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In many data analytical applications involving the comparison of means from several populations, 

analyses are adjusted by including one or more continuous variables in the model. Such an analysis is 

often called an Analysis of Covariance. In this study, we examine the effect of such an adjustment on the 

precision of inferences regarding the adjusted means and the interpretation of those means. We consider 

the variance of the difference between a pair of adjusted means and show that the variance is minimized 

when the mean of the covariate is the same in both groups. However, when the covariate means differ 

across groups, the additional term in the model can dominate the variance of the comparison. We 

investigate the break-even point for this comparison and under what condition that occurs. Finally, we 

demonstrate, with several data sets, how these results may be manifested in practice. 

here are a variety of analytical procedures that have been developed for use in comparing the 

performance of individuals in two or more groups. With only one variable and two groups, a 

simple t-test will suffice in most instances. With additional groups involved in the comparison, a 

straight-forward extension of the independent samples t-test to a one-way analysis of variance (ANOVA) 

is common (see Dowdy, Weardon, & Chilko, 2004; Glass & Hopkins, 1996). More advanced procedures 

allow for the inclusion of additional variables in the analysis, which are sometimes called independent or 

predictor variables. When a second categorical variable is included, the analysis may be referred to as a 

two-factor ANOVA, or a randomized complete block design, depending on the context of the analysis 

and the research design employed. When the additional predictor variable is numerical, the analysis is 

typically called an analysis of covariance (ANCOVA) and the numerical predictor is commonly called a 

covariate. These last two scenarios are easily extended conceptually to allow for the inclusion of 

additional predictors/covariates, if desired.  

 The focus of this research is on ANCOVA and, in particular, the interpretation of the adjusted means 

from such analyses. Most modern textbooks addressing experimental design include chapters or sections 

on the methods of ANCOVA (see Hicks & Turner, 1999; Kuehl, 2000; Montgomery, 2009). Fisher 

(1934) stated that ANCOVA “combines the advantages and reconciles the requirements of . . . regression 

and analysis of variance” (p. 281). Cochran (1957) summarized the theory, nature, and use of ANCOVA 

and identified some potential problems and misuses of the procedure. One of the most frequent uses 

Cochran identified was “to increase precision in randomized experiments” (p. 262). Typically, this 

increased precision was accomplished by making preliminary measurements on experimental units prior 

to applying treatments. He noted, however, that it was not uncommon for the covariate to be measured on 

a different scale than that of the response variable and used reading performance adjusted for initial IQ 

scores as an example. In situations such as these, it is important to verify that treatments have had no 

effect on the covariate. Cochran further explained that 
 

When the treatments do affect the [covariates] to some extent, the covariance adjustments take 

on a different meaning. They no longer merely remove a component of experimental error. In 

addition, they distort the nature of the treatment effect that is being measured. (p.264) 
 

 The same caution has been made more recently by Tracz, Nelson, Newman, and Beltran (2005) and 

Nimon and Henson (2010).  A second common use of ANCOVA described by Cochran (1957, p. 264) 

was “to remove the effects of disturbing variables in observational studies,” primarily in situations that 

are not easily investigated with randomized experiments. He identified two situations in observational 

studies that could be of concern: 1) bias and 2) extrapolation in the ANCOVA adjustment as a result of 

differences between the distributions of the covariate across the groups. In regard to situation 1, consider 

a typical one-way ANCOVA model: 

            Yij = μ + τi + β(Xij –  ̅) + εij        (1) 

and the unadjusted difference between the two group means 
 

           ̅1. –  ̅2. = 1 - 2  + ( ̅1 –  ̅2) + 1. - 2.      (2)  

T 
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If the two groups have not been matched for values of the covariate, the difference, ( ̅1. –  ̅2), may be 

reflecting a real difference in the distributions of the covariate that is much larger than which the within-

group variations can account. The term, ( ̅1. –  ̅2), measures the nature of the bias and, if left unaccounted 

for, will invalidate any significance tests or confidence intervals.  

  To illustrate situation 2, Cochran proposed the following illustration. 
 

Suppose we were adjusting for differences in parents’ income in a comparison of private and 

public school children, and that private-school incomes ranged from $10,000 - $12,000, while 

the public-school incomes ranged from $4,000 - $6,000. The [analysis of] covariance would 

adjust results so that they allegedly applied to a mean income of $8,000 in each group, although 

neither group has any observation in which incomes are at or even near this level. (pp. 265-266) 
 

  There are two consequences of this extrapolation that Cochran (1957) notes. First, for the ANCOVA 

to remove all the bias, the regression equation of the dependent variable on the covariate must hold in the 

region of scores where data are not observed and there is no empirical evidence to support that it does. 

Second, even if the regression does hold in this region, the standard errors of the adjusted means become 

large due to the fact that the standard error formula accounts for the extrapolation that takes place. 

According to Cochran, “Consequently, the adjusted differences may become insignificant statistically 

merely because the adjusted comparisons are of low precision” (p.266). He concludes by cautioning that 

when the groups differ widely in the values of the covariate, “the interpretation of an adjusted analysis is 

speculative rather than soundly based” (p. 266).  

 In a similar, related paper on the interpretation of adjusted treatment means in ANCOVA, Fairfield 

Smith (1957) illustrated, with several examples, that the interpretation of the adjusted means requires 

careful study. Cochran (1957) summarizes, “Sometimes these averages have no physical or biological 

meaning of interest to the investigator, and sometimes they do not have the meaning that is ascribed to 

them at first glance” (p. 267). Again, this point seems to be a primary focus shared recently by Tracz et al. 

(2005) and Nimon and Henson (2010). 

 

A Theoretical Approach 

  To investigate the effect of an analysis of covariance adjustment on the precision of inferences 

regarding the adjusted means and the interpretation of those means, we examine the variance of the 

difference between a pair of adjusted means to determine, mathematically, the condition in which this 

variance is minimized.  

 

Derivation 

Consider the linear model: 

                    
 

           [  ] [
 
 
]    

 

where W is an n by t incidence matrix defining the treatment structure (i.e., or population structure for 

observational studies) of a study and X is an n by k matrix of concomitant variables. In the following, we 

take X to have centered columns [i.e., X = X
*
(In- 1n1′n/n) if the columns of X

*
 are not centered] and both 

W and X to have full column rank. Performing the estimation in two stages, we have the following 

solutions to the normal equations: 

            ̂  (   )       
 

           ̅  (   )       
 

           ̂  [   (   )     (   )     ] ̅ 
 

The estimate vector  ̂ is often referred to as the estimate(s) of the mean(s) adjusted for the covariate(s), 

X, or simply the adjusted mean(s). The second term in the sum acts to estimate the response at the mean 

value of each covariate. Similarly, the regression partial slopes can be adjusted for the incidence structure 

as follows:  

         ̂     ̂  (   )     (       (   )     )(    ̂)  
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In the simplest case (i.e., t levels for the incidence matrix and a single covariate), this situation is 

expressed in scalar form as: 

                                                       

The unadjusted means are: 

          ̅   
 

  
∑    

  
    

 

If we adjust for the (hypothesized linear) effect of the concomitant variable on the adjusted means (i.e., 

also called least-squares means and population marginal means, see Searle, Speed, & Milliken, 1980), we 

have: 

          ̂   ̅    ̂ ̅    
 

and the difference between any pair of adjusted means is: 
 

          ̂   ̂    ̅    ̅      ̂( ̅    ̅   ) 
 

The variance of this difference is: 

            ( ̂   ̂  )     [ ̅    ̅      ̂( ̅    ̅   )]  
 

                       ( ̅̅ ̅̅   )    ( ̅̅ ̅̅
   

)    (  ̂
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Results 

  Clearly, this expression is minimized when the mean of the concomitant variable is the same in both 

incidence groups. On the other hand, when the means of the concomitant variable differ in the incidence 

groups, the added term can grow to dominate the variance of the comparison. The break-even point 

occurs when the analysis ignoring the concomitant variable and the analysis with the concomitant variable 

have the same variance for pairwise comparisons. This result occurs when:  
 

            
 (

 

  
 

 

   
)    
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( ̅    ̅   ) 

∑∑   
 )  

 

where   
  represents the variance ignoring the concomitant variable and   

  is the variance when the 

concomitant variable is included in the analysis
†
. Some rearrangement of terms shows the break-even 

condition occurs when: 
 

           
  
 

  
    

( ̅    ̅   ) 

∑∑   
  

    

     
  

 

If we further simplify the structure of the problem by assuming equal replication in the incidence groups, 

the break-even condition is: 
 

           
  
 

  
    

( ̅    ̅   ) 

∑∑   
  

 

 
  

 

Conclusions 

Thus, whenever the reduction in the experimental error is more than the right hand term in the sum, 

precision is increased by including the concomitant variable in the analysis. If the reduction in the 

experimental error is less than this quantity, we actually lose precision by including the concomitant 

variable in the analysis. This relationship is depicted in the three graphs in Figure 1 using Wishart’s 

(1938) swine growth rate data to compare three diets. The response variable is growth rate (i.e., in 

pounds/week) and the covariate is the initial weight of the pig (i.e., in pounds). 

  We modeled the effect of separating the covariate means over the diets. Initially, the covariate means 

were not statistically significantly different across treatments. Two values of the classification variables 

were arbitrarily chosen and the covariate values were shifted apart by adding and subtracting a constant to 

the covariate values in those groups. Positive shifts increase the separation of the treatment means and 
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negative shifts (i.e., down to about -5) decrease the separation. 

Shifts “below” -5 reverse the treatment effects and treatment 

separation increases again. The upper left panel shows, as 

expected, that the adjusted difference between treatment means 

is a linear function of the separation. The upper right panel 

shows that the standard error of the difference in means is an 

increasing function of the separation. The lower panel shows the 

adjusted, partial F-test for treatment effects. Note that the 

treatment differences are not statistically significant when the 

adjustment brings the means closer together. However, as the 

adjustment continues to pull them apart, the treatment effect 

eventually attains statistical significance. The implication of 

performing such adjustments is simply this: that naively 

adjusting the means on the basis of covariates is dangerous if 

there is a relationship between the treatment and the covariate. 
 

Simulated Demonstration 

  To illustrate these results, we performed several simulations 

with varying group sizes, sample sizes, regression slopes, and 

group separation to provide some examples of how these results 

may be encountered in practice. The simulations do not 

represent an exhaustive collection of possible scenarios, but 

rather just a few examples for illustration. 
 

Methods 

  For these simulations, data were generated using SAS 

version 9.2 data steps and the resulting data were analyzed with 

SAS PROC GLM. The critical contrast was estimated using both 

the LSMEANS statement and a hand-coded ESTIMATE 

statement. The observed significance level (i.e., Ordinary Least 

Squares (OSL), p-value) and the estimated standard error of the 

comparison were saved in a separate file for analysis. Parameters of the simulation included two numbers 

of groups to be compared (2 and 8), three sample sizes per group (4, 8, and 16), four regression slopes (0, 

0.2, 0.4, and 0.6) measured in  units, and five levels of separation of the critical groups (0, 0.25, 0.50, 

0.75, and 1.50) measured in  units. The standard deviations of the error and of the concomitant variable 

X were both set to 1. The means of the critical groups were adjusted so that the critical groups had equal 

means before adjustment. Consequently, in each scenario, the analysis of variance is conducted under a 

true global null hypothesis (i.e., the ANCOVA has a true null for the unadjusted means and the alternate 

is true for the adjusted means). Other than for the pair of critical groups, all means were set to 0. 

  The OSLs were analyzed using a quantile-quantile plot of the empirical OSLs against the expected 

quantiles for a uniform distribution on [0,1]. If the test detected differences, the plot displayed as a 

straight line (Clason, 2012). If the test detected differences, the plot was strictly convex. Selected plots are 

shown in Figures 2 and 3. Kolmogorov single-sample tests of the OSLs showed that the uniform 

distribution on [0,1] fit the data extremely well. The standard errors for the critical comparisons were 

analyzed using box-and-whisker plots. These selected plots are shown in Figure 4. 
 

Results 

  The plots in Figures 2 and 3 show that when there is no separation of the concomitant variables, or 

when the concomitant variable is unrelated to the response variable, the tests perform as expected. 

However, when the concomitant variable means are related to the group definitions, the test shows 

noticeable effects even for low slopes (0.2) and small separations (i.e., as small as .25 of the standard 

deviation of the concomitant variable). The box plots in Figure 4 shows that the findings of the 

mathematical derivations are borne out (i.e., increasing separation of the concomitant variable means 

increases in the standard error of the difference of the adjusted means). What the theory did not directly 

predict is the greatly increased variability in the sampling distribution of the standard errors.  

 

 

 
Figure 1. Effects of shifting covariate 

means on estimated differences, standard 

errors, and observed significance levels. 
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Figure 2. Q-Q Plot of empirical observed significance levels vs. expected quantiles of a uniform [0, 1] 

distribution with 4 observations/group. 
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Figure 3. Q-Q Plot of empirical observed significance levels vs. expected quantiles of a uniform [0, 1] 

distribution with 16 observations/group. 
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Figure 4. Standard errors for the difference between two adjusted means with 8 observations/group and slopes 

measured in standard deviations of Y. 
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Conclusions and Implications 

  The simulations point out the importance of carefully considering the contextual meanings of 

adjusting means in ANCOVA. If it is possible to adjust the distribution of the concomitant variable(s), 

then a comparison of adjusted means may make sense. If, however, the distribution of the concomitant 

variable cannot be adjusted, as in using a pre-test score as a covariate in analyzing post-test results, then 

the adjustment is comparing entities that not only do not exist, but (probably) cannot exist. Milliken 

(1980) described the term “analysis of covariance” as a misnomer; he preferred to consider the problem as 

“analysis of lines.” There is much to recommend this approach. When analyzing lines, we rarely ask if we 

should adjust the mean responses to the mean of the explanatory variable. Rather, we ask at which values 

of the explanatory variable(s) we wish to make comparisons. Keeping this concept in the forefront of our 

thinking is critical, especially when analyzing observational studies rather than designed experiments. In 

the setting of a designed experiment, the randomization process assures us that there is, on average, no 

relationship between the concomitant variable and the group incidence. This level of control is not present 

in observational studies. This study limited attention to a single covariate. It is obvious from the matrix 

formulation of the linear model that including additional concomitant variables cannot improve the 

situation; it can only make it worse. 

Footnote 
†
This could be problematic, as it is not clear that there exists a way for the errors to be normal under both 

analyses unless the covariate is uncorrelated with the response. 
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