0.4f",p), 

    "  H = ", sprintf("%0.4f",H), "  R = ", sprintf("%8.1f",R), 

    "\n",sep="") 

########################################################## 

# Calculate and Report values provided in Article text 

# as well as other final information 

#--------------------------------------------------------- 

Equation1 <- A <- z * sqrt( (p*(1-p)) / i)  #actual Half-width 

Equation2 <- T <- (z^2 * p * (1-p)) / A^2   #actual number of reps 

Equation3 <- T <- (p * (1-p) * z^2) / H^2   #actual number of reps 

LowerCI <- p-A 

UpperCI <- p+A 

 

########################################################## 

# Type I error rate information 

# Organizes output into nice display 

#--------------------------------------------------------- 

outnam <- c("Desired Bradley-Based Half-width using alpha =", 

            "Actual Bradley-based Half width H, using actual p=", 

            "Final Equation 1 calcuation from simulations, A =", 

            "Final Number of Replications Run =", 

            "Final Dynamic Number of Replications calculated R=", 

            "Final Equation 2 calcuation, T =", 

            "Final Equation 3 calcuation, T =") 

output <- c(Bradley*alpha,H,A,i,R,Equation2,Equation3) 

data.frame(Output=outnam, Values=round(output,5)) 

 

########################################################## 

# Type I error rate Confidence Interval information 

#--------------------------------------------------------- 

x<-data.frame(PoolT=countT,WelchT=countW,Cond=countC,Levene=countL) 

y <- x/i 

rownames(x) <- "Number of Type I errors" ; x 

rownames(y) <- "      Type I error rate" ; round(y,4) 

cat("Mean Rejects PoolT (2nd way) = ",round(mean(rejectsT),4),"\n") 

outnam1 <- c("Lower Bound =","Estimate =","Upper Bound =") 

output1 <- c(LowerCI, y$PoolT, UpperCI) 

outnam2 <- c("Lower Bound =","Alpha =","Upper Bound =") 

output2 <- c(alpha-Bradley*alpha, alpha, alpha+Bradley*alpha) 

cat("95% Confidence Interval for Pooled t Type I error","\n") 

data.frame(Output=outnam1,Values=round(output1,5)) 

cat("Confidence Interval desired (.1alpha) based on Bradley Half-Width 

     if there is no alpha-inflation","\n") 

data.frame(Output=outnam2,Values=round(output2,5)) 

 

########################################################## 

# END of program 
########################################################## 

 

  



Number of Replications for Monte Carlo Studies 

General Linear Model Journal, 2017, Vol. 43(1)                                                                                                        49 

APPENDIX B 

Adaptive Loop Output for RELATIVE, BY P where T ≥ [(π)(1 – π)(1.96
2
)]/H

2
 where H = .1π 

#c = 1 (variances equal) 

 

  i =     1  p = 0.0010  H = 0.0001  R = 383775.8 

  i =  1000  p = 0.0460  H = 0.0046  R =   7967.1 

  i =  2000  p = 0.0445  H = 0.0044  R =   8248.6 

  i =  3000  p = 0.0480  H = 0.0048  R =   7619.2 

  i =  4000  p = 0.0485  H = 0.0048  R =   7536.7 

  i =  5000  p = 0.0494  H = 0.0049  R =   7392.4 

  i =  6000  p = 0.0480  H = 0.0048  R =   7619.2 

  i =  7000  p = 0.0481  H = 0.0048  R =   7595.4 

  i =  7539  p = 0.0485  H = 0.0049  R =   7528.9 

     

                         PoolT WelchT   Cond Levene 

      Type I error rate 0.0485 0.0485 0.0493 0.0444 

 

95% Confidence Interval for Pooled t Type I error  

Lower Bound = 0.04370, Estimate = 0.04855, Upper Bound = 0.05340 

 
 

#c = 2 (group 2 variance is 2 times larger than group 1 variance) 

 

  i =     1  p = 0.0010  H = 0.0001  R = 383775.8 

  i =  1000  p = 0.1210  H = 0.0121  R =   2790.7 

  i =  2000  p = 0.1140  H = 0.0114  R =   2985.7 

  i =  3000  p = 0.1127  H = 0.0113  R =   3025.5 

  i =  3008  p = 0.1134  H = 0.0113  R =   3004.6 

    

                         PoolT WelchT   Cond Levene 

      Type I error rate 0.1134 0.0519 0.0588 0.8584 

 

95% Confidence Interval for Pooled t Type I error  

Lower Bound = 0.10203, Estimate = 0.11336, Upper Bound = 0.12469 

 
 

#c = 3 (group 2 variance is 3 times larger than group 1 variance) 

 

  i =     1  p = 0.0010  H = 0.0001  R = 383775.8 

  i =  1000  p = 0.1440  H = 0.0144  R =   2283.6 

  i =  2000  p = 0.1405  H = 0.0141  R =   2350.1 

  i =  2389  p = 0.1386  H = 0.0139  R =   2388.5 

 

                         PoolT WelchT   Cond Levene 

      Type I error rate 0.1386 0.0523 0.0523 0.9958 

 

95% Confidence Interval for Pooled t Type I error  

Lower Bound = 0.12470, Estimate = 0.13855, Upper Bound = 0.15241 

 


