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We simulated several heteroscedastic scenarios for an Analysis of Covariance (ANCOVA) model with an 

orthogonal fixed covariate. We examined the Type 1 and 2 error rates of OLS and Heteroscedastic 

Consistent Covariance Matrix (HCCM) estimators for detecting adjusted mean differences and covariate 

effects when heteroscedasticity was a function of differences in group variances, the covariate, and both 

processes in unbalanced ANCOVA models. Results indicate that under complete null models, 

heteroscedasticity due to an orthogonal covariate alone did not affect the Type 1 error rate for the OLS 

test of adjusted group mean differences; however, heteroscedasticity due to both the covariate and group, 

can attenuate, exacerbate, or reverse the known effects of heteroscedasticity on test size in unbalanced 

models. Furthermore, heteroscedasticity due to the covariate drastically affected the power of the tests of 

the group effect. HC2 and HC3 tests of the group effect were the most powerful among tests with valid 

test size; however, both HC2 and HC3 tests for the covariate effect inflated the Type 1 error rate. The 

C
2
(H) test proposed by Cai and Hayes (2008) was  promising with Type 1 error rates held below the 

nominal alpha for both tests of the group and covariate effects  in all conditions simulated; however, it 

was conservative in terms of statistical power. 

 he utility of Ordinary Least Squares (OLS) regression is unquestionable; however, the assumption 

of homoscedasticity is quite stringent and often leads to disturbances in both Type 1 and 2 error 

rates (Zimmerman, 2004). The assumption of homoscedasticity is unlikely to hold in many applied 

settings. Unfortunately, problems associated with heteroscedasticity in OLS regression have been largely 

ignored in many research disciplines. Given the large amount of published research that has used OLS 

regression models without even examining much less correcting for potential heteroscedasticity, the 

validity of the many research findings may be questionable. 

  In the educational and behavioral sciences, many simulation studies have focused on 

heteroscedasticity in analysis of variance (ANOVA) designs, thus coining the term “heterogeneity of 

variance.” The effect of heteroscedasticity in the presence of unbalanced sample sizes for the 

independent-samples t-test results in the well-documented Type 1 error rate suppressions and inflations 

with positive and negative variance-sample size pairings, respectively. Many studies have shown the 

superior performance of the Welch (1938) correction of the degrees-of-freedom (dfs) for the t and F test 

statistics with unequal sample sizes. In fact, Zimmerman (2004) demonstrated that “using a separate-

variances test unconditionally whenever sample sizes are unequal” ensured the validity of testing mean 

differences.  

  Although predictable in some circumstances (i.e., unbalanced ANOVA), the effects of 

heteroscedasticity on the validity of statistical tests in General Linear Models (GLMs) is complicated. In 

more complex designs and for regression models in general, the “balance” of sample size is difficult to 

conceptualize. For example, in a regression model with continuous predictors (X), there may be only a 

few cases (or even one case) with a particular combination of X values. Thus, how the pairing of 

heteroscedasticity and sample size will affect the validity of tests from a more complex GLM is not easily 

discerned from the known effects of heterogeneity of variance in ANOVA models.  

  Heteroscedasticity in GLMs has been a concern in econometrics for decades (e.g., White 1980), 

resulting in the development of Heteroscedasticity Consistent Covariance Matrix (HCCM) estimators as a 

large sample solution to hypothesis testing under heteroscedasticity (see following section for more 

detail). Recently, Hayes and Cai (2007) examined the statistical properties of the HC0 (Huber, (1967; 

White, 1980), HC1 (Hinkley, 1977), HC2 (MacKinnon & White, 1985) HC3 (Davidson & MacKinnon, 

1993), and HC4 (Cribari-Neto, 2004) HCCM estimators, thus reacquainting statistical methodologists in 

the educational and behavioral sciences with the pernicious problems of heteroscedasticity in GLMs. 

Long and Ervin (2000) evaluated the empirical power functions of OLS and HCCM methods and 

recommended HC3 because it kept the test size at the nominal alpha regardless of the presence or absence 

of heteroscedasticity. However, the performance of HC3 does depend to some extent on the presence or 

absence of points of high leverage in the design matrix (e.g., Chesher & Jewitt, 1987; Kauermann & 

T 
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Carroll, 2001; Wilcox, 2001). Furthermore, Long and Ervin (2000) showed that HC3 can have a liberal 

bias in very small samples. Cai and Hayes (2008) proposed Chi-Square approximate tests for regression 

hypotheses under heteroscedasticity of unknown form and have shown that their tests and HC3 

outperformed HC2 in terms of maintaining valid Type 1 error rates. 

 To date, the performance of HCCM estimators in traditional Analysis of Covariance (ANCOVA) 

designs have not been directly addressed. We investigated the performance of the OLS, HCCM, and the 

Cai and Hayes (2008) tests under several heteroscedastic scenarios for the following ANCOVA model 

with an orthogonal fixed covariate:  
 

          Yi = β0 + βGGi + βXXi + i ,           (1) 
 

where Yi represents the outcome variable for the i
th
 subject, G represents the grouping variable (G = 0 if 

the observation in group 1 and G = 1 if observation is in group 2), X represents the fixed covariate, the β‘s 

are fixed regression parameters, and i are normally distributed population errors.  

 
Heteroscedasticity Consistent Covariance Matrix (HCCM) Estimators 

  The covariance matrix for regression coefficients can formulated as: 

          Σ  = (X´X)
-1

X´ΦX(X´X)
-1 

 .          (2) 

For OLS, Φ = s
2
IN; s

2
 is the Mean Square Error (MSE) and IN is an N-dimensional Identity Matrix. With 

s
2
 being a scalar, this reduces to the familiar: Σ𝑂𝐿𝑆 = MSE(X´X)

-1
. White (1980) suggested placing the i

th
 

squared residual into the i
th
 diagonal of the Φ matrix, using the OLS residuals as estimators of the errors. 

Thus, Φ = diag[e
2

i] is a diagonal matrix with the squared OLS residuals on the diagonal and all off 

diagonal entries equal to zero, Thus, the HC0 estimator defined as: 
 

         Σ𝐻𝐶0 = (X´X)
-1

X´ diag[e
2

i]X(X´X)
-1

          (3) 
 

The HC2 estimator weights e
2
i by 1/(1 - hii) from the diagonal of the hat matrix : 

 

         Σ𝐻𝐶2 = (X´X)
-1

X´ diag[
𝑒𝑖

2

(1−ℎ𝑖𝑖)
]X(X´X)

-1
         (4) 

 

The HC3 gives an extra penalty to high leverage values by weighting e
2

i by 1/(1 - hii)
2
: 

 

         Σ𝐻𝐶3 = (X´X)
-1

X´ diag[
𝑒𝑖

2

(1−ℎ𝑖𝑖)2]X(X´X)
-1

        (5) 
 

Hypotheses and Test Statistics 

  We evaluated the Type 1 and 2 error rates of four procedures for both the test of Group (H0: βG = 0) 

and the test of the Covariate Effects (H0: βX = 0) from the ANCOVA model in (1). The literature in 

HCCM methodology has approached this issue from the perspective of testing general linear hypotheses 

of the form:  

            H0: L´β = θ0 ;              (6) 

where L is pxq coefficient matrix of full column rank and θ0 is qx1 vector of known constants.  

  For OLS-based tests, the usual F-test for general linear hypotheses can be formed as: 
 

      F(q,N-p) = 
(𝐋´𝐛−𝛉𝟎)´[𝐋´(𝐗´𝐗)−𝟏𝐋]−𝟏(𝐋´𝐛−𝛉𝟎)/𝒒

SSError/(𝑁−𝑝)
 ,        (7) 

where b = (X´X)
-1

X´y is a px1 vector of OLS sample regression coefficients, SSError is the Sums of 

Squares for the Error Term, N is the total sample size, q is the number of rows for L´, which equals the 

dfs for the hypothesis of interest, p is the number of columns in the full design matrix, and N-p is the 

Error dfs for the model.  

  To construct a test that does not require the OLS assumption of homoscedasticity, the following 

HCCM statistic: 

              Q = (L´β - θ0)´[L´ΣL]
-1

(L´β - θ0)                                   (8) 

is assumed to follow a Central χ
2
 distribution with q dfs under the null hypothesis (6), asymptotically. For 

testing in samples, β is replaced with b. For HC2, the Variance Estimator Σ equals Σ𝐻𝐶2 in (4); and for 

HC3, Σ = Σ𝐻𝐶3 in (5). Several authors suggest forming an F-test by dividing the Q statistic in (8) by its 
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dfs = q (number of rows for L´) and referencing a Central F distribution with q and N-p dfs for testing the 

hypothesis in (6). 

  Cai and Hayes (2008) proposed Chi-Square approximate tests for regression hypotheses under 

heteroscedasticity of unknown form based on normalizations of orthogonalized HCCM test statistics 

(Alexander & McGovern, 1994). Their approach uses spectral decomposition of L´Σ𝐻𝐶2L to construct a 

test statistic as the sum of approximately independent variables. Specifically, the spectral decomposition 

of L´Σ𝐻𝐶2L can be expressed as Γ´L´Σ𝐻𝐶2LΓ = Λ; where Γ is a qxq orthogonal matrix containing the 

eigenvectors of L´Σ𝐻𝐶2L and Λ is a diagonal matrix of eigenvalues: Λ = diag[λj], where λj is the j
th
 

eigenvalue of L´Σ𝐻𝐶2L, for j = 1,..., q. From this, [L´Σ𝐻𝐶2L]
-1

 = ΓΛ
-1

Γ´. Thus,  
 

       Q[HC2] = (L´b - θ0)´[L´Σ𝐻𝐶2L]
-1

(L´b - θ0)                               

         = (L´b - θ0)´[ ΓΛ
-1

Γ´](L´b - θ0)                               

         = ∑ 𝛾𝑗
´(𝐋´𝐛 −  𝛉0)2/λ𝑗

𝑞
𝑗=1                              

         = ∑ 𝑡𝑗
2𝑞

𝑗=1                                        (9) 

where γj is the j
th
 eigenvector for j = 1 , . . ., q. Therefore, 

 

           tj  = γ𝑗
´ (𝐋´𝐛 − 𝛉0)/√λ𝑗    .          (10) 

If the true parameter covariance matrix were actually known, the tj values would be independent standard 

normal variables under the null hypothesis (Fai & Cornelius, 1996). Since the parameter covariance 

matrix is unknown and has to be estimated and the tj values are approximately independent Student's t 

variables having fj dfs, where: 
 

       fj =  
2𝐸(𝜆𝑗)2

𝑣𝑎𝑟(𝜆𝑗)
  = 

2[𝑡𝑟(𝐀𝑗𝛀)]2

2[𝑡𝑟(𝐀𝑗𝛀)
2

]
 =  

[𝑡𝑟(𝐀𝑗𝛀)]2

[𝑡𝑟(𝐀𝑗𝛀)
2

]
           (11) 

  Let c´j = [c1j, c2j, . . . , cNj]´ be the j
th
 row of the matrix L´(X´X)

-1
X´. Cai and Hayes (2008) show that 

λj is a quadratic form transformation of the residuals, e: 

         λj = e´Aje = ∑
𝑐𝑖𝑗

2 𝑒𝑖
2

(1−ℎ𝑖𝑖)

𝑁
𝑖=1              (12) 

where Aj = diag[c
2
ij/(1-hii)]. It can be demonstrated that E(λj) = tr(AjΩ) and var(λj) = 2tr([AjΩ]

2
); where 

Ω = (IN – H)Φ(IN – H) and H is the hat matrix. In the sample, HC2 is used and Φ is estimated by 

diag[e
2
i/(1-hii)], and the dfs of each tj is estimated as fi.  

Because the tj values are approximately independent, a normalizing transformation on each tj will produce 

q approximately independent standard normal deviates. Thus, squaring and summing these q independent 

standard normal deviates will produce a χ
2
deviate with q dfs.  

  Cai and Hayes (2008) chose two normalization transformations that yielded very similar results. We 

focus on the transformation attributable to Hill (1970), which is based on the generalized Cornish-Fisher 

expansion: 

     TH(tj) = wj + 
𝑤𝑗

3+3𝑤𝑗

𝑣𝑗
 -  

4𝑤𝑗
7+33𝑤𝑗

5+240𝑤𝑗
3+855𝑤𝑗

10𝑣𝑗
2+8𝑣𝑗𝑤𝑗

4+1000𝑣𝑗

    ;        (13) 

 

where uj = fj – ½ ; vj = 48u
2

j ; and wj = [ujln(1+(t
2

j /fj))]
1/2

. Subsequently, the test statistic proposed by Cai 

and Hayes (2008) is formed as: 

            C
H

HC2  = ∑ 𝑇𝐻
2(𝑡𝑗)𝑞

𝑗=1  ;         (14) 

which is expected to follow Central χ
2
 distribution with q dfs under the null hypothesis θ0 in (6). 

 

Method 

  Based on simulation conditions from previous research (e.g., Long & Ervin, 2000; Cai & Hayes, 

2008), we examined the Type 1 error rates of OLS and three HCCM estimators for detecting adjusted 

mean differences (H0: βG = 0) and covariate effects (H0: βX = 0) when heteroscedasticity was function of 

differences in group variances, the covariate, and both processes in unbalanced ANCOVA models. All 

calculations were performed using SAS
®
 PROC IML version 9.3. 

  Conditions. As in Lipsitz et al. (1999), we paid special attention to small sample performance by 

considering sample sizes of n0 =12 and n1 = 24, with 12 distinct X values fixed to 1, 1.5, 2, 2.5, 3, 3.5, 4, 

5, 6, 7, 8, and 10. For the group coded as G=1 with n1 =24, we doubled these covariate values. This 
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represents a true fixed effect and by design is orthogonal to the indicator variable representing the group 

(G). Thus, the design matrix stays constant across all replications and conditions. Following the work of 

Cai and Hayes (2008), we generated a Normal(0,1) error term (εi*) with the SAS rannor function and 

transformed it to i in equation 1 using: 

           εi =  
𝜎𝐿

𝜎𝑆

Giεi* + cXiεi*          (15) 

with the Heteroscedasticity Conditions in Table 1. For estimating Type 1 error rates all coefficients in (1) 

were set to zero (i.e., β0 = βG = βx = 0). For estimating statistical power, we set the coefficients in (1) to: 

β0 = 0; βG = 2.5; βx = 0.25. For these coefficients under complete homoscedasticity, the power of the test 

of group differences was expected to be 0.79 and the test of the covariate effect was expected to have 

power of 0.36. 
 

Table 1. Heteroscedasticity Conditions.  

Conditions 
Description 

 σL σS cX 

0 2.5 2.5   0 Completely Homoscedastic 

1.1A 2.5 2.5 +1 

Heteroscedasticity due to Covariate Only 

Ascending and Descending Functions of  cX 

1.1D 2.5 2.5 -1 

1.2A 2.5 2.5 +2 

1.2D 2.5 2.5 -2 

4C.0 4 1 0 Heteroscedasticity due to Group: Conservative σ
2
/n Ratio 

4C.1A 4 1 +1 Heteroscedasticity due to Group: Conservative σ
2
/n Ratio 

AND Heteroscedasticity due to Covariate 

Ascending and Descending Functions of 

cX 

4C.1D 4 1 -1 

4C.2A 4 1 +2 

4C.2D 4 1 -2 

4L.0 1 4   0 Heteroscedasticity due to Group: Liberal σ
2
/n Ratio 

4L.1A 1 4 +1 
Heteroscedasticity due to Group: Liberal σ

2
/n Ratio 

AND Heteroscedasticity due to Covariate 

Ascending and Descending Functions of cX 

4L.1D 1 4 -1 

4L.2A 1 4 +2 

4L.2D 1 4 -2 
 

 Tests. From the general linear hypothesis in (6), L´ = [0 1 0] for the test of Group Effect (H0: βG = 0); 

and L´ = [0 0 1] for the test of the Covariate Effect (H0: βX = 0). For both hypotheses: θ0 = 0, q = 1, and p 

= 3. For the OLS, HC2, and HC3 procedures, we calculated F-tests and used a Central F distribution with 

q = 1 and N-p = 33 dfs as the reference distribution. The Cai and Hayes (2008) test, C
H

HC2, used a Central 

χ2
 distribution with q =1 dfs as the reference distribution. All tests were performed at a nominal 

significance level of α = 0.05. Each simulated condition was replicated 5,000 times under the complete 

null hypothesis; therefore, the Type 1 error rates were expected to fall in the interval 0.05 ± 

1.96[(0.05)(0.95)/(5,000)]
1/2

 = [0.044, 0.056]. Rejection rates below 0.044 were considered to be 

conservative (suppressed test size), and rates above 0.056 were considered to be liberal (inflated test size).  
 

Results 

  Figure 1 shows the Type 1 error rates for the test of the Group Effect (H0: βG = 0) for each of the four 

tests with homogeneous group variances under varying condition of heteroscedasticity due to the 

covariate. As can be seen, the heteroscedasticity due to the orthogonal covariate had little effect on the 

Type 1 error rates for tests of group differences under group variance homogeneity. Figure 2 shows the 

Type 1 error rates for the test of the Group Effect (H0: βG = 0) for each of the four tests with 

heterogeneous group variances under varying condition of heteroscedasticity due to the covariate. In this 

scenario, the heterogeneous variances were positively paired with sample sizes, which is known to 

suppress rejection rates. As would be expected the OLS test suppressed Type 1 error rates in the condition 

where heteroscedasticity was simply due to the difference in group variances. However, when the   
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Figure 1. Type 1 Error Rates Test of Group Effect (H0: βG = 0) as a function of Covariate Heterogeneity 

with Homogeneous Group Standard Deviations: σL: σS  = 1:1. 

 

 
Figure 2. Type 1 Error Rates Test of Group Effect (H0: βG = 0) as a function of Covariate Heterogeneity 

with Heterogeneous Group Standard Deviations: σL: σS  = 4:1 (Conservative). 

OLS  

HC2  

HC3  

C
2

(H)  
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Figure 3. Type 1 Error Rates Test of Group Effect (H0: βG = 0) as a function of Covariate Heterogeneity 

with Heterogeneous Group Standard Deviations: σL: σS  = 1:4 (Liberal). 
 

covariate was also a source of heteroscedasticity, the Type 1 error rate for the test of group differences 

became inflated above the nominal level of significance in some situations.  

 Figure 3 shows the Type 1 error rates for the test of the Group Effect (H0: βG = 0)  for each of the four 

tests with heterogeneous group variances under varying condition of heteroscedasticity due to the 

covariate. In this scenario, the heterogeneous variances were negatively paired with sample sizes, which 

is known to inflate test size. As would be 

expected the OLS test had inflated Type 1 error 

rate in this condition when heteroscedasticity 

simply due to the difference in group variances. 

However, when the covariate was also a source 

of heteroscedasticity the test size for the OLS 

test of group differences became less inflated 

and even suppressed below the nominal level of 

significance in some situations. HC2 and HC3 

showed a similar, though less drastic, pattern of 

Type 1 error rates. 

  Table 2 shows the empirical power of tests 

of the Group Effect (H0: βG = 0) for the HC2, 

HC3, and C
H

HC2 procedures under varying 

condition of heteroscedasticity due to the 

covariate. The OLS test was excluded because 

of its demonstrated Type 1 error rate 

disturbances. As can be seen, introducing 

heteroscedasticity due to the covariate 

drastically reduced the power of these tests. 

HC2 and HC3 demonstrated generally more 

statistical power than C
H

HC2 with the advantage 

in power being substantial in some conditions. 

OLS  

HC2  

HC3  

C
2

(H)  

Table 2. Empirical Power Rates for the HC2, HC3, and  

C
2
(H) tests  of Group Effect (H0: βG = 0) with β0 = 0;  

βG = 2.5; βx = 0.25 

Conditions  Tests  

 σL σS cX  HC2  HC3  C
2
(H) 

0 2.5 2.5   0 0.7818 0.7486 0.7102 

1.1A 2.5 2.5 +1 0.3046 0.2634 0.1928 

1.1D 2.5 2.5  -1 0.2868 0.2512 0.1874 

1.2A 2.5 2.5 +2 0.1100 0.0880 0.0624 

1.2D 2.5 2.5 -2 0.1132 0.0884 0.0630 

4C.0 4 1 0 0.7922 0.7688 0.7412 

4C.1A 4 1 +1 0.1792 0.1456 0.1180 

4C.1D 4 1 -1 0.4836* 0.4336 0.2914 

4C.2A 4 1 +2 0.0898 0.0712 0.0560 

4C.2D 4 1 -2 0.1390 0.1178 0.0716 

4L.0 1 4 0 0.5568* 0.5176 0.3756 

4L.1A 1 4 +1 0.1584* 0.1332* 0.0960 

4L.1D 1 4 -1 0.5520 0.5098 0.4212 

4L.2A 1 4 +2 0.0960 0.0748 0.0526 

4L.2D 1 4 -2 0.1494 0.1202 0.0824 

* Test had inflated Type 1 Error Rate above 0.056. 
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Figure 4. Type 1 Error Rates Test of Covariate Effect (H0: βX = 0) as a function of Covariate 

Heterogeneity with Homogeneous Group Standard Deviations: σL: σS  = 1:1. 

 

 
Figure 5. Type 1 Error Rates Test of Covariate Effect (H0: βX = 0) as a function of Covariate 

Heterogeneity with Heterogeneous Group Standard Deviations: σL: σS  = 4:1 (Conservative). 
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Figure 6. Type 1 Error Rates Test of Covariate Effect (H0: βX = 0) as a function of Covariate 

Heterogeneity with Heterogeneous Group Standard Deviations: σL: σS  = 1:4 (Liberal). 
 

  Figures 4, 5, and 6 shows the Type 1 error rates for the test of the Covariate Effect (H0: βX = 0) for 

each of the four procedures under varying condition of heteroscedasticity due to the covariate with 

homogeneous group variances, heterogeneous positive pairing, and heterogeneous negative pairing, 

respectively. The OLS test drastically inflated test size in most conditions. HC2 had moderate inflations 

of the Type 1 error rates; whereas, HC3 also had inflations of test size above the 0.056 cutoff. Only the 

C
H

HC2 test proposed by Cai and Hayes (2008) maintained reasonable Type 1 Error Rates; however, the test 

size was always substantially below the nominal level of significance. 
 

Discussion 

 In summary, the OLS test of the group differences (H0: βG = 0) performed as expected, and 

heteroscedasticity due to an orthogonal covariate alone did not affect the Type 1 error rate for the OLS 

test of group mean differences. However, heteroscedasticity due to both the group and covariate, although 

the variables are orthogonal, can attenuate, exacerbate, or reverse the known effects of heteroscedasticity 

on test size for tests of group mean differences in unbalanced models. All other tests for group differences 

maintained reasonable Type 1 error rate, except for HC2 showing some inflation of test size. HC2 and 

HC3 demonstrated substantially more statistical power than the C
H

HC2 test (Cai & Hayes, 2008) in some 

scenarios; however, using these procedures may come at the risk of committing a Type 1 error. Yet, using 

the conservative C
H

HC2 test may come at a large cost to statistical power. The HC2 test for group 

differences had test size inflation when there was a negative sample size-variance pairing; however, HC2 

also showed Type 1 error inflation with a positive sample size-variance pairing and heteroscedasticity due 

to the covariate. Thus, like the OLS test, the Type 1 error rate for the HC2 test of group differences was 

rather unpredictable. Whereas, the HC3 and C
2
(H) tests held test size under the nominal alpha.  

  The OLS test of the Covariate Effect (H0: βX = 0) performed poorly. HC3 and HC2 had test size 

inflations in most conditions simulated. The Cai and Hayes (2008) test, C
H

HC2, was the only procedure to 

maintain reasonable Type 1 error rates, and therefore, it is the recommended procedure for testing the 

Covariate Effect. 

  We based our simulations on conditions used in other studies and our results may shed light on other 

potential conditions, but there are limitations. In this study, we investigated the statistical properties of 

three HCCM procedures in an ANCOVA design with a fixed, orthogonal covariate. Although one may 

OLS  

HC2  

HC3  

C
2

(H)  
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speculate that our results would generalize to other ANCOVA models, we do not know exactly how these 

tests would perform if the covariate was related to the group variable or if the covariate was sampled from 

a distribution, instead of being fixed through every replication and condition. Furthermore, one can only 

speculate that the performance of these tests would worsen or improve in scenarios with more or less 

extreme departures from homoscedasticity, respectively. The rejection rates of these tests, especially 

OLS, HC2, and HC3, took rather unpredicted patterns with various combinations of heteroscedasticity 

due to both the group and covariate, and therefore, predicting rejection rates in other conditions may 

prove to be difficult. Although the test size and power of the C
H

HC2 test was suppressed, it had the most 

consistent rejection rates across heteroscedasticity conditions and for both tests of Group and Covariate 

Effects. HC3 performed well as a test for the Group Effect, but performed poorly as a test of the 

Covariate Effect. 
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