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The determination of an appropriate sample size is a difficult, yet critically important, element in the 

research design process. Sample sizes in ANOVA are most often based on an overall standardized 

difference in the means, but these recommended sample sizes provide statistical power only for the omnibus 

F test. Adequate sample size for the omnibus test does not necessarily provide sufficient statistical power 

for the post hoc multiple comparisons typically performed following a statistically significant omnibus F 

test. The purpose of this paper is to use Monte Carlo techniques to determine sample sizes that will provide 

adequate statistical power for Tukey post hoc multiple comparison procedure (MCP) in 4-group ANOVA. 

Sample size tables are included. 

 n the planning stage of a research study, investigators are often uncertain about the minimum number 

of subjects needed to adequately test a hypothesis of interest (Olejnik, 1984). Since Cohen proposed 

sample size determination in the planning, execution and interpretation of statistical analysis, 

researchers have increasingly realized the importance of sample size (Brewer & Sindelar, 1988). The 

number of cases that should be involved in a research study, particularly in hypothesis testing, has become 

a critical concern (Olejnik, 1984). 

  Most researchers generally know that the sample size determination is functionally related to the 

significance level, statistical power, and the effect size. The required sample size is inversely related to 

significance level, given that power and effect size are held constant. A priori power, the probability of 

rejecting a null hypothesis that is indeed false, will inform researchers how many subjects will be needed 

for adequate power (Light, Singer, & Willett, 1990). Effect size is the degree to which the null hypothesis 

is false (Olejnik, 1984). Different effect size values will require different sample sizes. In addition, Brooks 

and Johanson (2011) pointed out that the sample size needed for an adequate test of a hypothesis is affected 

by the particular statistical analysis strategy that researchers choose. For example, when ANOVA will be 

used, adequate sample size for the omnibus test does not necessarily provide adequate statistical power for 

the post hoc multiple comparisons typically performed in ANOVA. 

  This paper aims to demonstrate how to choose the sample size that will provide adequate power in the 

Tukey post hoc multiple comparison procedure (MCP). Pairwise multiple comparisons among four groups 

will be studied and results will be organized into recommended sample size tables for Tukey test. 
 

Theoretical Perspectives 

  One of the more commonly used research methods is group comparisons, and analysis of variance 

(ANOVA) is one well-known approach to compare groups based on means (Wilcox, 2002). As of this 

writing, there were 34,000 citations for ‘analysis of variance’ since 2021 on Google Scholar. Barnette and 

McLean (1999) mentioned that most researchers follow the practice of conducting post hoc pairwise MCPs 

after a significant omnibus F test, but when a researcher encounters more than two comparisons, control of 

the Type I error becomes a concern. In fact, after Fisher developed the process of analysis of variance 

(ANOVA), he realized the potential problem of Type I error inflation when multiple t tests were conducted 

on three or more groups; accordingly, Fisher suggested that researchers should use a more stringent alpha 

based on his concern (Barnette & McLean, 1999). Klockars and Hancock (1998) proposed that MCPs are 

used to invoke control over the family-wise Type I error. In practice, there are several commonly used 

multiple comparison procedures, such as Dunn-Bonferroni, Dunn-Šidák, and Tukey’s HSD. Tukey’s HSD 

is most highly recommended as an unprotected test (Barnette & McLean, 1999) and therefore does not need 

to be protected by a statistically significant ANOVA. 

  The replication crisis has promoted preregistration of studies and a confirmative mindset (Nosek et al., 

2018; Wagenmakers et al., 2012). As a consequence, it has cast a shadow on exploratory research and post-

hoc analyses. However recent research (e.g., Rubin & Donkin, 2022) has moderated this position by closely 

examining advantages and disadvantages of both exploratory and confirmatory approaches. They contend 

that “…exploratory hypothesis tests can have more advantages and fewer disadvantages than confirmatory 
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tests and that, consequently, exploratory hypothesis tests can yield more compelling research conclusions 

than confirmatory tests” (p. 21). We concur with this position. 

 Cohen (1988) illustrated sample size selection in ANOVA, in which the effect size and the power are 

related to the sample size determination. Levin (1975) proposed an approach for determining the sample 

size needed for ANOVA and for planned contrasts. However, most studies of ANOVA are limited to the 

omnibus F test, while omitting the appropriate sample size selection in the MCPs, which usually follows a 

significant F test. 

 Brooks and Johanson (2011) demonstrated the sample size selection for MCPs in ANOVA with three 

groups based on Tukey and Bonferroni tests, which clearly showed that adequate statistical power for the 

omnibus ANOVA F test does not guarantee enough statistical power for given pairwise comparisons 

performed post hoc. They also derived a pattern between the required sample sizes for the omnibus ANOVA 

and the sample sizes needed for the MCPs.  

 Overall, there have been few studies that focused on the sample size determination in MCP. In this 

context, this paper will focus on the sample size selection with four groups when using the Tukey MCP.  
 

Methods and Data Source 

 The Monte Carlo program called MC4G: Monte Carlo Analyses for up to 4 Groups (Raffle & Brooks, 

2005) has been provided by Brooks (2008) to perform Monte Carlo analyses for t tests and ANOVA in a 

Windows environment. The program uses Monte Carlo techniques to find sample sizes that meet a given 

statistical power level. We set up many conditions in MC4G and ran the simulations in this program. 

Conditions in this study included four-group one-way ANOVAs performed at a .05 level of significance. 

Desired statistical power was set at .80. There were 10,000 replications performed for the final sample size 

analysis in each condition. Condition values were entered into the graphical user interface in MC4G. 

 In all simulations, normally distributed standardized data was generated to fit the given conditions for 

each simulation. That is, all variances were set to 1.0, while group means varied from 0.0 to 0.8, depending 

on the given effect size. In particular, all possible patterns of mean differences (effect sizes) with at least a 

0.2 standardized difference were analyzed in an effort to identify sample size relationships between the 

omnibus test and the Tukey MCP. For example, group means across the four groups of 0.0, 0.0, 0.2, and 

0.4 result in the same effect sizes (mean differences) as means of 0.4, 0.4, 0.6, and 0.8—so the pattern of 

six possible differences among the means (i.e., 0.0, 0.2, 0.2, 0.2, 0.4, 0.4) will only be included once. 
 

Results 

  Results are provided in Table 1 and Table 2. Totally, 45 patterns of standardized means among four 

groups were analyzed; then, the sample sizes for the omnibus ANOVA test and the multiple comparison 

procedure were listed. In each of these patterns, there were six possible mean differences (effect sizes) 

possible among the four group means. In addition, the relative efficiency, the omnibus per group sample 

size divided by multiple comparison per group sample size, was finally calculated. There were several 

interesting findings: 
 

Table 1. Sample size results for the Tukey HSD Multiple Comparison Procedure for the primary Monte 

Carlo design at statistical power of .80 

Group           

1 mean 

Group   

2 mean 

Group 

3 mean 

Group 

4 mean 

Effect 

Size 

Comparison 

Tested 

Total 

Sample 

Size 

Sample 

Size per 

Group 

Relative 

Efficiency a 

0.0 0.0 0.0 0.2   Omnibus 1432 358   

        0.00 G1 v G2 * *   

        0.00 G2 v G3 * *   

        0.00 G3 v G1 * *   

        0.20 G4 v G1 2320 580 1.62 

        0.20 G4 v G2 2348 587 1.64 

        0.20 G4 v G3 2316 579 1.62 
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0.0 0.0 0.0 0.3   Omnibus 636 159   

        0.00 G1 v G2 * *   

        0.00 G2 v G3 * *   

        0.00 G3 v G1 * *   

        0.30 G4 v G1 1032 258 1.62 

        0.30 G4 v G2 1056 264 1.66 

        0.30 G4 v G3 1064 266 1.67 

0.0 0.0 0.0 0.4   Omnibus 376 94   

        0.00 G1 v G2 * *   

        0.00 G2 v G3 * *   

        0.00 G3 v G1 * *   

        0.40 G4 v G1 588 147 1.56 

        0.40 G4 v G2 596 149 1.59 

        0.40 G4 v G3 588 147 1.56 

0.0 0.0 0.0 0.5   Omnibus 244 61   

        0.00 G1 v G2 * *   

        0.00 G2 v G3 * *   

        0.00 G3 v G1 * *   

        0.50 G4 v G1 376 94 1.54 

        0.50 G4 v G2 380 95 1.56 

        0.50 G4 v G3 376 94 1.54 

0.0 0.0 0.0 0.6   Omnibus 172 43   

        0.00 G1 v G2 * *   

        0.00 G2 v G3 * *   

        0.00 G3 v G1 * *   

        0.60 G4 v G1 264 66 1.53 

        0.60 G4 v G2 260 65 1.51 

        0.60 G4 v G3 264 66 1.53 

0.0 0.0 0.0 0.7   Omnibus 120 30   

        0.00 G1 v G2 * *   

        0.00 G2 v G3 * *   

        0.00 G3 v G1 * *   

        0.70 G4 v G1 196 49 1.63 

        0.70 G4 v G2 188 47 1.57 

        0.70 G4 v G3 192 48 1.60 

0.0 0.0 0.0 0.8   Omnibus 96 24   

        0.00 G1 v G2 * *   

        0.00 G2 v G3 * *   

        0.00 G3 v G1 * *   

        0.80 G4 v G1 148 37 1.54 

        0.80 G4 v G2 148 37 1.54 

        0.80 G4 v G3 144 36 1.50 
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0.0 0.0 0.2 0.2   Omnibus 1112 278   

        0.00 G1 v G2 * *   

        0.20 G2 v G3 2252 563 2.03 

        0.20 G3 v G1 2316 579 2.08 

        0.20 G4 v G1 2336 584 2.10 

        0.20 G4 v G2 2348 587 2.11 

        0.00 G4 v G3 * *   

0.0 0.0 0.3 0.3   Omnibus 488 122   

        0.00 G1 v G2 * *   

        0.30 G2 v G3 1016 254 2.08 

        0.30 G3 v G1 1052 263 2.16 

        0.30 G4 v G1 1032 258 2.11 

        0.30 G4 v G2 1024 256 2.10 

        0.00 G4 v G3 * *   

         

0.0 0.0 0.4 0.4   Omnibus 280 70   

        0.00 G1 v G2 * *   

        0.40 G2 v G3 576 144 2.06 

        0.40 G3 v G1 588 147 2.10 

        0.40 G4 v G1 580 145 2.07 

        0.40 G4 v G2 576 144 2.06 

        0.00 G4 v G3 * *   

0.0 0.0 0.5 0.5   Omnibus 180 45   

        0.00 G1 v G2 * *   

        0.50 G2 v G3 376 94 2.09 

        0.50 G3 v G1 376 94 2.09 

        0.50 G4 v G1 372 93 2.07 

        0.50 G4 v G2 380 95 2.11 

        0.00 G4 v G3 * *   

0.0 0.0 0.6 0.6   Omnibus 128 32   

        0.00 G1 v G2 * *   

        0.60 G2 v G3 268 67 2.09 

        0.60 G3 v G1 264 66 2.06 

        0.60 G4 v G1 260 65 2.03 

        0.60 G4 v G2 252 63 1.97 

        0.00 G4 v G3 * *   

0.0 0.0 0.7 0.7   Omnibus 92 23   

        0.00 G1 v G2 * *   

        0.70 G2 v G3 192 48 2.09 

        0.70 G3 v G1 188 47 2.04 

        0.70 G4 v G1 196 49 2.13 

        0.70 G4 v G2 192 48 2.09 

        0.00 G4 v G3 * *   
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0.0 0.0 0.8 0.8   Omnibus 72 18   

        0.00 G1 v G2 * *   

        0.80 G2 v G3 148 37 2.06 

        0.80 G3 v G1 148 37 2.06 

        0.80 G4 v G1 144 36 2.00 

        0.80 G4 v G2 148 37 2.06 

        0.00 G4 v G3 * *   

0.0 0.2 0.2 0.4   Omnibus 556 139   

        0.20 G1 v G2 2312 578 4.16 

        0.00 G2 v G3 * *   

        0.20 G3 v G1 2328 582 4.19 

        0.40 G4 v G1 588 147 1.06 

        0.20 G4 v G2 2332 583 4.19 

        0.20 G4 v G3 2348 587 4.22 

         

0.0 0.3 0.3 0.6   Omnibus 248 62   

        0.30 G1 v G2 1048 262 4.23 

        0.00 G2 v G3 * *   

        0.30 G3 v G1 1044 261 4.21 

        0.60 G4 v G1 264 66 1.06 

        0.30 G4 v G2 1044 261 4.21 

        0.30 G4 v G3 1056 264 4.26 

0.0 0.4 0.4 0.8   Omnibus 140 35   

        0.40 G1 v G2 596 149 4.26 

        0.00 G2 v G3 * *   

        0.40 G3 v G1 580 145 4.14 

        0.80 G4 v G1 148 37 1.06 

        0.40 G4 v G2 584 146 4.17 

        0.40 G4 v G3 584 146 4.17 

0.0 0.0 0.2 0.4   Omnibus 412 103   

        0.00 G1 v G2 * *   

        0.20 G2 v G3 2272 568 5.51 

        0.20 G3 v G1 2336 584 5.67 

        0.40 G4 v G1 592 148 1.44 

        0.40 G4 v G2 580 145 1.41 

        0.20 G4 v G3 2320 580 5.63 

0.0 0.0 0.3 0.6   Omnibus 180 45   

        0.00 G1 v G2 * *   

        0.30 G2 v G3 1048 262 5.82 

        0.30 G3 v G1 1036 259 5.76 

        0.60 G4 v G1 264 66 1.47 

        0.60 G4 v G2 256 64 1.42 

        0.30 G4 v G3 1028 257 5.71 
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0.0 0.0 0.4 0.8   Omnibus 104 26   

        0.00 G1 v G2 * *   

        0.40 G2 v G3 580 145 5.58 

        0.40 G3 v G1 588 147 5.65 

        0.80 G4 v G1 148 37 1.42 

        0.80 G4 v G2 144 36 1.38 

        0.40 G4 v G3 592 148 5.69 

0.0 0.2 0.4 0.6   Omnibus 224 56   

        0.20 G1 v G2 2320 580 10.36 

        0.20 G2 v G3 2304 576 10.29 

        0.40 G3 v G1 604 151 2.70 

        0.60 G4 v G1 260 65 1.16 

        0.40 G4 v G2 584 146 2.61 

        0.20 G4 v G3 2280 570 10.18 

         

0.0 0.3 0.6 0.9   Omnibus 100 25   

        0.30 G1 v G2 1032 258 10.32 

        0.30 G2 v G3 1052 263 10.52 

        0.60 G3 v G1 256 64 2.56 

        0.90 G4 v G1 120 30 1.20 

        0.60 G4 v G2 260 65 2.60 

        0.30 G4 v G3 1020 255 10.20 

0.0 0.0 0.4 0.6   Omnibus 168 42   

        0.00 G1 v G2 * *   

        0.40 G2 v G3 588 147 3.50 

        0.40 G3 v G1 592 148 3.52 

        0.60 G4 v G1 260 65 1.55 

        0.60 G4 v G2 260 65 1.55 

        0.20 G4 v G3 2300 575 13.69 

0.0 0.0 0.6 0.9   Omnibus 76 19   

        0.00 G1 v G2 * *   

        0.60 G2 v G3 260 65 3.42 

        0.60 G3 v G1 268 67 3.53 

        0.90 G4 v G1 120 30 1.58 

        0.90 G4 v G2 124 31 1.63 

        0.30 G4 v G3 1056 264 13.89 

0.0 0.2 0.2 0.5   Omnibus 352 88   

        0.20 G1 v G2 2320 580 6.59 

        0.00 G2 v G3 * *   

        0.20 G3 v G1 2332 583 6.63 

        0.50 G4 v G1 384 96 1.09 

        0.30 G4 v G2 1040 260 2.95 

        0.30 G4 v G3 1028 257 2.92 
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0.0 0.2 0.2 0.6   Omnibus 236 59   

        0.20 G1 v G2 2340 585 9.92 

        0.00 G2 v G3 * *   

        0.20 G3 v G1 2332 583 9.88 

        0.60 G4 v G1 276 69 1.17 

        0.40 G4 v G2 580 145 2.46 

        0.40 G4 v G3 588 147 2.49 

0.0 0.2 0.2 0.7   Omnibus 172 43   

        0.20 G1 v G2 2360 590 13.72 

        0.00 G2 v G3 * *   

        0.20 G3 v G1 2352 588 13.67 

        0.70 G4 v G1 192 48 1.12 

        0.50 G4 v G2 380 95 2.21 

        0.50 G4 v G3 376 94 2.19 

         

0.0 0.2 0.2 0.8   Omnibus 128 32   

        0.20 G1 v G2 2304 576 18.00 

        0.00 G2 v G3 * *   

        0.20 G3 v G1 2320 580 18.13 

        0.80 G4 v G1 148 37 1.16 

        0.60 G4 v G2 256 64 2.00 

        0.60 G4 v G3 264 66 2.06 

0.0 0.3 0.3 0.7   Omnibus 180 45   

        0.30 G1 v G2 1028 257 5.71 

        0.00 G2 v G3 * *   

        0.30 G3 v G1 1020 255 5.67 

        0.70 G4 v G1 196 49 1.09 

        0.40 G4 v G2 596 149 3.31 

        0.40 G4 v G3 584 146 3.24 

0.0 0.3 0.3 0.8   Omnibus 140 35   

        0.30 G1 v G2 1064 266 7.60 

        0.00 G2 v G3 * *   

        0.30 G3 v G1 1048 262 7.49 

        0.80 G4 v G1 148 37 1.06 

        0.50 G4 v G2 384 96 2.74 

        0.50 G4 v G3 380 95 2.71 

0.0 0.2 0.4 0.7   Omnibus 172 43   

        0.20 G1 v G2 2260 565 13.14 

        0.20 G2 v G3 2364 591 13.74 

        0.40 G3 v G1 588 147 3.42 

        0.70 G4 v G1 192 48 1.12 

        0.50 G4 v G2 364 91 2.12 

        0.30 G4 v G3 1024 256 5.95 
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0.0 0.2 0.5 0.7   Omnibus 156 39   

        0.20 G1 v G2 2292 573 14.69 

        0.30 G2 v G3 1072 268 6.87 

        0.50 G3 v G1 380 95 2.44 

        0.70 G4 v G1 192 48 1.23 

        0.50 G4 v G2 376 94 2.41 

        0.20 G4 v G3 2320 580 14.87 

0.0 0.2 0.4 0.8   Omnibus 128 32   

        0.20 G1 v G2 2272 568 17.75 

        0.20 G2 v G3 2352 588 18.38 

        0.40 G3 v G1 592 148 4.63 

        0.80 G4 v G1 148 37 1.16 

        0.60 G4 v G2 256 64 2.00 

        0.40 G4 v G3 592 148 4.63 

         

0.0 0.2 0.6 0.8   Omnibus 112 28   

        0.20 G1 v G2 2356 589 21.04 

        0.40 G2 v G3 592 148 5.29 

        0.60 G3 v G1 260 65 2.32 

        0.80 G4 v G1 148 37 1.32 

        0.60 G4 v G2 264 66 2.36 

        0.20 G4 v G3 2300 575 20.54 

0.0 0.3 0.5 0.8   Omnibus 136 34   

        0.30 G1 v G2 1008 252 7.41 

        0.20 G2 v G3 2340 585 17.21 

        0.50 G3 v G1 372 93 2.74 

        0.80 G4 v G1 148 37 1.09 

        0.50 G4 v G2 372 93 2.74 

        0.30 G4 v G3 1036 259 7.62 

0.0 0.2 0.5 0.8   Omnibus 124 31   

        0.20 G1 v G2 2372 593 19.13 

        0.30 G2 v G3 1068 267 8.61 

        0.50 G3 v G1 384 96 3.10 

        0.80 G4 v G1 144 36 1.16 

        0.60 G4 v G2 260 65 2.10 

        0.30 G4 v G3 1028 257 8.29 

0.0 0.0 0.2 0.5   Omnibus 272 68   

        0.00 G1 v G2 * *   

        0.20 G2 v G3 2328 582 8.56 

        0.20 G3 v G1 2348 587 8.63 

        0.50 G4 v G1 380 95 1.40 

        0.50 G4 v G2 372 93 1.37 

        0.30 G4 v G3 1044 261 3.84 
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0.0 0.0 0.2 0.6   Omnibus 188 47   

        0.00 G1 v G2 * *   

        0.20 G2 v G3 2312 578 12.30 

        0.20 G3 v G1 2312 578 12.30 

        0.60 G4 v G1 260 65 1.38 

        0.60 G4 v G2 264 66 1.40 

        0.40 G4 v G3 580 145 3.09 

0.0 0.0 0.2 0.7   Omnibus 136 34   

        0.00 G1 v G2 * *   

        0.20 G2 v G3 2320 580 17.06 

        0.20 G3 v G1 2368 592 17.41 

        0.70 G4 v G1 188 47 1.38 

        0.70 G4 v G2 188 47 1.38 

        0.50 G4 v G3 372 93 2.74 

         

0.0 0.0 0.2 0.8   Omnibus 108 27   

        0.00 G1 v G2 * *   

        0.20 G2 v G3 2292 573 21.22 

        0.20 G3 v G1 2300 575 21.30 

        0.80 G4 v G1 152 38 1.41 

        0.80 G4 v G2 144 36 1.33 

        0.60 G4 v G3 256 64 2.37 

0.0 0.0 0.3 0.5   Omnibus 248 62   

        0.00 G1 v G2 * *   

        0.30 G2 v G3 1032 258 4.16 

        0.30 G3 v G1 1036 259 4.18 

        0.50 G4 v G1 384 96 1.55 

        0.50 G4 v G2 376 94 1.52 

        0.20 G4 v G3 2324 581 9.37 

0.0 0.0 0.5 0.7   Omnibus 116 29   

        0.00 G1 v G2 * *   

        0.50 G2 v G3 384 96 3.31 

        0.50 G3 v G1 372 93 3.21 

        0.70 G4 v G1 192 48 1.66 

        0.70 G4 v G2 196 49 1.69 

        0.20 G4 v G3 2268 567 19.55 

0.0 0.0 0.6 0.8   Omnibus 88 22   

        0.00 G1 v G2 * *   

        0.60 G2 v G3 260 65 2.95 

        0.60 G3 v G1 268 67 3.05 

        0.80 G4 v G1 148 37 1.68 

        0.80 G4 v G2 148 37 1.68 

        0.20 G4 v G3 2316 579 26.32 
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0.0 0.0 0.3 0.7   Omnibus 136 34   

        0.00 G1 v G2 * *   

        0.30 G2 v G3 1052 263 7.74 

        0.30 G3 v G1 1044 261 7.68 

        0.70 G4 v G1 196 49 1.44 

        0.70 G4 v G2 192 48 1.41 

        0.40 G4 v G3 580 145 4.26 

0.0 0.0 0.3 0.8   Omnibus 108 27   

        0.00 G1 v G2 * *   

        0.30 G2 v G3 1032 258 9.56 

        0.30 G3 v G1 1064 266 9.85 

        0.80 G4 v G1 152 38 1.41 

        0.80 G4 v G2 148 37 1.37 

        0.50 G4 v G3 368 92 3.41 

0.0 0.0 0.4 0.7   Omnibus 128 32   

        0.00 G1 v G2 * *   

        0.40 G2 v G3 560 140 4.38 

        0.40 G3 v G1 596 149 4.66 

        0.70 G4 v G1 192 48 1.50 

        0.70 G4 v G2 188 47 1.47 

        0.30 G4 v G3 1028 257 8.03 

0.0 0.0 0.5 0.8   Omnibus 100 25   

        0.00 G1 v G2 * *   

        0.50 G2 v G3 376 94 3.76 

        0.50 G3 v G1 380 95 3.80 

        0.80 G4 v G1 148 37 1.48 

        0.80 G4 v G2 144 36 1.44 

        0.30 G4 v G3 1036 259 10.36 

Notes. :* Null Hypothesis was true for the given comparison, so no sample size analysis was performed 
a Relative efficiency is calculated as the Total sample size for the particular comparison divided by the 

Total Sample Size for the Omnibus Test for the condition. 
 

Pattern 1: Three equal mean differences (and three nil differences) 

 In situations where three groups had the same standardized mean and a fourth group mean differed, 

which resulted in three equal mean differences in multiple comparison, the non-null multiple comparisons 

required larger sample sizes than the omnibus ANOVA. For example, the condition where the pattern of 

standardized means was 0.0, 0.0, 0.0 and 0.2 (therefore a pattern of mean differences of 0.0, 0.0, 0.0, 0.2, 

0.2 and 0.2) resulted in per group sample sizes of roughly 580 cases to achieve power of .80 for the three 

multiple comparisons with a standardized mean difference of 0.2, which was compared to the 358 cases per 

group needed to achieve statistical power of .80 for the omnibus test. In fact, the first seven cases listed in 

Table 1 indicated that no matter how the magnitude of the mean difference, the relative efficiency was 

approximately 1.58. In other words, in all cases where three groups had the same mean while a fourth group 

differed, the multiple comparisons required approximately 1.58 times more cases than the omnibus test did 

in order to achieve power of .80.  
 

Pattern 2: Four equal mean differences (and two nil differences)  

 In conditions where two groups had the same standardized means while the other two were same, which 

resulted in four equal mean differences in multiple comparison procedure, the non-null multiple 
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comparisons still required larger sample sizes than the omnibus ANOVA. For example, the condition where 

the pattern of standardized means was 0.0, 0.0, 0.2 and 0.2 (therefore a pattern of mean differences in 

multiple comparison of 0.0, 0.0, 0.2, 0.2, 0.2 and 0.2) resulted in per group sample sizes of roughly 580 

cases to achieve power of .80 for the four multiple comparisons with a standardized mean difference of 0.2, 

which was compared to the 278 cases per group needed to achieve statistical power of .80 for the omnibus 

test. As for the relative efficiency, it was about 2.08. As another example, in the case where the pattern of 

means was 0.0, 0.0, 0.3 and 0.3 (therefore a pattern of mean differences in multiple comparison of 0.0, 0.0, 

0.3, 0.3, 0.3 and 0.3) resulted in per group sample sizes of roughly 260 cases to achieve power of .80 for 

the four multiple comparisons with a standardized mean difference of 0.3, which was compared to the 122 

cases per group needed to achieve statistical power of .80 for the omnibus test. Also, the similar relative 

efficiency 2.06 was obtained in the pattern of means 0.0, 0.0, 0.8 and 0.8, where 37 cases were required per 

group in multiple comparison while only 18 cases needed in the omnibus test to meet the power of .80. 

Altogether, stated in another way, in all cases where four equal mean differences were shown in multiple 

comparison procedure, roughly 2.08 times more cases required than the omnibus test did in order to achieve 

power of .80.  
 

Pattern 3: Four equal mean differences, with a fifth twice as large (and one nil) 

 In conditions where there were four equal mean differences in multiple comparison while a fifth group 

mean was twice as large, the four equal mean differences required a much larger sample size than the overall 

test, while the fifth group mean difference, which was twice as large, required roughly same as the omnibus 

test. For example, in the case where the pattern of means was 0.0, 0.2, 0.2 and 0.4 (therefore a pattern of 

mean differences in multiple comparison of 0.0, 0.2, 0.2, 0.2, 0.2 and 0.4) resulted in per group sample 

sizes of roughly 139 cases to achieve power of .80 in the omnibus test. While in multiple comparison 

procedure, about 580 cases required for the mean difference 0.2 per group, 147 cases for the mean difference 

0.4, the relative efficiency would be 4.20 and 1.06 respectively. Also, if we look at the pattern of means of 

0.0, 0.3, 0.3 and 0.6, the same pattern of relative efficiency would be found, so does the pattern of means 

of 0.0, 0.4, 0.4 and 0.8. In fact, if the pattern of means was not centered or standardized, for example, a 

pattern of group means of 0.5, 0.7, 0.7 and 0.9 (therefore a pattern of mean differences of 0.0, 0.2, 0.2, 0.2, 

0.2 and 0.4) would end up with the similar relative efficiency as the pattern of 0.0, 0.2, 0.2, and 0.4. 

Altogether, for cases of four equal mean differences and a fifth twice as large in multiple comparison 

procedure, the four equal mean differences would require about 4.20 times more cases than the omnibus 

test did in order to achieve power of 0.8, while for the mean difference, which was twice as large, the 

relative efficiency would be 1.06. 
 

Pattern 4: Three equal mean differences and two twice as large (and one nil) 

  For example, in the case where the pattern of means was 0.0, 0.0, 0.2 and 0.4 (therefore a pattern of 

mean differences in multiple comparison of 0.0, 0.2, 0.2, 0.2, 0.4 and 0.4) resulted in per group sample 

sizes of roughly 103 cases to achieve power of .80 in the omnibus test. As for the mean difference 0.2, it 

required roughly 580 cases which resulted in the relative efficiency about 5.60, while for the mean 

difference 0.4, it required approximately 148 per group and the relative efficiency was 1.44. Overall, the 

pattern of relative efficiency would be consistent if we look at the other two similar patterns of means (0.0, 

0.0, 0.3 and 0.6) and (0.0, 0.0, 0.4 and 0.8). The relative efficiency, as compared to the omnibus test, was 

about 5.60 for the three equal mean differences and 1.44 for the other two means which are twice as large. 
 

Pattern 5: Three equal mean differences, two twice as large and one 3 times larger 

  For example, a pattern of group means of 0.0, 0.2, 0.4 and 0.6 (therefore a pattern of mean differences 

in multiple comparison of 0.2, 0.2, 0.2, 0.4, 0.4 and 0.6) resulted in per group sample sizes of roughly 56 

cases to achieve power of .80 in the omnibus test. As for the three equal mean difference of 0.2, it required 

roughly 580 cases which resulted in the relative efficiency about 10.28, while for the mean difference of 

0.4, it required approximately 148 per group and the relative efficiency was 2.65, as for the mean difference 

0.6, which was three times as large, 65 cases required per group and the relative efficiency was about 1.16. 

Take the other pattern of 0.0, 0.3, 0.6 and 0.9 as another example (which was run as an additional 

supplemental analysis for confirmation of this result). Obviously, there were three equal mean differences, 

two twice as large and one three times. As a result, the relative efficiency was consistent, which was about 

10.30 for the three equal mean differences of 0.3, 2.58 for the two twice as large of 0.6 and 1.20 for the 
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mean difference of 0.9 which was three times as large. Also, the pattern such as 0.2, 0.4, 0.6, and 0.8 would 

end up with similar relative efficiency as the patterns in our examples.  
 

Pattern 6: One smaller mean difference, two twice as large, two 3 times larger (and one nil) 

  For example, a pattern of group means of 0.0, 0.0, 0.4 and 0.6 (therefore a pattern of mean differences 

in multiple comparison of 0.0, 0.2, 0.4, 0.4, 0.6 and 0.6) resulted in per group sample sizes of roughly 42 

cases to achieve power of .80 in the omnibus test. As for the small mean difference of 0.2, it required 

roughly 580 cases which resulted in the relative efficiency about 13.70, while for the mean difference of 

0.4 which was twice as large, it required approximately 148 per group and the relative efficiency was 3.50, 

as for the mean difference 0.6, which was three times as large, 65 cases required per group and the relative 

efficiency was about 1.55. Take the other pattern of 0.0, 0.0, 0.6 and 0.9 as another example, which had a 

similar pattern of mean differences as the pattern of 0.0, 0.0, 0.4, and 0.6 (run as a supplemental analysis to 

confirm this result more generally). As a result, the relative efficiency was consistent, which was about 

13.89 for one small equal mean difference of 0.3, 3.48 for the mean difference of 0.6 and 1.60 for the mean 

difference of 0.9 which was three times as large.  
 

Absolute Mean Difference Effect Sizes 

  Ultimately, there were relatively consistent required sample sizes for absolute group mean differences 

regardless of the pattern of means. That is, no matter what the pattern of means across the four groups 

(above), the same sample size was required for any given absolute mean difference (see Table 2). For 

example, when the sample size required for the mean difference effect size 0.2 in the multiple comparison 

procedure, it will always be roughly 2332 total cases, that is, about 580 cases per group needed to achieve 

the statistical power of .80 no matter what kind of pattern of the four group means. As for the mean 

difference effect size 0.3, totally 1040 cases are required. However, note that the relationship between the 

sample size for the ANOVA omnibus F test and the multiple comparisons does depend on the patterns, 

because the patterns play a role in the calculation of Cohen’s f effect size for ANOVA. 
 

Conclusions 

  These results clearly show that adequate statistical power for the omnibus ANOVA F test does not 

guarantee adequate statistical power for given pairwise MCPs performed post hoc. Therefore, when a 

researcher is considering sample size, it may not be sufficient to set sample size for the omnibus test being 

performed. More important, researchers should consider the post hoc multiple comparison procedure. In 

this context, the sample size for the absolute mean difference effect size (Table 2) was the most important 

finding in this paper which could provide researchers with some hints to decide the sufficient sample size 

not only for the omnibus F test but for the post hoc MCPs.  
 

Recommendations 

  Based on the results presented, there are certain specific recommendations that can be made concerning 

sample sizes researchers should use in ANOVA with four groups. It must be remembered that these results 

were limited to Tukey HSD comparisons performed using statistical power of .80. However, we would 

expect that other post hoc comparisons would show similar patterns of results—just with different sample 

sizes.  

A Heuristic Example 

  A researcher may expect a pattern of means across four groups of 0.3, 0.3, 0.5, and 0.7. How is the 

sample size decided in order to achieve significant results not only in the omnibus F test but in Tukey HSD 

multiple comparison? There are two ways referring to Table 1 and Table 2. First, the pattern of means of 

0.3, 0.3, 0.5, and 0.7 could be centered into 0.0, 0.0, 0.2, and 0.4. According to Table 1, about 412 cases 

(103 cases per group) are required for the omnibus F test, while about 2320 cases are required (580 cases 

per group) for the standardized mean difference of 0.2, and 590 cases (148 cases per group) are needed for 

the mean difference of 0.4 in the multiple comparison procedure. Hence, in this case, 580 cases per group 

should be used, which will provide significant results in the MCPs at the statistical power desired if all tests 

are important.  

  Alternatively, the pairwise mean difference of the pattern of 0.3, 0.3, 0.5, and 0.7, was 0.0, 0.2, 0.2, 

0.2, 0.2, and 0.4. Based on Table 2, 580 cases per group are required for the absolute mean difference of 

0.2 and 148 cases per group are needed for the mean difference of 0.4. Since the required sample size for 

the MCP was larger than that of omnibus F test, 580 cases per group or totally about 2320 cases are required  
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Table 2. Sample size required for statistical power of .80 for the Tukey HSD Multiple Comparison 

Procedure given specific standardized mean differences, no matter what the pattern of group means. 

Standardized Mean Difference 

Effect Size Total Sample Size Per Group Sample Size 

0.2 2320 580 

0.3 1040 260 

0.4 590 148 

0.5 375 94 

0.6 262 66 

0.7 190 48 

0.8 146 37 

0.9 120 30 

 

in this design so as to achieve significant results with the power of .80. However, the researcher may 

determine that only certain of the multiple comparisons are most important for the research questions and 

choose sample sizes to provide power for those comparisons of most interest. That is, in this example, 

perhaps the researcher is much more interested in the differences between Group 4 (expected 0.7 mean) 

and Groups 1 and 2 (expected 0.3 means), for an expected standardized mean difference effect size of 0.4. 

Because the researcher is less interested in the standardized group differences of 0.2, sample size can be 

chosen for the 0.4 comparisons of most interest. 

Finally, the researcher might use the relative efficiency column in Table 1 to estimate necessary sample 

sizes for the multiple comparisons based on the omnibus F test. That is, the 0.2 standardized mean 

differences in this expected population condition require roughly 5.6 times more cases that the omnibus F 

test. However, the 0.4 standardized mean differences require roughly 1.4 times more cases than the omnibus 

test. Unfortunately, these patterns are dependent on the patterns of the means across groups and cannot 

easily be generalized to all situations. But if the researcher knows the expected pattern of means (and 

therefore pattern of standardized mean differences), even without knowing the actual means, this approach 

can be useful. This example falls into Pattern 3 described above. 

 

Discussion 

  Similar relative efficiency results were obtained at different power levels (0.7 and 0.9) using the MC4G 

program. The group mean of 0.9 was also taken into consideration in pattern 5 and pattern 6, which 

confirmed the consistency of relative efficiency. Therefore, the authors recommend that for other power 

levels, the Relative Efficiency approach described above should be used. This paper provides several 

important implications for researchers. Most importantly, the appropriate sample sizes for MCPs will help 

investigators be able to obtain results from pairwise group comparisons for which they are comfortable that 

statistical power was adequate. Also, because most scholars have only focused on sample size selection that 

ensures enough power in the omnibus ANOVA F test, this study will fill an important gap regarding sample 

size determination in MCPs. Finally, the MC4G Monte Carlo program is available to researchers for to use 

for power and sample size analyses as well as other related simulations. Monte Carlo methods may become 

especially useful in helping to determine sample sizes in conditions where exact analytical methods will 

not work. Certainly, the MC4G program used here has limitations, but similar Monte Carlo simulations 

could be performed in languages such as R or Python with fewer such limitations. 

  Admittedly, the results in this paper were only based on Tukey HSD in MCPs, other procedures 

designed, such as Bonferroni, Games-Howell, Scheffé, and Dunnett tests, might be included in future 

research. We have reason to believe that other MCPs will show similar patterns of differences from the 

omnibus tests, but the sample size details are likely to differ because of well-known differences in power 

among MCPs. In addition, Brooks and Johanson (2011) determined the sample size for MCPs in ANOVA 

across three groups, and this paper only includes four groups, so additional groups should be considered in 

future research to see whether the patterns of the sample sizes are consistent a broader range of mean 

differences. 
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