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Statistical Gestalt:  
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Regression analyses frequently involve interactions among independent variables. Introductory courses in 

statistics, however, typically omit any discussion of interaction in the context of regression. The present 

note suggests a simple pedagogical method, based on indicator variables, for illustrating the value and use 

of interaction terms in multiple linear regression. 

 ll wholes which are not mere aggregates, i.e. whose totality is something distinct from their 

parts, must have a principle of unity.  …What, then, is it that makes ‘man’ one; why is he 

one and not many, e.g. animal + two-footed…?  Why do[es] not the sum of these Ideas 

constitute the ideal man…?  (Aristotle, translated 1956, p. 218) 

  The ancient Greek philosopher, Aristotle, famously pondered how a composite could be grander than 

the aggregation of its components—why a person, for example, is inevitably more complex than any 

collection of human features might suggest. As demonstrated below, his philosophy regarding the unity of 

matter and form, often referred to by the German word Gestalt and loosely abbreviated in common 

parlance as “the whole is greater than the sum of its parts,” aptly describes the impact of two regressors 

on a response variable when interaction is present.
1
    

  In empirical research, regression analyses often include interaction terms to capture the joint effects 

of two (or more) independent variables. Indeed, Dawson (2014) suggests that interaction can be found in 

nearly any scholarly journal containing empirical work. Because multiple linear regression (MLR) is 

typically taught toward the end of an introductory college-level statistics course, however, the role of 

interaction terms in regression is often neglected, despite its importance. Although there are a few 

exceptions, including Kuiper and Sklar (2013), Moore (2010), and Ramsey and Shafer (2013), 

introductory textbooks designed for use by undergraduates frequently omit the topic. Similarly, there is 

remarkably little discussion of this subject among journal articles in the pedagogical literature. Flom and 

Strauss (2003, p. 1) note that “interpreting interactions is often difficult and sometimes counterintuitive” 

and offer a graphical approach for understanding interactions, but, in general, the role of interaction in 

regression has been largely overlooked in work designed to enhance undergraduate teaching.   

  Aside from mathematics and statistics majors, most college students, including those in liberal arts, 

education, business, and other disciplines, take only introductory courses in statistics and never formally 

study more advanced material.
2
 Yet interaction effects are commonly found in a wide variety of applied 

fields, such as political science, sociology, economics, and psychology (Kam & Franzese, 2007), as well 

as nursing (Stommel & Wills, 2004), ecology (Engqvist, 2005), organization studies (Aguinis, 2002), and 

management (Dawson, 2014) to name just a few. Thus, at some point in their academic or professional 

careers, students may encounter a regression having an interaction term and wonder why the product of 

two or more independent variables is treated as a separate regressor.
3
 Alternatively, in conducting their 

own analyses, they may fail to recognize situations in which interaction terms would be appropriate.   

  The present study proposes a convenient method for illustrating to undergraduates both why and how 

an interaction term may be used. In contrast to Aiken and West (1991), Flom and Strauss (2003), and 

Jaccard and Turrisi (2003), all of whom emphasize interactions involving continuous variables, the 

approach taken here is based on dummy variables and is designed for expository convenience in the 

classroom. The lesson is simple to explain, easy to understand, and quickly demonstrated. The following 

section presents the basic illustration, and a subsequent section provides additional insights, including the 

application of the example in assessment of learning. A comparison of the indicator approach with effects 

coding follows, and a short conclusion is given in the final section. 
 

Interaction Between Indicators: An Example 

  Rather than starting with a didactic lecture on interaction followed by an illustration, the approach 

taken here begins with an example that challenges students to discover the interaction problem in the 

regression context and guides them toward a solution. Consider the hypothetical data in Table 1, for a 

cross-section of 20 individuals, where Salary is a continuous dependent variable measured in dollars 

A 
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Table 1. Raw Data for Salaries 

Salary ($)  Male Corporate  

39,000 0 0 

40,000 0 0 

40,000 0 0 

40,000 0 0 

41,000 0 0 

41,000 1 0 

42,000 1 0 

43,000 1 0 

44,000 1 0 

45,000 1 0 

50,000 0 1 

51,000 0 1 

52,000 0 1 

53,000 0 1 

54,000 0 1 

60,000 1 1 

61,000 1 1 

61,000 1 1 

61,000 1 1 

62,000 1 1 

 

 

(though it could just as well be measured in euros, pounds, or other 

currency units). Gender and the sector of the economy in which the 

individual is employed are both shown as indicator, or dummy, 

variables.  Male is coded as 1 for men and as 0 for females. 

Corporate assumes the value 1 if the individual is employed by a 

corporation and 0 otherwise.  We might think of a position in either 

the government or the nonprofit sector as the alternative to corporate 

employment. Naturally, we could employ empirical (rather than 

hypothetical) data and/or a larger sample size, but the present sample 

will suffice for illustrating the pedagogical technique. Note that there 

are equal numbers of non-corporate females, corporate females, non-

corporate males, and corporate males. In the language of analysis of 

variance (ANOVA), these data constitute a balanced, 2×2 factorial 

experiment with the same number of observations in each cell. For 

the purpose of MLR, however, Table 1 presents the data as a 

continuous dependent variable and two binary independent 

variables. Unequal group sizes would work as well with the indicator 

approach developed here. 

  It is useful to begin by inviting students to develop and test a 

model for predicting salary with the data at hand. When equipped 

with the data in Table 1, most students who are being introduced to 

MLR for the first time will dutifully regress Salary on Male and 

Corporate, and obtain the following result in an effort to determine 

the factors that influence salary: 
 

     Salary = 38,500   +   6,000Male  + 15,000Corporate            (1) 

      (49.342)      (6.659)            (16.649) ; where t-statistics are given in parentheses. 
 

  Students should now be asked to evaluate the results. The intercept and both of the independent 

variables are statistically significant well below the one percent level and the regression appears to have 

substantial explanatory power: R
2
 = 0.950 and adjusted R

2
 = 0.944. The regression equation correctly 

indicates that males tend to have significantly higher salaries than females, and that corporate employees 

enjoy significantly greater incomes than those with jobs in the non-corporate world. As an exercise to 

reinforce their understanding of the regression coefficients, students may be asked to calculate the grand 

mean from the regression equation and verify it from the raw data. Such a calculation is always possible 

with regressions obtained via ordinary least squares (OLS) because the regression line runs through the 

mean value of each variable. That is, in minimizing the sum of squared errors, the normal equations for 

the regression ensure that the mean value of the dependent variable is an exact linear function of the mean 

values of the independent variables.4 The mean value of an indicator variable is just the proportion of 

observations for which the characteristic of interest is present. Thus, the grand mean of salary, in our 

example, can be calculated by inserting the proportions of males and corporate employees into equation 

(1). Because half of the sample is male and half works in the corporate sector, the mean salary for the 

entire sample can be correctly calculated from equation (1) as $38,500 + $6,000(1/2) + $15,000(1/2) = 

$49,000.   

  However, the predictive value of this regression result is limited. To help them see this, students 

should be directed to use the regression equation to predict salaries for each type of worker in the sample 

by inserting values for the indicators and to then compare the predictions against the data. Equation (1) 

indicates that a randomly selected non-corporate female is expected to earn only $38,500 when, in fact, 

no one in the entire sample earns less than $39,000.  The equation further suggests that a non-corporate 

male should expect a salary of $44,500, though only one such person in the sample actually receives that 

much. Additionally, the equation predicts a corporate female’s salary to be $53,500 despite the fact that 

only one woman is paid that highly, and it indicates that a corporate male should anticipate an income of 

$59,500, even though every corporate male in the sample is paid $60,000 or more. Clearly, equation (1) 

generates embarrassingly poor estimates, especially given that these are in-sample predictions and not 

extrapolations. This red flag should signal a possible misspecification of the model. 
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Table 2. Mean Salaries 

Attributes: Female Male 

Non-Corporate 40,000 43,000 

Corporate 52,000 61,000 

 

 

 
Figure 1. Profile plots for salaries.  

 

  Next, students should construct and evaluate a 2×2 table of mean salaries for each of the four types of 

individuals in the sample, as shown in Table 2. A careful inspection of the table confirms that although 

males and those employed by corporations do have higher average incomes than their counterparts, the 

effects of gender and the employment sector are not simply cumulative. Rather, their interaction creates a 

type of Gestalt: when the attributes Male and Corporate coincide, the increase in average salary is greater 

than the mere sum of the increases attributable to gender and sector separately. This can be seen in several 

ways. Compared with non-corporate females, non-corporate males have, on average, a $3,000 advantage. 

Corporate females have a $12,000 advantage, on average, so one might expect corporate males to have a 

$15,000 average advantage, but their mean salary is actually $21,000 greater than the mean of non-

corporate females. Thus, the whole is indeed greater than the sum of its parts. Viewed from another 

perspective, the corporate versus non-corporate differential averages $12,000 among females, but $18,000 

among males. This lack of uniformity indicates that gender affects the corporate differential. 

Equivalently, we could say that the male-female gap averages $3,000 in the non-corporate world, but 

$9,000 in the corporate world, so that the gender gap is 

magnified in the corporate sector.
5
 The lesson to be learned 

from the juxtaposition of equation (1) and Table 2 is that 

focusing exclusively on main effects and ignoring 

interactions, or moderated effects, can be dangerously 

misleading. 

 At this stage, students should be encouraged 

to interpret the differentials in context. It is 

reasonable to suppose that for-profit corporations 

can generally afford to pay higher salaries than 

non-profit organizations or government agencies, 

which would explain why there is a difference 

across sectors. If the salary differential between 

males and females is attributed to discrimination, 

one might expect the differential to be roughly the 

same in the corporate and non-corporate sectors. 

The fact that the gender gap is larger for 

employees of corporations may indicate the 

existence of greater discrimination in the 

corporate world than elsewhere. 

  As a useful visualization of these salary 

differentials, students can use the means in Table 

2 to construct the profile plots shown in Figure 1. 

The line segments extend from the mean non-

corporate salary to the mean corporate salary for each gender and the positive slope in each case reflects 

the corporate advantage. If there were no gender gap at all, the two curves in Figure 1 would overlap, but 

they occupy different positions because the male and female means differ.  If no interaction were present 

between employment sector and gender, the two curves would be parallel to each other.  In this case, 

however, the noticeable difference in slopes yields a wider income gap between males and females within 

corporations than in the non-corporate sector, and thus, signals the possibility of significant interaction 

between the employment sector and gender.
6
 

  Such a discussion highlights the need for an interaction term that captures the joint effects of the two 

independent variables. The most common method of incorporating interaction in MLR is to employ a 

product term (Jaccard & Turrisi, 2003). The rationale and mathematics behind this approach can be 

demonstrated simply, in a manner similar to that of Jaccard and Turrisi, Kam and Franzese (2007), or 

Aiken and West (1991). For notational consistency with equation (1), let the dependent variable S be a 

function of two independent variables, M and C. In the absence of an interaction term, the linear-additive 

model estimated by equation (1) is simply: 
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            CMS 210           (2) 

where  denotes random error. Now, since the relationship between S and C appears to be influenced by 

M, suppose that both 0  and 
2 are linear functions of M, so that  

           M100   ;   and           (3) 

           M102   .           (4) 

Equations (3) and (4) indicate that gender influences the intercept of (2) and the slope of the relationship 

between S and C, as depicted in Figure 1. Note that such interaction differs from multicollinearity, which 

would occur if C was a linear function of M (or vice versa). With this lead, students can substitute (3) and 

(4) into (2) and rearrange terms to get an interaction model that includes the multiplicative product of C 

and M as an independent variable: 

           )()( 10110 MCCMS        (5) 

By simply relabeling the coefficients, (5) can be rewritten in more familiar form as follows:
7
   

           )(3210 MCCMS        (6) 

To estimate equation (6), students can easily construct CorpMale as the multiplicative product of the 

Male and Corporate dummies, where CorpMale = Corporate × Male. Then, CorpMale is itself an 

indicator variable, the first 15 observations of which are 0 and the final 5 observations of which take the 

value 1. Because this new independent variable is not a continuous linear function of either Male or 

Corporate, multicollinearity should not be a severe problem. While this justification for a multiplicative 

interaction term is illustrated in the context of indicators, it is important to point out that the same logic 

applies to continuous variables.
8
 

 If the regression is now run with the CorpMale interaction term included, the result is 
 

    Salary = 40,000  +  3,000Male + 12,000Corporate + 6,000CorpMale            (7) 

     (73.030)     (3.873)         (15.492)            (5.477) 
 

Each of the independent variables, including the interaction term, is statistically significant. This indicates 

not only that males are paid more than females while corporate employees are paid more than non-

corporate employees, but also that the effects of gender and employment sector are not simply 

cumulative. Additionally, the fit between the model and the data has actually improved: R
2
 = .983 and 

adjusted R
2
 = .979, while the corresponding F statistic has likewise increased from 160.76 to 300. 

Students can also verify that multicollinearity is not an issue by inspecting the variance inflation factors 

(VIF) for this regression, each of which is 3 or less.
9
  

  And recognizing from Table 1 that corporate males constitute one-quarter of the sample, the overall 

mean salary can again be correctly calculated as $40,000 + $3,000(1/2) + $12,000(1/2) + $6,000(1/4) = 

$49,000.  But most importantly, the predictive value of the regression has now been dramatically 

improved by the inclusion of the interaction term: equation (7) correctly predicts the mean salary for each 

of the four groups of individuals in Table 2. 
10

 

 Of course, the choice of the baseline case, or reference group, for an indicator variable is essentially 

arbitrary. So, if the indicators are designated differently, the regression equation will have a different 

form, but it will nevertheless represent the same information. As a homework exercise, students might be 

asked to consider a reconfiguration of the data in Table 1 such that a Female indicator takes the value 1 

for a woman and 0 for a man, and the interaction term CorpFemale is the multiplicative product of 

Corporate and Female.  This yields the regression equation 
 

    Salary = 43,000  –  3,000Female  +  18,000Corporate – 6,000CorpFemale.         (8) 

     (78.507)     (-3.873)        (23.238)      (-5.477) 
 

The adjusted and unadjusted coefficients of determination, levels of significance, and other output are 

identical for equations (7) and (8). Both equations convey precisely the same information regarding mean 

salaries as Table 2.  Thus, equation (7), where the interaction between Corporate and Male is positive, 

can readily be converted into equation (8), which portrays the negative interaction between Corporate and 

Female.  Likewise, replacing Corporate with a Non-corporate indicator and creating an interaction term 

between gender and Non-corporate yields either:   
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   Salary = 61,000  –  9,000Female  –  18,000Non-corporate + 6,000Non-corpFemale     (9) 

    (111.370)   (-11.619)        (-23.238)         (5.477) 

or  

   Salary = 52,000  +  9,000Male  –  12,000Non-corporate  –  6,000Non-corpMale,         (10) 

     (94.939)   (11.619)    (-15.492)       (-5.477) 
 

each of which contains the same information as equations (7) and (8). 

 Having laid out the basic lesson, it is useful to emphasize that, as with any regression study, both 

theoretical and empirical considerations should guide the development of the model.  There may be strong 

theoretical reasons to anticipate interactions among some subsets of variables and these subsets should be 

tested for statistically significant effects. In the health care context, for example, we might have an a 

priori expectation that the vital signs of a patient taking multiple medicines will be affected not only by 

each individual medicine, but also by the interaction of two or more taken together. Empirical techniques, 

such as forward selection, backward elimination, or stepwise regression, can be used to look for pairs (or 

other multiples) of variables that exhibit statistically significant interactions. Indeed, interaction will not 

always be present among the independent variables, and even when the profile plots are not perfectly 

parallel, this non-uniformity may result from sampling error. Thus, it is important to test the coefficients 

of interaction terms for statistical significance in the same way that the coefficients of other independent 

variables are tested.  A parsimonious regression model preserves degrees of freedom by including only 

meaningful interactions. An example without statistically significant interaction is given in the Appendix. 
 

Additional Insights 

  Instructors who wish (and can devote the time) to advance the discussion a step further can point out 

that the two indicator variables used in constructing Table 2 allow us to identify four distinct subsets of 

individuals. Conceptually, this is analogous to introducing a single qualitative characteristic having four 

categories, which would require the use of three dummy variables for completeness. If we approach the 

problem from this perspective, and allow non-corporate females to serve as the reference group, then we 

can reuse the CorpMale, CorpFemale, and Non-corpMale variables that were created for equations (7), 

(8), and (10), respectively.
11

    
 

The resulting regression equation takes the form: 

   Salary = 40,000  +  12,000CorpFemale  +  3,000Non-corpMale  +  21,000CorpMale.         (11) 

    (73.030)     (15.492)        (3.873)       (27.111) 
 

Equation (11) conveys the same fundamental information as equations (7), (8), (9), and (10), and has 

essentially the same diagnostics (e.g., R
2
 = .983). The exception is that the VIF values are all reduced to 

1.5, indicating even less chance of multicollinearity. The coefficients are statistically significant and again 

reveal Gestalt: non-corporate females would be paid an average of $3,000 more if they were males and 

$12,000 more in corporations, but if they were both corporate employees and male, then the average gain 

would not be $15,000, but rather $21,000.
12

 The equivalence of (7) and (11) implies that omitting an 

interaction term between gender and the employment sector, as was done initially in equation (1), is 

comparable to omitting a (non-base) category of a qualitative characteristic from the regression, which 

helps to explain why (1) is a misspecification. Instructors may also take this opportunity to contrast the 

proper use of the indicator terms with the dummy variable trap—the problem of imposing 

multicollinearity by creating too many indicator variables and leaving no excluded category to serve as 

the reference group (see, for example, Hardy, 1993).   

  In addition to their pedagogical convenience, interaction examples involving indicator variables are 

also valuable as assessment instruments. Notice that equation (11) is easily constructed from Table 2 

without even viewing the raw data or running a regression. That is, the mean salary for the reference 

group serves as the intercept, and each category’s salary differential from the base case is its regression 

coefficient. Thus, after learning about the concept of interaction, a student should be able to determine 

equation (11) on the basis of Table 2 or vice versa. 

  Similarly, a well-prepared and astute observer of Table 2 should also be able to derive equation (7), or 

equivalently equations (8), (9), or (10), without having access to the raw data.  For the model underlying 

equation (7), the mean salary of non-corporate females must be the intercept of the regression line; the 
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differential in means when a single indicator assumes the value 1 is that variable’s regression coefficient. 

Further, the coefficient of the CorpMale interaction term is the difference between the mean salary for 

corporate males and the sum of the intercept and the coefficients of Male and Corporate. To put this in 

more concrete terms, the figure of 40,000 located in the northwest quadrant of Table 2 is the intercept of 

the regression equation. Moving to the northeast quadrant, the additional 3,000 is the coefficient of Male, 

and moving from the northwest to the southwest quadrant, the extra 12,000 is the coefficient of 

Corporate. The sum of these three values is 40,000 + 3,000 + 12,000 = 55,000; therefore, to obtain the 

mean of 61,000 in the southeast quadrant of Table 2, the coefficient of the CorpMale interaction term 

must be the residual 6,000. The end result of this exercise is, of course, equation (7). Thus, by introducing 

interaction with indicator variables, instructors can readily develop homework assignments or test 

questions that require students to construct a regression equation from a 2×2 table of means (or vice 

versa) as a method for evaluating their understanding of regression coefficients.   

 Indeed, other examples of this type, with different contexts and different sample sizes, can easily be 

created by working backward from a matrix such as Table 2 to a data set such as that found in Table 1. 

Given any four subsample means, it is a simple matter to construct hypothetical data distributed around 

each mean. By establishing sufficiently large and unequal differences in group means, but relatively small 

deviations of data around each group mean, it is possible to develop statistically significant main effects 

as well as statistically significant interactions between the independent variables.   

 The lesson outlined here is designed as a first introduction to interaction and as such, should conclude 

with a brief comment about more sophisticated issues. A simple generalization of the basic idea behind 

equation (6) leads to the conclusion that interaction need not be restricted to two variables, but may 

involve three or more. Because dummy variables are a special case, it is important to note that continuous 

independent variables can handle some types of interactions that indicators cannot. For example, 

instructors might use this as a lead-in to a discussion of polynomial models; if we believe that a 

continuous independent variable interacts with itself (i.e., its effect on the dependent variable changes as 

its own level changes), then we can create a multiplicative interaction term by simply squaring the 

variable.
13

 This, of course, cannot be done with dummies, since the square of an indicator is itself.   
 

Effects Coding 

 The approach taken in equation (11), the use of three indicators and the implicit reference group to 

reflect four categories of a qualitative characteristic, is similar to the technique of effects coding. Effects 

coding would also designate a reference group, say non-corporate females, and three independent 

variables, say CF, NCM, and CM, to represent corporate females, non-corporate males, and corporate 

males, respectively. For the CF variable, all corporate females would be coded as 1, all members of the 

reference group would be coded as –1, and all others would be coded as 0; the variables NCM and CM 

would be constructed analogously. Regressing Salary on the effects-coded variables, CF, NCM, and CM, 

would give: 
 

   Salary = 49,000  +  3,000CF  –  6,000NCM  +  12,000CM             (12) 

    (178.923)  (6.325)        (-12.649)          (25.298) 
 

The R
2
, adjusted R

2
, F, and VIF diagnostics are the same for equations (11) and (12). The principal 

difference is that the intercept of (11) is the mean salary for the reference group, whereas in (12) the 

intercept is the un-weighted average of the group means. Note that if there are equal numbers of 

observations in each group, as in the present example, the un-weighted average of group means is equal to 

the grand mean. The coefficient of each independent variable measures that group’s salary differential 

from the value taken by the intercept, and the mean for the reference group can be retrieved by setting 

NCM = CF = CM = -1 in equation (12).
14

   

 One pedagogical advantage of using indicator variables, rather than effects coding, to introduce 

interaction, is that students are more likely to have already studied the former than the latter by the time 

they are ready to learn about interaction. Many introductory texts, such as those by Anderson, Sweeney, 

and Williams (2005); Pearson (2010); and Peck, Olson, and Devore (2008), include sections on indicator 

variables and regression, but do not cover effects coding. Moreover, in contrast to the example above, 

empirical investigations often involve unbalanced experiments. Unequal sample sizes among groups will 

not alter the procedure or interpretation when using indicator variables, but will complicate the 
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interpretation under effects coding. In particular, effects coding in an unbalanced experiment yields a 

regression intercept that no longer equals the grand mean (Alkharusi, 2012).
15

 Therefore, it becomes 

necessary to discuss the difference between balanced and unbalanced design if one adopts the effects 

coding approach. Importantly, the use of indicator variables also allows an interaction term, such as the 

CorpMale variable in (7), to be constructed as the multiplicative product of two independent variables (in 

this case, the Corporate and Male variables of Table 1) just as product terms are commonly used to 

capture interaction among continuous variables. In contrast, effects coded variables, such as CM, are not 

product terms, so the insights from their use may not be as readily transferred to frameworks involving 

interaction among continuous variables. For these reasons, indicator variables may be a simpler way to 

introduce interaction in entry-level courses. Certainly, however, effects coding can be explored in more 

advanced courses or those with more time to devote to the topic.  Indeed, equations (7), (11), and (12) 

represent three valid approaches to interaction, and instructors may wish to consider, or even experiment 

with, each of these methods to discover which one works best for their students. 
 

Conclusion 

  When independent variables interact with each other, the totality of their influence on a regressand is 

indeed greater than the sum of their individual impacts taken separately. The example presented above 

demonstrates how such an interaction effect can be conveniently illustrated with indicator variables. The 

data are easily replicated for different contexts and other sample sizes, and the analysis can provide a 

valuable addition to the students’ MLR tool kit. Indeed, linking statistical interaction to the broader 

philosophical concept of Gestalt may also help to make the lesson memorable. After the concept of 

interaction has been mastered using indicator variables, the notion may be more readily transferred to 

interaction terms constructed from continuous variables or from a combination of continuous and 

indicator variables. This foundation can promote an appreciation of interaction terms that should be useful 

to students beyond their initial statistics course—in understanding empirical studies encountered in 

assigned readings or literature reviews, and in conducting their own regression applications for other 

courses, as well as in the reading and analyses they may undertake in future careers. 

Endnotes 

1. Webster’s New Universal Unabridged Dictionary (Random House, 1996, p. 802) defines gestalt as “a 

configuration, pattern, or organized field having specific properties that cannot be derived from the 

summation of its component parts; a unified whole.”   

2. Garfield, Hogg, Shau, and Wittinghill (2002) explain, “Introductory statistics is often the one and only 

statistics course taken by students who are not majoring in this discipline.” Moore (1998, p.1253) states: 

“For most of these students, their first course is their one and only formal exposure to statistics.” Roiter 

and Petocz (1996) note, “The introductory statistics course is especially important because it may be the 

only statistics course taken by future users of statistics.”   

3. Many popular introductory texts, such as those by Johnson and Kuby (2012) and Johnson and 

Bhattacharyya (2014), also do not cover interaction in analysis of variance (ANOVA). But even 

students who do see interaction in the context of ANOVA, may not appreciate the role of a product term 

in MLR. 

4. For a good introductory presentation of the mathematics underlying OLS, see Kenkel (1989). 

5. Interaction in which each differential’s sign is uniform while its magnitude depends on another 

variable’s level has been called uncrossed interaction; if the sign changes, the interaction is said to be 

crossed (Cohen & Cohen, 1983). 

6. Robinson, Tomek, and Schumacker (2013) discuss testing the difference in slopes as an alternative to 

testing an interaction term for significance. Note also that with different data in more advanced courses, 

analysis of covariance (ANCOVA) could be used to isolate main effects by controlling for interaction 

between a categorical independent variable and a continuous covariate. The least squares (adjusted) 

group means in ANCOVA are calculated as if the covariate is always at its mean and thus, presupposes 

the absence of interaction (Huitema, 2011). The present example, however, does not use a continuous 

covariate and is, therefore, not well suited to ANCOVA. 

7. Other assumptions would allow us to arrive at (6) as well. For example, in place of (3) and (4), we 

could specify C100    and C101   .  As emphasized by Kam and Franzese (2007, p. 15), 
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the end result is the same “because the propositions being modeled are logically symmetric.” Notice 

also that the model in (6) allows for the possibility of significant interaction without significant main 

effects or vice versa. 

8. Aiken and West (1991) and Kam and Franzese (2007) provide more extensive treatments of the 

mathematics underlying the use of product terms for interaction. Those interested in background 

literature may also wish to review Friedrich’s (1982) summary of arguments against the use of 

multiplicative terms and his responses to them. 

9. See Robinson and Schumacker (2009) for a discussion of VIF in the presence of interaction. 

10. Note from (5) and (6) that
111   .  In equation (1), 

1 is estimated at 6,000, and in equation (7), 

1 is estimated at 3,000. Thus, interested students should be able to retrieve an estimate of 
1 as -3,000. 

11. Recall that with the data in Table 1, the first 15 observations of CorpMale are 0 and the rest are coded 

1; for CorpFemale, observations 11 through 15 are coded 1 and all others are 0, and for Non-corpMale, 

observations 6 through 10 are coded 1 and all others are coded 0. 

12. Proceeding as before, the grand mean can be calculated from (11) as 40,000 + 12,000(1/4) + 

3,000(1/4) + 21,000(1/4) = 49,000. 

13. As Friedrich (1982, p. 829) observes, “though it is seldom recognized as such…a model with a 

squared or higher degree term is actually a special case of interaction, the case in which a variable 

interacts with itself.” 

14. For more detailed comparisons of dummy and effects coding, see Hardy (1993) and Alkharusi (2012). 

15. This can be verified by applying effects coding to the example in the Appendix. 
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Table A1. Raw Data for Votes 

Votes Incumbent Democrat 

12,700 0 0 

12,800 0 0 

13,000 0 0 

13,000 0 0 

13,200 0 0 

13,300 0 0 

13,800 0 1 

14,000 0 1 

14,200 0 1 

16,800 1 0 

16,900 1 0 

17,100 1 0 

17,200 1 0 

17,900 1 1 

18,100 1 1 
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APPENDIX 

Illustrating the Absence of Interaction 
 

  This appendix briefly illustrates the indicator approach in a setting 

with unbalanced design and without interaction; it could be used as an 

extension of the basic lesson or as homework. The hypothetical data in 

Table A1 show the number of votes garnered by 15 political 

candidates identified as either Republicans (coded 0) or Democrats 

(coded 1), and as challengers (0) or incumbents (1). There are fewer 

Democrats and incumbents than others, and the group means are 

recorded in Table A2. The mean advantage of Democrats over 

Republicans is consistent (1,000 votes) regardless of incumbency, and 

the mean advantage of incumbents over challengers is uniform (4,000 

votes) regardless of political party. Thus, the profile plots in Figure A1 

are parallel, suggesting a lack of interaction between incumbency and 

political party.   
 

Table A2. Mean Votes  

Attributes: Democrat Republican 

Challenger  14,000 13,000 

Incumbent 18,000 17,000 
 

Regressing Votes on the indicators Incumbent and Democrat yields:  
 

   Votes = 13,000   +  4,000Incumbent  +  1,000Democrat                (A1) 

        (174.705)   (38.763)       (9.352)  
 

The main effects are statistically significant and R
2
 = .993. Even without an interaction term, this 

regression correctly predicts each of the means in Table A2 and can be used to compute the grand mean 

as 13,000 + 4,000(6/15) + 1,000(10/15) = 14,933.33 votes. Indeed, as students can easily verify, a 

multiplicative interaction term (IncDem = Incumbent×Democrat) would now be statistically non-
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Figure A1. Profile plots for votes. 

 

significant. This would alter the t-statistics, but have essentially no other effect on the coefficients; the 

result would be: 

 

   Votes = 13,000  +  4,000Incumbent  +  1,000Democrat  +  0.00 IncDem                (A2) 

        (155.717)   (30.303)      (6.916)      (0.00) 

 

 The three-dummies method described above can also be applied to these data. Letting Republican 

challengers be the reference group and designating incumbent Republicans and Democratic challengers as 

IncRep and DemChal, respectively, generates the regression result: 

 

   Votes = 13,000  +  4,000IncRep  +  1,000DemChal  +  5,000IncDem           (A3) 

       (155.717)   (30.303)           (6.916)   (29.946) 

 

where the intercept is once again the mean for the 

reference group. In this case, Republican 

challengers would gain, on average, 4,000 votes 

if they were incumbents in their own party, 1,000 

votes if they switched parties, and a total of 5,000 

votes if they were incumbents and switched 

parties. So, for this example, the whole is exactly 

equal to the sum of its parts—this time, there is 

no statistical Gestalt. 

 

 

 

 

 

 


