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The multiple correlation coefficient measures the linear relationship between two or more independent 

variables and a single dependent variable. Like other correlations, the multiple correlation value relies upon 

observed scores. Researchers attempting to consider the relationship between true scores have relied upon 

standard corrections for attenuation. However, these standard estimates for the multiple correlation 

coefficient corrected for attenuation ignore any potentially correlated error in the observed data. In this 

work we propose a new estimator for the multiple correlation coefficient that accounts for the error in 

observed data where this error is allowed to covary. We explore properties of the estimator via simulation 

and illustrate its effectiveness with a real-world data application. 

 ormulas for partial and part correlation coefficients that correct for attenuation while accounting for 

correlated error scores were published by Wetcher-Hendricks (2006). However, existing formulas 

that estimate true-value multiple correlation coefficients still rely upon the erroneous psychometric 

assumption of independent error scores. A process similar to that used for estimates of the partial and part 

correlation coefficients can be used to derive a formula for the multiple correlation coefficient that corrects 

for attenuation and accounts for covarying error scores. 

  The multiple correlation coefficient, in and of itself, indicates the linear relationship between two or 

more independent variables and a single dependent variable. The multiple independent variables, 

collectively called the canonical variable, often combine to produce a stronger relationship with the 

dependent variable than any of the independent variables does alone. The formula to compute the standard 

multiple correlation consists of a systematic arrangement of pairwise correlation coefficients. The equation, 

         𝜌𝑥.𝑦𝑧 = √
𝜌𝑥𝑦
2 −2𝜌𝑥𝑦𝜌𝑥𝑧𝜌𝑦𝑧+ 𝜌𝑥𝑧

2

1−𝜌𝑦𝑧
2 ,          (1) 

shows this arrangement for a situation involving two independent variables, 𝑌 and 𝑍. With additional 

independent variables, both the numerator and denominator expand to include relevant terms. Bacon 

(1938), and B. R. B. (1924), among others, provide various approaches to making these expansions. 

  The multiple correlation coefficient corrected for attenuation described in this piece has foundations in 

two statistical principles. First, data gathered by researchers does not describe the truth of the situation 

investigated. Rather, an observed data point represents the true value along with an error value. Error 

consists of unpredictable and unmanageable factors that affect the data we observe. The observed data, 

therefore, does not necessarily represent the actual aptitude, conduct, sentiment, etc. we are trying to 

measure; but, instead is a combination of the true measurement along with the error that taints that measure. 

The basic psychometric principle that an observed score, 𝑋, equals the sum of its true score and its error 

score (𝑋 = 𝑇𝑥 + 𝐸𝑥) reflects this relationship (Allen & Yen, 2001). 

  An important point to make with regard to error scores distinguishes between the psychometric value 

of 𝐸 and the residual value (also sometimes called an error score). One can determine residual values by 

finding the difference between an observed 𝑌 value and its corresponding predicted value, for a given 

observed 𝑋 value, based on the estimated regression model. The ability to obtain residual values allows for 

analyses of the error scores (estimated by the residuals) that address model diagnostics such as robustness 

of the error score variances and scedasticity of the error scores. Consequently, approaches to adjust for 

irregularities in residual values, most notably the Huber-White Sandwich Estimator which corrects for 

heteroscedasticity, exist (Dudgeon, 2017; Freedman, 2006; Szpiro, Rice, & Lumley, 2010). Many statistical 

software programs, in fact, make these functions available to users. However, users should not confuse the 

error addressed by these functions with the psychometric error created by the disparity between the 

observed and true score. Although statistical software programs exist for Huber-White Sandwich estimators 

in the presence of this psychometric error (see for example Hardin and Carroll (2003) and Hardin, 

Schmiediche, and Carroll (2003)), these models and estimates rely on additional instrumental variables or 

regression calibration methods and further focus on estimating the model standard errors whereas our work 
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focuses more specifically on the multiple correlation coefficient. To date, no statistical software program 

can provide the desired estimates for the correlation in multiple linear regression that adequately accounts 

for psychometric error. In what follows, error scores will refer to the psychometric error not the residuals. 

  Accounting for the error score is necessary because the presence of psychometric error has an 

attenuating effect upon correlation coefficients (Carroll, Ruppert, & Stefanski, 1995). In other words, 

correlation coefficients calculated using observed scores tend to be smaller than values calculated from the 

true-score values, if these values could be obtained. Spearman (1904) made strides towards improving 

correlation coefficient estimates by defining an estimator for the true-value pairwise correlation coefficient. 

The coefficient corrected for attenuation, defined by Spearman’s estimate, consistently lies closer to the 

actual true-score value than the observed-score value does (Hakstian, Schroeder, & Rogers, 1988). The 

derivation of the correction for attenuation, however, relies upon the psychometric assumption of 

independent error scores. 

  The assumption of independent error scores emerges as the second statistical principle to consider. 

Error scores, in reality, covary. Consider the example of SAT tests, as discussed by Wetcher-Hendricks 

(2006). Factors such as illness, nervousness, or distractions in the setting (e.g. a warm room, noise in the 

hallway) that affect participants’ performance on the test contributes to an error score. But, these factors 

likely exist while the individuals complete both the verbal and the mathematics portions of the test, leading 

to a predictable relationship, or covariance, between the error scores on these two portions. 

  If error scores did not covary, then simply replacing the uncorrected pairwise values in the multiple 

correlation coefficient formula with values corrected using Spearman’s formula would produce an accurate 

estimate of the multiple correlation between true scores. However, in reality, an accurate representation of 

the multiple correlation coefficient requires correcting the pairwise values for attenuation without making 

the assumption of independent error scores. Zimmerman and Williams (1977) developed a formula for 

pairwise correlations that corrects for attenuation in light of covarying error scores. In what follows, we 

derive an estimator for the multiple correlation coefficient that best estimates the true-score relationship by 

replacing the pairwise coefficients in the multiple correlation formula with the Zimmerman and Williams 

(1977) formula. We follow the derivation with an illustration of the effectiveness of the new estimator via 

both simulation and with a real-world data application. 
 

Methods 

  Development of the new multiple correlation coefficient formula, which corrects for attenuation 

without making the assumption of independent error scores, begins with the standard multiple correlation 

coefficient shown in (1). In this equation ρxy , ρxz , and ρyz represent the observed pairwise correlations. An 

estimator that corrects the multiple correlation coefficient for attenuation, however, does not rely on these 

observed-score pairwise coefficients. Rather, these pairwise coefficients are adjusted to estimate the true 

score. The correction for attenuation that comes from Spearman (1904) estimates pairwise correlations 

between true scores, 𝑇𝑥  and 𝑇𝑦 by, 

            𝜌
𝑇𝑥𝑇𝑦= 

𝜌𝑥𝑦

√𝜌𝑥𝑥′√
𝜌
𝑦𝑦′

          (2) 

with ρxx’ and ρyy’ representing the reliability values of 𝑋 and 𝑌, respectively. Still, simply replacing the 

pairwise observed coefficients with the versions corrected using Spearman’s formula does not provide an 

accurate estimate of the true-score multiple correlation because it assumes independent error scores. 

  An estimator that corrects the multiple correlation coefficient for attenuation without assuming 

independent errors, relies upon the true-score values obtained with the Zimmerman and Williams (1977) 

formula, 
 

        𝜌𝑇𝑥𝑇𝑦 =
𝜌𝑥𝑦 −  𝜌𝐸𝑥𝐸𝑦√1−𝜌𝑥𝑥′√1−𝜌𝑦𝑦′

√𝜌𝑥𝑥′√𝜌𝑦𝑦′
        (3) 

 

  The importance of the Zimmerman and Williams (1977) formula, in fact, “does not lie in practicality, 

but theory, given that it allows researchers to understand the process needed to increase the accuracy of the 

correction for attenuation" (Wetcher-Hendricks, 2006). In a theoretical context, the error score correlation 

coefficient (𝜌𝐸𝑥𝐸𝑦) in the numerator can be easily computed and input into (3). Replacing the pairwise 

coefficients in (1) with the corresponding true-score values defined in (3) gives,   
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     𝜌𝑇𝑥.𝑇𝑦𝑇𝑧 =  
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−
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√𝜌𝑥𝑥′√𝜌𝑧𝑧′
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(
𝜌𝑦𝑧 −  𝜌𝐸𝑦𝐸𝑧√1−𝜌𝑦𝑦′√1−𝜌𝑧𝑧′

√𝜌𝑦𝑦′√𝜌𝑧𝑧′
)

+ (
𝜌𝑥𝑧 −  𝜌𝐸𝑥𝐸𝑧√1−𝜌𝑥𝑥′√1−𝜌𝑧𝑧′

√𝜌𝑥𝑥′√𝜌𝑧𝑧′
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1−(
𝜌𝑦𝑧 −  𝜌𝐸𝑦𝐸𝑧√1−𝜌𝑦𝑦′√1−𝜌𝑧𝑧′

√𝜌𝑦𝑦′√𝜌𝑧𝑧′
)

2 ,     (4) 

 

with the multiple correlation coefficient subscript updated to 𝜌𝑇𝑥.𝑇𝑦𝑇𝑧 to represent the fact that the 

components of the equation represent true, not observed, pairwise values. Simplification of the expression 

in (4) follows from first creating a common denominator, separately within the overall numerator and the 

denominator: 

     𝜌𝑇𝑥.𝑇𝑦𝑇𝑧 =

√
  
  
  
  
  
  
  
 

𝜌𝑧𝑧′(𝜌𝑥𝑦 − 𝜌𝐸𝑥𝐸𝑦√
1−𝜌𝑥𝑥′√1−𝜌𝑦𝑦′)

2
−

2(𝜌𝑥𝑦 − 𝜌𝐸𝑥𝐸𝑦√1−𝜌𝑥𝑥′√1−𝜌𝑦𝑦′
)×(𝜌𝑥𝑧 −  𝜌𝐸𝑥𝐸𝑧√1−𝜌𝑥𝑥′√1−𝜌𝑧𝑧′

) ×

(𝜌𝑦𝑧 −  𝜌𝐸𝑦𝐸𝑧√1−𝜌𝑦𝑦′√1−𝜌𝑧𝑧′
)

+ 𝜌𝑦𝑦′(𝜌𝑥𝑧 −  𝜌𝐸𝑥𝐸𝑧√1−𝜌𝑥𝑥′√1−𝜌𝑧𝑧′
)
2

𝜌𝑥𝑥′𝜌𝑦𝑦′𝜌𝑧𝑧′

𝜌𝑦𝑦′𝜌𝑧𝑧′− (𝜌𝑦𝑧 −  𝜌𝐸𝑦𝐸𝑧√1−𝜌𝑦𝑦′√1−𝜌𝑧𝑧′
)
2

𝜌𝑦𝑦′𝜌𝑧𝑧′

.      (5) 

 

By combining and cancelling like terms in (5) we get the simplified formula, 
 

         𝜌𝑇𝑥.𝑇𝑦𝑇𝑧 = √
𝜌𝑧𝑧′𝜙𝑥𝑦

2 +𝜌𝑦𝑦′𝜙𝑥𝑧
2 −2𝜙𝑥𝑦𝜙𝑥𝑧𝜙𝑦𝑧

𝜌𝑥𝑥′(𝜌𝑦𝑦′𝜌𝑧𝑧′−𝜙𝑦𝑧
2 )

                 (6) 

 

with,  𝜙𝑥𝑦 = 𝜌𝑥𝑦  −   𝜌𝐸𝑥𝐸𝑦√1 − 𝜌𝑥𝑥′√1 − 𝜌𝑦𝑦′  ,                   (7) 
 

    𝜙𝑥𝑧 = 𝜌𝑥𝑧  −   𝜌𝐸𝑥𝐸𝑧√1 − 𝜌𝑥𝑥′√1 − 𝜌𝑧𝑧′     , and          (8) 
 

    𝜙𝑦𝑧  =   𝜌𝑦𝑧  −   𝜌𝐸𝑦𝐸𝑧√1 − 𝜌𝑦𝑦′√1 − 𝜌𝑧𝑧′  .                   (9) 
 

  The final estimator defined in (6)-(9) produces the new corrected multiple correlation coefficient. This 

estimator differs from the multiple correlation coefficient corrected for attenuation using Spearman’s 

method (obtained by simply combining (1) and (2)) as it estimates the relationship between the true scores 

of the three variables, X, 𝑌 and 𝑍 while additionally accounting for error scores that covary. 
 

Applications 

  In this section, we illustrate properties and the effectiveness of the new multiple correlation coefficient 

estimator, defined by the formula in (6)-(9), through both a simulation study and a real-world data 

application. The simulations illustrate properties (e.g., bias and variability) of the estimator assuming 

multivariate normal data. We follow the simulation study with a real-world data application to further 

illustrate the estimator’s effectiveness. 
 

Simulations 

  The simulated data is used to investigate the performance of the new estimator under scenarios with 

varying correlations of both the true scores and the error scores. We compare the performance of the 

estimator to the observed-score and Spearman formula estimators for the multiple correlation coefficient as 

defined in (1) and the combination of (1) and (2), respectively. 

  We follow the setup described in the Introduction, in which we assume data are observed with additive 

error. Simulations pertain to scenarios with both the true data and the errors assumed to be normally 

distributed, correlated random variables. Specifically, the simulation model represents a scenario with both 
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the true scores 𝑻 =  (𝑇𝑥 , 𝑇𝑦 , 𝑇𝑧)′ and the errors 𝑬 =  (𝐸𝑥 , 𝐸𝑦, 𝐸𝑧)′ following multivariate normal (MVN) 

distributions. That is, we let 𝑬 ~ 𝑀𝑉𝑁(𝟎,  Σ 𝐸𝐸) in which, 
 

          ∑ = 
𝐸𝐸  [

1 𝑟𝑒𝑥𝑦       𝑟𝑒𝑥𝑧
𝑟𝑒𝑥𝑦 1   𝑟𝑒𝑦𝑧
𝑟𝑒𝑥𝑧 𝑟𝑒𝑦𝑧 1

]  ,              (10) 

and 𝑻 ~ 𝑀𝑉𝑁(𝟎,  Σ 𝑇𝑇) in which, 

          ∑ = 
𝑇𝑇  [

1 𝑟𝑡𝑥𝑦       𝑟𝑡𝑥𝑧
𝑟𝑒𝑡𝑥𝑦 1   𝑟𝑡𝑦𝑧
𝑟

𝑥𝑧
𝑟𝑡𝑦𝑧 1

] ,             (11) 

for some chosen 𝑟𝑒 and 𝑟𝑡  values. 

  Comparisons between the observed-score estimator, the Spearman formula estimator and the new 

formula estimator can then take place. We set 𝑟𝑒 = 0.2, 0.6, or 0.8 and 𝑟𝑡 = 0.5 or 0.9; for an example of a 

case with no correlation of the errors, we consider a scenario in which 𝑟𝑡  = 0.7 and 𝑟𝑒= 0. The next step 

involves generation of a single realization of the true data 𝑻 =  (𝑇𝑥 , 𝑇𝑦, 𝑇𝑧)′  and generation of k = 1,...,M 

replicates for the errors  𝑬 =  (𝐸𝑥 , 𝐸𝑦, 𝐸𝑧)′, each with n = 1000 (See Table 1.) The observed data are 

generated using the principle (stated in the Introduction) that the observed score equals the sum of the true 

value and its error score (e.g., 𝑋 = 𝑇𝑥 + 𝐸𝑥). Computing the bias and standard error based on the simulated 

data allows for evaluating the performance of each estimator for the different scenarios. The estimated bias 

is, 

           𝐵𝑖𝑎�̂�(�̂�) =
1

𝑀
∑ (�̂�𝑘 − 𝜌)𝑀
𝑘=1 ,               (12) 

in which �̂�𝑘represents the multiple correlation estimate for the kth replicate sample and ρ represents the true-

score value as defined by using the true-score data to compute the correlations in (1). 

  The t-ratio measures the magnitude of the bias. This ratio appears as, 
 

           𝑡𝑏𝑖𝑎𝑠 = 
𝐵𝑖𝑎𝑠 ̂ (�̂�)

𝑆𝐸 ̂ (�̂�)
  ,                  (13) 

with 𝑆�̂�(�̂�) = [𝑉𝑎�̂�(�̂�)/𝑀]
1/2

  for 

           𝑉𝑎�̂�(�̂�) = 𝑀𝑆�̂�(�̂�) − [𝐵𝑖𝑎�̂�(�̂�)]
2
,               (14) 

and estimated mean squared error, 

           𝑀𝑆�̂�(�̂�) =
1

𝑀 
∑ (�̂�𝑘  −  𝜌)2𝑀
𝑘=1  .               (15) 

 

 As shown in Table 1, when no error correlation exists (last row of the table), the Spearman formula 

estimator and the new formula estimator perform similarly. However, as supported by the small absolute 

magnitude of the estimated bias, the new formula estimator outperforms the observed-score and Spearman 

formula estimators in all other scenarios with covarying error scores. The only scenario in which the new 

estimator has some evidence of bias pertains to an error correlation that remains small compared to the data 

correlation; however, the magnitude of the bias still supports large improvement over the observed-score 

and Spearman formula estimators. In general, the new formula estimator tends to overestimate the truth 

(bias tends to be positive) except when the error correlation is larger than the data correlation. The observed-

score estimator tends to underestimate the true-score value in all instances except when the error correlation 

is larger than the data correlation. In all scenarios, the Spearman formula estimator tends to overestimate 

the truth; further, the Spearman formula estimator tends to drastically overcorrect the observed-score 

estimator to the point at which it has the largest absolute magnitude in bias. The Spearman formula estimator 

only shows improvement, as compared to the observed-score estimator, in cases where the error correlation 

value is small. 
 

Real-World Applications 

The independent Swedish foundation, Gapminder, has compiled global data from a variety of sources, all 

accessible for free at https://www.gapminder.org/data/ (Gapminder, 2020). In this application, we consider 

life expectancy (X) as the dependent variable, predicted by the independent variables of CO2 emissions per   

http://www.gapminder.org/data/
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Table 1. Simulation results (M = 500 replicates) for scenarios in which data (n = 1000) are generated to 

have moderate or strong associations. Errors are generated to have either weak, moderate or fairly strong 

correlations. For reference, the last row includes a scenario with no error correlation 

   Observed Spearman  New  

rt re Truth Est. Bias tbias Est. Bias tbias Est. Bias tbias 

 0.2  0.4446 -0.1588 -162.54  0.7812 0.1779 95.93 0.6045 0.0012 0.820 

0.5 0.6 0.6034 0.6361 0.0327 45.03 1.0679 0.4646 239.60 0.6025 -0.0009 -0.741 

 0.8  0.7244 0.1211 220.56 1.2045 0.6011 388.74 0.6020 -0.0014 -1.196 

 0.2  0.6339 -0.2935 -382.24 1.0676 0.1402 76.38 0.9311 0.0038 3.908 

0.9 0.6 0.9274 0.8058 -0.1216 -257.42 1.3344 0.4070 267.93 0.9279 0.0005 0.838 

 0.8  0.8863 -0.0411 -143.61 1.4536 0.5262 317.47 0.9275 0.0001 0.238 

0.7 0 0.7686 0.4365 -0.3321 -338.03 0.7747 0.0061 3.40 0.7728 0.0042 2.926 
 

Table 2. Pairwise Correlations for the Gapminder Data.        Table 3. Reliability for the Gapminder Data.  

 ρxy ρxz ρyz  ρxx′ ρyy′ ρzz′ 

Observed 0.7554 0.6547 0.7113  0.7519 0.8578 0.8514 

Error 0.4683 0.2510 0.4213     

True 0.8211 0.7527 0.8092     
 

person (Y) and percent of the population living in urban areas (Z). Gapminder formally defines these 

variables as follows: 

• Life expectancy pertains to the average age (in years) that an individual would live if the current 

mortality patterns for a given year would continue. Source information: 

https://www.gapminder.org/data/documentation/gd004/ 

• Carbon Dioxide (CO2) emissions measures the amount of CO2 (tonnes per person) being emitted from 

the burning of fossil fuels in a country. Source: Carbon Dioxide Information Analysis Center (CDIAC) at 

https://cdiac.ess-dive.lbl.gov/ through www.gapminder.org. Values are highly right-skewed, so data are 

log-transformed for all analysis. 

• The percent of the population living in urban areas, measured as a percent of the total population of a 

country in a given year, compiled by The World Bank with percents calculated by the Statistics Division 

of the United Nations Department of Economic and Social Affairs and are smoothed by the UN Population 

Division. Source: The World Bank at https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS through 

www.gapminder.org. 

  This application uses 46 years-worth of available data (1969-2014). Although the Gapminder site 

provides data for 194 countries around the world, seven countries have missing values in all years for at 

least one variable, decreasing the sample size to 187. Values for 2014, the most recent year for which 

Gapminder provides data for all three variables, constitute observed scores. The mean of scores from the 

years 1970-2013 constitutes each country’s corresponding true score, based upon the psychometric 

principle that the long-run average is equivalent to the true score (Allen & Yen, 2001). The difference 

between the true and observed scores for a country represents the error score for that country. This piece’s 

Supplementary Materials includes tables in both .csv and .pdf formats that contain observed, true, and error 

scores for all variables used. 

  Table 2 contains the pairwise coefficients obtained from this data and used in subsequent calculations 

of multiple correlation coefficients. To determine reliability values, we rely upon test-retest logic (Babbie, 

2017), calculating the correlations between the most recent (2014) and earliest (1969) years of data for the 

variables collected. Table 3 contains these reliability values. 

  Of particular interest is the multiple correlation value, 𝜌𝑇𝑥.𝑇𝑦𝑇𝑧, as this exercise attempts to demonstrate 

that the value produced by the new formula estimates the true-score multiple correlation coefficient better 

than both the observed-score coefficient and the coefficient that incorporates Spearman’s correction. The 

closest estimate of 𝜌𝑇𝑥.𝑇𝑦𝑇𝑧in this application is the true-value coefficient of 0.8348, obtained using the true 

data with (1). Steps to calculate the new formula value, using the data available in the Supplementary 

Materials to this piece and following the process demonstrated by equations (4)-(9), appear in the Appendix.   

https://www.gapminder.org/data/documentation/gd004/
https://cdiac.ess-dive.lbl.gov/
http://www.gapminder.org/
https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS
http://www.gapminder.org/
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Table 4 contains the observed-score, 

Spearman formula, and new formula 

estimates. Standard errors and 95% 

percentile confidence intervals are computed 

based on 1000 bootstrap samples. (e.g., We 

sample the dataset with replacement 1000 

times, each sample the same size, n = 187, as 

the original. See Efron and Tibshirani 

(1994), for example.) Histograms of the 

bootstrap samples appear as Figure 1. 

Estimates further support the patterns seen 

in the simulations. The new formula 

estimate slightly overestimates, but falls 

closest to the true value of the multiple 

correlation. The observed-score estimate 

underestimates the truth and the Spearman 

formula value drastically overestimates the 

truth. The 95% percentile confidence 

intervals further support the effectiveness of 

the new formula value as the interval for this 

estimate is the only one that contains the 

true-value multiple correlation coefficient. 

  Overall, the closest estimate of the 

strength of the true linear relationship of life 

expectancy with carbon dioxide emissions 

and percent of population living in urban 

areas is the true-value coefficient of 0.8348. 

Knowledge of how the actual true-score 

coefficient compares to the proposed 

estimates, supports the new formula’s 

legitimacy. The outcome of this exercise, 

along with the simulations, suggests that 

researchers should use the new estimator 

whenever possible to determine multiple 

correlation coefficient values. 
 

Discussion 

The methods and examples provided here serve two purposes. First, they illustrate the need to account for 

covarying error scores when estimating the multiple correlation between true scores. Prior proposed 

estimators — both the standard observed multiple correlation coefficient and the coefficient corrected 

according to Spearman’s formula (1904) – ignore any covariance between the errors. Second, this piece’s 

methods and examples offer an approach to acknowledging covarying error scores in the form of a new 

formula for an estimator that corrects the multiple correlation coefficient for attenuation. This formula 

produces values that lie nearer to 𝜌𝑇𝑥.𝑇𝑦𝑇𝑧than the values produced with previously used formulas. 

  Further consideration of the first point, the need to account for correlated errors, is highlighted by the 

fact that linear relationships between observed scores can actually reflect quite a bit of error-score 

correlation. A comparison of the observed-score and error-score correlation values in Table 2 for the real-

world data application provides such evidence. Additionally, it stands to reason that error scores and true 

scores may covary despite the psychometric assumption that 𝜌𝑇𝑥𝐸𝑥 = 0. The new formula described here 

does not address this possibility; however perhaps it should receive attention. 

  The second point, noting the new formula’s improvement upon existing estimators of the multiple 

correlation between true scores, both validates and challenges psychometric theory. Theoretically, true-

score values correlate more strongly than observed-score values do; and, accordingly, a coefficient 

corrected for attenuation should exceed the uncorrected coefficient. This exercise confirms that using both 

Figure 1. Bootstrap distributions for the new formula, 

observed-score, and Spearman formula estimates. The 

dashed line represents the true value of 0.8348 and the 

solid lines represent the three different point estimates. 

 

Table 4. Comparisons of multiple correlation formula 

estimates. The value produced by the new formula most 

closely estimates the true value of the multiple 

correlation, which is 0.8348. 

 Estimate SE 95% CI 

Observed Score 0.7736 0.0258 (0.7231, 0.8253) 
Spearman  0.9428 0.0342 (0.8832, 1.0164) 
New Formula 0.8534 0.0311 (0.7890, 0.9134) 
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the standard correction formula (Spearman, 1904) and the new formula increases the correlation from the 

uncorrected value. The simulation and the real-world data example in the Applications section of this text, 

in fact, demonstrate that both of these values tend to overestimate the correlation between true scores. 

Psychometric theory, however, does not address overestimation of true-score values, suggesting that 

correlations corrected for attenuation lie between the observed-score and true-score coefficients. Although 

this tendency to overestimate deserves additional attention, it does not discount from the merit of the new 

formula. Both the simulated data example and the authentic data application indicate that the Spearman 

value grossly overestimates the true-score value with the Spearman-corrected coefficient actually lying 

farther from the true-score value than the observed-score correlation coefficient does. In contrast, the new-

formula value overestimates the true-score correlation only slightly and, therefore, provides the best 

estimate of this value. 

  Admittedly, obtaining this best estimate requires knowledge about information to which the typical 

researcher does not have access. Values of the terms 𝜌𝐸𝑥𝐸𝑦, 𝜌𝐸𝑥𝐸𝑧, and 𝜌𝐸𝑦𝐸𝑧,  generally remain unknown 

in practical situations. These terms are part of the new formula due to its reliance on Zimmerman and 

Williams (1977) correction for attenuation of pairwise coefficients with the presence of error-score 

covariance. As stated in the Methods section of this piece, Zimmerman and Williams’ correction pertains 

to theoretical contexts in which researchers can obtain error-score correlation values. The presence of error-

score correlations in the new formula makes it most germane to theoretical contexts as well. The examples 

presented in the Applications section of this piece use psychometric principles to determine error scores 

simply for the purpose of demonstrating the new formula’s effectiveness. Those who wish to use the 

formula in applied situations, in which error scores of data generally remain unknown and cannot be 

obtained using psychometric principles, can take advantage of programs such as LISREL8-11 structural 

equation modeling software (Jöreskog & Sörbom, 2006) to estimate error components of observed scores. 

Having obtained error scores, and with knowledge of reliability values, one can use the new correction 

formula for multiple correlation coefficients. Because the arithmetic required by the formula, although 

manageable, can become tedious, those wishing to obtain the corrected value might appreciate applications 

that perform the calculations. Supplements to this piece provide an R function (requiring user input of the 

observed data, error data, and reliability values) and an Excel function (requiring user input of observed 

pairwise coefficients, error-score coefficients, and reliability values) that provide the multiple correlation 

coefficient corrected with the new formula. 

  Although the assumption of independent errors simplifies calculations, researchers simply cannot make 

this assumption. In some cases, error scores may correlate so slightly that the new formula proposed in this 

piece and incorporating Spearman’s (1904) formula into the multiple correlation equation produce almost 

identical values. However, one cannot expect such negligible error-score correlations to always exist as 

they often don’t. Use of the new formula indicates recognition of the potential for a relationship between 

error scores to impact the perceived linear relationship. Accounting for correlated errors, as illustrated in 

this work, is, thus, crucial to understanding the underlying relationships between variables. 
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Appendix: New Formula Calculations 

  The operations shown here demonstrate the substitutions and arithmetic one could use to compute the 

new formula estimate defined in (6)-(9). The calculations illustrated below provide evidence that the 

formula does, in fact, produce the value, 0.853, identified in the real-world data application presented in 

this piece. However, the R and Excel functions suggested within the Discussion (and shared as part of the 

Supplementary Materials) produce the new corrected multiple correlation coefficient more efficiently than 

performing the calculations by hand. Both of these built functions were used to verify the computed value 

below. 

  Calculations begin by inserting the pairwise values (see Table 2) into equations (7)-(9) and performing 

the indicated operations: 
 

       𝜙𝑥𝑦 = 0.755 − 0.468√1 − 0.752 √1 − 0.858  ,                     (16) 
 

       𝜙𝑥𝑧 = 0.655 − 0.251√1 − 0.752 √1 − 0.851  ,                      (17) 

and 
 

      𝜙𝑦𝑧 = 0.711 − 0.421√1 − 0.858 √1 − 0.851  .                   (18) 
 

The indicated arithmetic operations produce values (rounded to three decimal places) of 

0.667 for 𝜙𝑥𝑦, 0.607 for 𝜙𝑥𝑧, and 0.650 for 𝜙𝑦𝑧. Then, using these values, along with reliability values (also 

rounded to three decimal places), in equation (6) leads to the following calculations: 
 

    𝜌𝑇𝑥.𝑇𝑦𝑇𝑧 = √
0.851(0.667)2−2(0.667)(0.607)(0.650)+0.858(0.607)2 

0.752[(0.858)(0.851)−0.6502]
.               (19) 

 

The resulting value, 0.853, represents an estimate of the multiple correlation between true scores without 

making the assumption of independent error scores. 
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