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Researchers in the social and behavioral sciences are increasingly working with data that are sampled at 

multiple levels, where individuals at the first level are nested within clusters at the second level, and in 

some cases these level-2 clusters are nested within clusters at a third level.  Examples of this type of data 

structure can be found in large scale data programs such as the National Assessment of Educational 

Progress (NAEP), the Program for International Student Assessment (PISA), and Trends in International 

Mathematics and Science Study (TIMMS), among others.  Such data require the use of special data 

analysis strategies that appropriately account for the presence of the multilevel data structure, in order to 

avoid parameter estimation bias.  Simultaneous with this increase in research being done using multilevel 

models, has been the use of data mining techniques to fully explore relationships among variables in large 

and complex data files.  Of these approaches, one of the most popular involves recursive partitioning 

methods such as classification and regression trees, and random forests.  Until very recently, multilevel 

versions of these partitioning models were not available, leading to difficulties for researchers working 

with multilevel data structures who want to use recursive partitioning.  This study showcases two such 

methods for recursive partitioning in the multilevel data context.  Detailed analyses are conducted, results 

of these analyses are discussed, and implications of the models are described.  The R code used to carry 

out these analyses is provided in the appendix to the manuscript. 

 ultilevel data, in which individuals are nested within clusters, is very common in educational and 

psychological research (Gumus, 2014; Van Laere, Aessaert, & van Braak, 2014; Winnaar, Frempong, & 

Blignaut, 2015).  Research involving such data might involve a research design in which schools are the 

primary sampling unit, and all students within the selected schools participate in the study.  Likewise, 

similar designs are commonly employed in the health sciences, where patients are nested within hospitals, and in 

psychology, where clients are nested within therapists, as examples.  In addition to such planned experiments, 

multilevel data also appears in research scenarios involving large datasets, such as the Programme for International 

Student Assessment (PISA), the Early Childhood Longitudinal Study (ECLS), and the National Assessment of 

Educational Progress (NAEP), to name just a few.  In each of these cases, individuals are nested within schools, 

which are in turn nested within a larger organizing entity such as a state or a nation.   

 Coincident with the increased use of multilevel data in educational and psychological research, has been the 

greater popularity of very flexible modeling techniques based upon recursive partitioning of data in order to identify 

predictor variables that are related to an outcome variable of interest.  Such models have become increasingly 

popular for both prediction of dependent variable values, and exploration of variable importance because they do not 

rely on the common assumptions underlying standard linear regression models, including multivariate normality, 

and homogeneity of variance (Holden, Finch & Kelley, 2011; Lei & Koehly. 2003; Pai, Lawrence, Klimberg & 

Lawrence, 2012; Rausch & Kelley, 2009; Finch & Schneider, 2007).  Given their flexibility with regard to the 

distributions underlying both the response and predictor variables, as well as the ability to automatically detect 

nonlinear relationships among the variables, such recursive partitioning models are more frequently used in the 

social sciences (e.g., Gruenewald, Mroczek, & Ryff, 2008; Markham, Young, & Doran, 2013; Ozgen, Hellemann, & 

de Jonge, 2013).  However, relatively little work has been done in regards to the use of such models in the presence 

of multilevel data.  Therefore, the purpose of the current study was to demonstrate two proven methods for fitting 

recursive partitioning models with multilevel data.  Each of these approaches combines the flexibility of recursive 

partitioning techniques with the appropriate modeling of multilevel data structure.  Following is a brief review of 

multilevel modeling, recursive partitioning, and ensemble recursive partitioning.  Next, prior research describing 

problems associated with multilevel data and recursive partitioning models is presented, followed by a discussion of 

multilevel methods for recursive partitioning.  Finally, the data that serves as the motivation for this study are 

presented, followed by a detailed description of the study results and a discussion of their implications, particularly 

with respect to the use of the methods described here. 

 

Multilevel Models 

 Multilevel models (MLMs), sometimes also referred to as mixed effects models, are used in the 

analysis of data in which individuals (level-1) are nested within clusters (level-2), and the clusters could 

themselves be nested within higher order clusters (level-3).  MLMs frequently occur in educational 

research, where individual students are sampled by (and therefore nested within) schools.  They also 
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appear in psychological research, where clients receiving therapy are nested within therapist, and in 

medical research where individuals patients may be nested in doctors and hospitals.  In all of these cases, 

the modeling of an outcome variable must account for the nested structure of the data in order to ensure 

that standard errors and model parameters are accurately estimated (Snijders & Bosker, 2012).  One of the 

most common such MLMs is the random intercept model linking an independent variable, x, with a 

dependent variable y.  This model takes the form: 

          𝑦𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑥𝑖𝑗 + 𝜀𝑖𝑗           (1) 
 

where;   𝑦𝑖𝑗 =Dependent variable value for individual i in cluster j 

    𝛽0𝑗 =Intercept for cluster j 

    𝛽1 =Slope relating independent variable x to dependent variable y 

    𝑥𝑖𝑗 =Value of x for individual i in cluster j 

    𝜀𝑖𝑗 =Random error for individual i in cluster j 
 

In model (1), 𝛽0𝑗 can be expressed as: 

         𝛽0𝑗 = 𝛾00 + 𝑈0𝑗             (2) 

where;   𝛾00 =Mean intercept across clusters 

    𝑈0𝑗 =Unique effect of cluster j on the intercept  
 

The parameter 𝛾00 is what is known as a fixed effect, meaning that it takes the same value for all clusters.  

On the other hand, 𝑈0𝑗 is a random effect that varies across clusters.  In the context of students nested 

within schools, this would mean that model intercepts would differ across schools, with part of the 

intercept including a common component across schools (𝛾00), as well as a component unique to the 

individual school (𝑈0𝑗). In model (1), 𝛽1 is a fixed effect and is therefore constant across clusters.  Again, 

in the school research context, this would mean that the relationship between the independent and 

dependent variables is the same for all schools.   It is also possible to fit a random coefficients model in 

which 𝛽1 has both fixed and random components, just as is true here for 𝛽0𝑗.  The model parameters in 

(1) and (2) are typically estimated by maximum likelihood (ML) or restricted ML (REML) estimation, 

which differ in terms of how the standard errors of parameter estimates are calculated.  Specifically, the 

degrees of freedom used in ML does not account for the fact that the parameters themselves are being 

estimated, leading to a negative bias in the standard error estimates (Kreft & de Leeuw, 1998).  In 

contrast, REML standard error estimates do use degrees of freedom that account for the estimation of the 

model parameters, thereby producing unbiased estimates.  REML is the more commonly used of the two 

approaches because its standard errors are generally more accurate (Kreft & de Leeuw). 
 

Classification and Regression Trees 

  A potential drawback of linear models, including the MLM described above, is that it restricts the 

relationships between predictors and response to be linear and additive in nature (no interactions among 

predictors) unless the researcher explicitly includes interaction terms.  If the researcher is not aware of 

important interactions in the population, or unsure of the form that they might take, then such terms will 

not be included in the analysis, resulting in a misspecified model.  One set of methods for regression that 

can seamlessly include all manner of nonlinear relationships without the researcher having to prespecify 

anything about the nature of the model except the predictor variables are those based on recursive 

partitioning (RP).  Classification and regression trees (CART) is a very popular RP method that was first 

outlined by Breiman, Friedman, Olshen, & Stone (1984).  CART develops a prediction model for an 

outcome (Y) given a set of independent variables (x) by iteratively dividing individual members of the 

sample into ever more homogeneous groups, or nodes, based on values of the predictor variables.  It is a 

nonparametric method in that there are no assumptions regarding the functional form of the model linking 

the dependent and independent variables (Williams, Lee, Fisher & Dickerman, 1999).  Thus, it is not 

limited to fitting linear, or even additive relationships.  In addition, it can very easily incorporate variables 

of different types and measured on different scales (Strobl, Malley, & Tutz, 2009).   Thus, for example, 

nominal categorical variables with more than two categories can be included in the analysis without 

dummy coding and the attendant selection of a referent category that is necessary when using such 

variables with standard regression models, or MLM.  In addition, CART is able to fit nonlinear 
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relationships between the predictors and the outcome, with the added advantage of being able to deal with 

interactions automatically.  Following is a basic description of the general CART approach, along with 

discussion of limitations to the method.  It should be noted that there are a variety of approaches for 

dealing with the particulars of CART, and that the discussion below is designed to present the general 

methodology. 

  In order to understand the manner in which CART works, let us consider an example in which each 

member of the sample has a score on a reading test, and each individual is measured on a set of 

continuous and categorical predictor variables.  CART begins by placing all subjects into a single root 

node at the top of the tree.  It then searches the entire set of predictors to find the value for one of them by 

which it can divide the observations into two new nodes whose values on Y are as homogeneous as 

possible.  In this example the outcome variable of interest is the continuous variable examinee reading 

score.  Thus, the optimal split is the one resulting in two nodes with the lowest variance possible.  To 

continue the example, the predictors include 5 subtests of a diagnostic assessment designed to provide 

schools and teachers with information regarding various reading subskills, including Vocabulary (sub1), 

Informational text structures (sub2), Informational text comprehension (sub3), Literary text structures 

(sub4), and Literary text comprehension (sub5).  The CART algorithm assessed every possible split for 

each of these subtests and found that splitting the sample at a score of 202 on subtest 5 (literary 

comprehension) yielded the most homogeneous daughter nodes.  Thus, all individuals in the sample with 

a literary comprehension score less than or equal to 202 were moved to the left side of the tree, while 

those with scores greater than 202 were moved to the right side.   The exact determination of which 

variable to split where can be made in a number of ways, including minimizing a loss function comparing 

the observed and CART predicted values on the outcome variable, or calculating a Chi-square test 

statistic to determine whether the split results in significantly different patterns for the outcome variable 

categories in the resulting daughter nodes.   

  For each daughter node, the predictors are once again searched for the optimal split by which the 

subjects can be further divided into ever less heterogeneous nodes.  This division of the data continues 

until a predetermined stopping point is reached such that further splits do not appreciably reduce the 

heterogeneity of the resulting nodes.  For a continuous outcome variable, within node heterogeneity can 

be expressed by the deviance (D) statistic: 

          

2ln2 iiki SnD 
       (3) 

where;   nik = Number of subject from group k in node i 

    S
2

i = Variance of the dependent variable in node i. 
 

Larger values of Di indicate greater heterogeneity within the node; i.e. a relatively less optimal solution.  

The sum of these individual node deviances,  

           iDD
              

(4)  

is a measure of the overall performance of the CART solution, with smaller values indicating greater 

within node homogeneity and thus a better performing tree.  A number of potential stopping rules have 

been proposed for CART, such as stopping when a minimum terminal node size (e.g. 5) has been reached, 

when no additional splits result in a statistically significant Chi-square statistic, or when a particular 

threshold of Di for each of the potential terminal nodes has been achieved.   

  The predicted value of the dependent variable yielded by the CART model for an individual is the 

mean value of Y for the terminal node where that individual is placed.  Variable importance is measured 

by the decrease in D that comes from using the variable in a particular split.  Thus, in the context of 

CART, variable importance is directly tied to specific splits within the tree, rather than being a global 

measure across all branches of the tree.  The interested reader can trace other parts of the tree to learn 

more about the relationships among the subtest scores and reading proficiency. 

  CART has a number of advantages that make it an attractive alternative to traditional linear models.  

However, it also has some distinct disadvantages that can prove problematic to the researcher.  Perhaps 

foremost among these problems is the tendency to overfit the training sample, due to the relative 

sensitivity of the method to sample specific characteristics (Hastie, Tibshirani, & Friedman, 2009). For 
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example, decisions regarding on which variables to split and where the splits should occur have been 

shown to be closely tied to the distributional characteristics of the training sample and therefore may not 

generalize well to the broader population (Bühlmann & Yu, 2002).  The result can be a CART model that 

fits the training data quite nicely but does not provide particularly accurate predictions for other samples.  

One early approach for dealing with this problem was the process of pruning, whereby branches in the 

tree are removed if they do not reduce the overall heterogeneity of the model by a predetermined amount 

(Ripley, 1996).  While frequently yielding superior trees to the original in terms of classification accuracy 

for a second (cross-validation) sample, pruning is somewhat cumbersome to carry out, and may not 

totally eliminate the problem of overfitting (Hothorn, Hornik, & Zeileis, 2006).  More modern methods of 

growing classification trees, such as the approach used in this study relying on the Chi-square test, do not 

require pruning.  Given this combination of possessing several advantages vis-à-vis other modeling 

methods, while at the same time having the potential for overfitting the training data, an alternative 

approach to classification that relies on trees while overcoming some of their distinct problems would be 

most desirable, and indeed has been developed in the form of the ensemble recursive partitioning 

methods, Bagging and Random Forests. 
 

Ensemble Recursive Partitioning Models 

 While CART can be overly sensitive to characteristics in the training sample and thereby will not 

always produce a generalizable solution, it is also important to note that predictions from a single CART 

analysis are unbiased so that averaged over a number of individual trees the resulting predictions for an 

individual should be quite accurate ( Bauer & Kohavi, 1999; Dietterich, 2000).  Based upon this fact, 

researchers have extended CART with alternative methods for developing predictive models based upon 

the recursive tree model outlined above.  These two methods, Bagging (Brieman, 1996) and Random 

Forests (RF; Brieman, 2001) each rely on bootstrap resampling to overcome the aforementioned problems 

with CART.  Both Bagging and RF select a large (e.g., 1000) number of B bootstrap samples and apply 

CART to each of these, yielding B individual trees.  These bootstrap samples can either be drawn with 

replacement and be the same size as the original or without replacement and represent subsets of the 

original sample.  Each bootstrapped tree yields a predicted value for members of the sample, and the 

results of the B trees are then averaged to ascertain both variable importance information, and to predict 

an individual’s group membership.  The difference in the two ensemble methods is that Bagging makes 

use of the entire set of predictors for each tree, and RF applies bootstrapping to the predictors as well as to 

the sample.  Thus, for each RF tree B bootstrap samples of subjects and predictor variables are used.  

Individuals not included in bootstrap sample B are referred to as the out of bag (OOB) sample for that 

particular tree.  Because the trees used by RF are even more diverse than those used in Bagging, it can be 

shown that its averaged results are also less sensitive to sample specific variation and thus more 

generalizable (Brieman, 2001).  In addition, by relying on bootstrapped samples of predictor variables, RF 

is able to yield more information than Bagging or CART regarding the true importance of all predictor 

variables.  This is because some of the RF trees will not include very dominant variables that mask the 

importance of other predictors, giving these less important predictors an opportunity to demonstrate their 

contribution to the prediction.   Given these advantages, RF will be the method of ensemble prediction of 

primary interest in this study. 

 With regard prediction for a continuous outcome variable using ensemble methods, the set of trees 

that have been fit in the model building process are applied to each new individual for whom a predicted 

outcome is desired.  Thus, each tree is applied to each individual subject as was described for CART, and 

the final predicted value on Y for an individual in each such application is recorded.  After all of the trees 

have been applied, each individual receives as their predicted value on Y the mean across the B RF trees. 

 In addition to prediction, determining variable importance is also frequently an important issue to 

researchers.  In the context of MLM this is typically done using hypothesis tests of model parameters 

associated with individual variables.  When variables are significantly related to the outcome variable, 

they are deemed to be important.  Variable importance in RF can be calculated using a permutation 

methodology (Nicodemus, Malley, Strobl, & Ziegler, 2010).  This approach works by permuting one or 

more variables so as to eliminate naturally occurring relationships in the data (Edgington & Onghena, 

2007).  Typically, a large number of such permutations are made in order to create a distribution of 

permuted outcomes.  Next, the statistic of interest from the original dataset is compared to the 
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permutation distribution.  For RF, the permutation importance of an individual predictor variable is 

calculated by comparing the number of correct predictions made by the actual data (i.e. the predictor 

ordered as it appears in the original dataset) with the number of correct predictions made when the 

variable has been permuted (i.e. randomly shuffled), averaged across all trees in the ensemble.  Thus, for 

example, in order to obtain the permutation variable importance for subtest 1, we would randomly reorder 

the subtest 1 scores across the subjects, create a tree, and obtain predicted outcomes for each subject.  

This permuting of subtest 1 would be carried out a large number of times (e.g. 1000).  Then, we would 

compare the prediction accuracy across trees for the original variable with that of the mean for the 

permuted trees.  If the difference is large, and in favor of the tree based on the original data, we would 

conclude that the variable is important in accurately predicting the outcome variable.  On the other hand, 

if the difference in prediction accuracy between the actual and permuted values is very small, then we 

would conclude that the variable does not contribute much more to predicting Y than if it were random 

and thus totally unrelated to the outcome.  These variable importance values can then be compared 

graphically, as will appear later, in order to determine which variables are most important in accurately 

predicting group membership.  More formally, importance for variable xm for a single tree (t) is calculated 

as: 

        𝑉𝐼𝑡(𝑥𝑚) =
∑ 𝐼(𝑦𝑖=�̂�𝑖𝑂)

|�̅�|
−

∑ 𝐼(𝑦𝑖=�̂�𝑖𝑃)

|�̅�|
           (5) 

where;   �̂�𝑖𝑂 = Prediction for observed data 

    �̂�𝑖𝑃 = Prediction for permuted data 
    B=out-of-bag (OOB) sample 
 

If variable xm is not included in the tree, then VI=0.  In order to obtain the overall variable importance 

measure for the RF, we then calculate 

        𝑉𝐼(𝑋𝑚) =
∑ 𝑉𝐼𝑡(𝑥𝑚)𝑇

𝑡=1

𝑇
               (6)  

where T is the total number of trees in the ensemble. 
 

Recursive Partitioning with Multilevel Data 

 There is a growing body of research examining the impact of multilevel data on the performance of 

recursive partitioning models such as CART and RF.  Results of simulation studies have demonstrated 

that certain aspects of recursive partitioning algorithm performance are deleteriously impacted by 

multilevel data, whereas other aspects appear not to be affected at all.  For example, in a simulation study, 

Karpievitch, Hill, Leclerc, Dabney, and Almeida (2009) showed that RF produced equally accurate 

predictions of an outcome variable, whether data were multilevel or single level. Similar results regarding 

prediction accuracy with multilevel data have also been shown for CART (Fu & Simonoff, 2015; Strobl, 

Malley, & Tutz 2007).  In short, what research exists examining the impact of multilevel data on RF and 

CART prediction accuracy suggests that these methods will perform as well as with multilevel data as 

when the data are single level only.   

  Despite these positive results regarding prediction accuracy, however, there does appear to be some 

impact of multilevel data on the calculation of variable importance measures for recursive partitioning 

methods.  For example, conditional inference methods for recursive partitioning have at their core the 

assumption of independence of errors for the individual observations.  When this assumption is violated 

due to clustering of individuals, the test used to determine whether a split should be made is biased, and 

this bias increases as the Intraclass Correlation (ICC), which measures the relationship of scores for 

individuals within the same cluster, increases (Luke, 2004).  Bias in this statistic leads to the potential for 

identification of more splits in the sample tree than is actually true in the population, and in turn 

identification of more variables as being important than should be the case.  Karpievitch, et al. (2009) 

found that for multilevel data, the individual trees that make up the forest in RF are highly correlated with 

one another, and that this correlation increases concomitantly with increases in the ICC.  In turn the 

inflated correlation among the trees results in an underestimate of the OOB error.  As noted above in 

equation (6), the OOB sample is used to calculate variable importance statistics.  Thus, underestimation of 

OOB error can result in biased estimates of variable importance, leading to inaccurate conclusions 

regarding which of the predictor variables are most and least important in characterizing the outcome 

variable.  Finally, research has shown that in general, CART is more likely to use predictors with more 
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values when selecting variables for splitting the data (Loh & Shih, 1997).  Thus, when level-1 and level-2 

continuous predictors are both included in the analysis, level-1 variables are more likely to be used in 

splitting because they can take N possible values as opposed to level-2 variables which can take K 

possible values, where N and K represent the number of level-1 (e.g. people) and level-2 (e.g. schools) 

units, respectively.  Given that they are more likely to be used in splitting, level-1 variables will therefore 

be reported by CART as more important than level-2 variables, as a rule, even when such is not the case 

in the population (Martin & van Oertzen, 2015). 

  Given the potential difficulties with using standard recursive partitioning models with multilevel data, 

particularly in terms of identifying important variables, two alternative approaches have been suggested.  

These methods, Mulilevel Exploratory Data Analysis (MLEDA), and Mixed Effects Mulilevel Recursive 

Partitioning Trees (RE-EM) take very different approaches to accounting for multilevel data structure 

when using recursive partitioning models.  However, both methods are designed to correct some of the 

aforementioned problems created by multilevel data.  Each of these approaches is described below in 

brief, with more references provided for readers more interested in an in depth technical understanding of 

these methods. 

Multilevel Exploratory Data Analysis (MLEDA) 

 MLEDA (Martin, 2015) represents an extension of the way in which variable importance measures 

are calculated for CART and RF, rather than as a new algorithm for growing trees.  As noted above, 

multilevel data does not appear to unduly influence predictions obtained from RP methods.  However, 

calculation of variable importance for these approaches, particularly RF, is impacted by multilevel data 

structure because the trees are correlated with one another, leading to correlated OOB samples and errors.  

In order to counter this problem and thereby obtain more accurate estimates of variable importance, 

Martin proposed using a simulated cross-validation sample for calculating the statistic (6), rather than the 

OOB sample. This simulated sample is generated using marginal traits from the data (i.e. means and 

variances appearing in the data), as well as the covariance structure that is found in the data.  Using this 

information, more accurate variable importance measures that are not influenced by the cluster correlated 

nature of the data can be constructed, and should more accurately identify important variables, and order 

them appropriately.  Simulation research (Martin) has shown that indeed the methodology for calculating 

variable importance based upon the simulated cross-validation sample yielded more accurate ordering of 

variable importance than did the traditional approaches for this purpose. 
 

Random Effects Expectation Minimization Recursive Partitioning (RE-EM Tree) 

 Sela and Simonoff (2012) have proposed a very different solution to the problem of fitting recursive 

partitioning algorithms (in particular CART) to multilevel data.  Martin’s (2015) method for dealing with 

this issue focused on correcting the calculation of the variable importance statistics, and did not involve 

changing the basic algorithm used to grow the tree.  In contrast, Sela and Simonoff developed a new 

method algorithm for fitting trees with multilevel data, by estimating the random effect(s) in the model 

and removing them prior to actually growing the tree.  Put another way, the RE-EM tree approach models 

the effects of the data being clustered, and then removes or conditions on them when fitting the tree.  

When an initial tree has been fit, the random effects are estimated again.  This cycle is continued until 

convergence is reached.  Following is a more formalized presentation of the RE-EM tree algorithm 

emphasizing its various steps. 

1.  Set the estimated random effects to 0 (i.e. assume that there is no effect associated with cluster 

membership). 

2. Fit CART to the data in the standard way predicting dependent variable y using the predictors, 

and record terminal node membership of each individual in the sample. 

3. Estimate the mixed effects model in equation (1) using the dependent variable y and the 

predictors. 

4. Retain the estimated random effects. 

5. Calculate 𝑦𝑖 − 𝑍𝑖𝑏𝑧, where 𝑍𝑖 is the value of the random effect for person i, and 𝑏𝑧 is the random 

effect coefficient for effect z.   

6. Iterate through steps 2-5 until convergence is reached for 𝑏𝑧. 

7. Replace the predicted values of y produced by CART with the mean of 𝑦𝑖 obtained by the 

multilevel model for individuals in each terminal node. 
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The RE-EM tree method is designed to appropriately account for multilevel data in the construction of the 

tree, and estimation of the predicted values obtained from the tree.  While Sela and Simonoff (2012) 

focused on a random intercepts model, it is possible to incorporate any random effects model into the RE-

EM tree framework, including models with random slopes for one or more of the predictors.  However, it 

should also be noted that random effects are not used in the actual construction of the tree, meaning that 

variables with random slopes will not be used to in the recursive partitioning process, but only in the 

estimation of the random effects themselves, and the associated adjustment of y in step 5 above.  
 

Goals of the Current Study 

 The primary goal of this study was to demonstrate the use of the two recursive partitioning methods 

for multilevel data that have been described above.  Each method is demonstrated using a multilevel 

dataset, and the results are interpreted in some detail.  It is hoped that researchers faced with multilevel 

data and interested in using RP might find this manuscript helpful in developing an analysis plan of their 

own, based upon either of these methods.  The appendix includes the R code used in this study. 
 

Methods 

 Data for this study came from the Progarmme for International Student Assessment (PISA).  The 

sample included a total of 10,000 randomly selected 15-year old students from the 65 nations 

participating in the Programme for International Student Assessment (OECD, 2009).  The outcome 

variable of interest in this study was the math achievement test score obtained as a part of PISA.  The 

independent variables for these analyses were individual student SES, the mean of student SES at the 

school level, and the mean of student SES at the country level.  The PISA SES index is derived from a 

factor analysis of variables that include parent education and occupation and possessions in the home 

(mean = 0, standard deviation = 1). The means at the school and country levels represented the “typical” 

SES for individual schools and countries.  In addition to SES, student sex was also included as an 

independent variable, as were scores on metacognition and learning strategy inventories.  PISA (OECD) 

included two metacognitive indexes and three learning strategy use indexes. Metacognition was measured 

as metacognitive knowledge about text comprehension. Students were presented with scenarios and then 

evaluated the quality and usefulness of strategies for reaching an intended goal.  The rank order of the 

strategies was compared to an optimal ranking developed by experts.  Two metacognitive indexes were 

created: The index of understanding and remembering (UNDREM) and the index of summarizing 

(METASUM). Additionally there were three learning strategy indices: The frequency of use of control 

strategies (CSTRAT), memorization strategies (MEMOR), and elaboration strategies (ELAB).  All of 

these variables were expressed as z scores.  Two multilevel recursive partitioning methods were used to 

fit the data, including MLEDA and RE-EM tree.  Results from each method are described below, with 

particular emphasis on the identification of important variables for differentiating students based upon 

math test performance.  The R code used to carry out these analyses appears in the appendix.   
 

Results 

 Results of the data analyses are organized by method, followed by a general summary of what was 

found. 
 

MLEDA 

 When using MLEDA, the first step in data analysis is to estimate the ICC, which is done by fitting the 

random intercept only model (including no predictor variables) in the standard multilevel modeling 

context.  The ICC is the amount of variance in math test scores associated with country (3295) divided by 

the total variance in math test scores (10093), or 0.326.  Thus, just under 33% of the variation in math test 

scores is associated with the nation in which the examinee lives.  In other words, a third of the variability 

in math scores across individuals is associated with their home country.  The presence of such a large ICC 

suggests that clustering is an important facet of this study, and that multilevel appropriate methods for 

fitting recursive partitioning models should be strongly considered.  If the ICC were very small, then we 

would not anticipate a strong effect due to the clustering, so that a naïve method for fitting the trees would 

probably work fine.   
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Figure 1. Variable importance plots for the naïve and RF 

models with math achievement score as the outcome. 
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Variable Importance Plot
  The RF MLEDA model was fit to the 

data such that math achievement was the 

outcome, with the predictors being all of 

those listed in the methods section.  The 

proportion of variance in math explained by 

the RF model, based upon a cross-validation 

sample was 0.229.  In other words, a model 

was fit to a training set of individuals made 

up of randomly selected 50% of the total 

sample, and then the model was applied to 

the other 50%, who made up the cross-

validation sample.  For this second sample, 

the RF model accounted for 22.9% of the 

variance in math test scores. 

 Of particular interest in the current study 

was the determination as to which variables 

were most important in predicting math 

achievement.  As noted above, variable 

importance measures can be particularly 

susceptible to bias in the context of 

multilevel data.  Figure 1 includes variable 

importance values for each of the predictors, 

for the RF model and a naïve model in which 

no interactions of the variables were 

included.  The naive model results are 

included as a standard component of 

MLEDA graphics output and serve as a baseline against which the RP results can be compared.  The 

degree of divergence that is seen in results for the two models indicates the extent to which including 

interactions through the use of RP is helpful for understanding the dependent variable.  If the variable 

importance results for the two methods are quite similar, then there is no advantage to using the more 

complex RP model.  Results in Figure 1 do show a great deal of divergence between the two approaches, 

however.  In particular, the RF MLEDA model reveals that the most important predictors of math 

achievement are all associated with relative wealth, with school SES, followed by student SES, and 

country SES having the highest importance values.  In contrast, the learning strategies are somewhat less 

important in predicting math performance, with the most salient being the metacognitive strategies of 

summarizing and understanding/remembering.  The least important factor in terms of math achievement 

was student sex. 

 In addition to the relative importance of each variable in terms of predicting the outcome, it is also of 

some interest to ascertain the nature of the relationships between the outcome and predictor variables, 

which can be done using predicted value plots for the RF model.  Figure 2 includes such plots for the 

predictors.  Each panel in the figure represents the relationship between the model predicted math test 

score (y-axis) and a predictor variable (x-axis).  This plot is particularly helpful for understanding how the 

outcome is related to each of the predictors.  For example, we can see that math scores increase 

concomitantly with increases in the three SES values.  In addition, this increase in math performance 

appears to accelerate somewhat for higher school SES, SES, and country SES values, before leveling off 

at the very highest levels of wealth.  Finally, math scores were also positively related to the use of 

METASUM, and UNDREM.   

 The predicted value plots can be used to investigate possible interactions in the data as well as the 

main effects.  For example, Figure 3 includes a set of three graphs for the interaction of student SES and 

METASUM with regard to model predicted math test performance.  The first graph in the triptych shows 

the relationship between SES and predicted math score only, with the second displaying the relationship 

between METASUM and predicted math score.  The third graph in this set includes predicted math score 

on the y-axis and student SES on the x-axis, with separate lines for 1 standard deviation below the mean, 

the mean, and 1 standard deviation above the mean on METASUM.  In this way, we can see that the  
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Table 1. Summary of  

RE-EM Tree Results 

Terminal 

 node 

Node 

size 

Math 

Mean 

 1 1138 393.4 

 2 689 410.6 

 3 735 441.9 

 4 493 418.5 

 5 772 448.9 

 6 330 455.3 

 7 785 489.0 

 8 458 443.9 

 9 392 474.5 

10 258 466.3 

11 464 504.3 

12 364 494.5 

13 521 530.2 

14 364 494.5 

15 521 530.2 

16 1071 511.4 

17 411 542.6 

18 534 541.9 

19 585 573.1 

 

 
Figure 2.  Predicted value plots for main effects of each predictor variable in the RF model. 
 

relationship between SES and math achievement score appears to be 

stronger for individuals with lower METASUM scores.  In other 

words, the relationship of SES on math test score is stronger for 

individuals who are less likely to use summarizing learning strategies.  

As a way to contrast the case where an interaction is present and where 

it is not, Figure 4 contains a set of interaction plots for SES and ELAB.  

In this case, it is clear that students with higher SES have higher math 

test s cores, that use of elaboration strategies does not appear to be 

related to performance on the test, and that there is no interaction 

between ELAB and SES with respect to math score, given the very 

similar shape of the lines for each of the three elaboration score groups in 

the figure.  Similar graphs can be examined for other interactions of interest. 
 

RE-EM Trees 

 Whereas the primary goal of MLEDA is understanding the extent 

to which individual variables and their interactions contribute to scores 

on the outcome variable, the major purpose of RE-EM trees is 

prediction.  For this reason, the descriptive tools available to 

researchers using this technique are not as advanced as those for 

MLEDA.  Nonetheless, RE-EM trees do provide useful information 

regarding relationships between the predictors and the outcome 

variable, including with respect to interactions among the predictors.  

Indeed, in certain respects the RE-EM tree approach yields more 

detailed information regarding these relationships than does MLEDA, 

as will be demonstrated below.   
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Figure 3.  Predicted value plots for interaction of student SES, use of the summarizing learning strategy, 

and math achievement score in the RF model 
 

 Figure 5 displays the RE-EM tree with math achievement score as the dependent variable, and the 

predictors being those used with MLEDA, and described above. The first point to make regarding 

interpretation of the tree is that the length of the lines linking the nodes reflects the decrease in deviance 

(unexplained variance in Y) that is obtained through a particular split.  Thus, it is clear that the first split 

reduces variance the most, followed by later splits in the tree. The final splits at the bottom decrease the 

unexplained variance in the outcome variable relatively little by comparison.  This first split of the data 

was for school SES, such that individuals attending schools with mean standardized SES values less than 

-0.1596 (just slightly below average) were placed on the left side of the tree, and those with mean school 

SES values larger than -0.1596 were placed to the right.  For individuals with lower school SES, the next 

split was on the summarizing score for metacognitive strategy use.  Those with METASUM scores less 

than -0.1231 were moved to the left, and those with METASUM values larger than -0.1231 were moved 

to the right.  It is possible to continue down the tree until the terminal nodes are reached.  At the bottom of 

each terminal node RE-EM tree displays the mean value of the outcome variable, in this case math 

achievement score.  Table 1 includes summary information for each of the terminal nodes, including node  
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Figure 4.  Predicted value plots for interaction of student SES, use of the elaboration learning strategy, 

and math achievement score in the RF model. 
 

size and mean math score. From this table, we can see that terminal node 19 yielded the largest mean 

math achievement score. This node included individuals with school SES greater than 0.4073, 

METASUM greater than 0.2962, and UNDREM greater than 0.4992.  In other words, these were 

individuals who attended relatively wealthy schools, and who used both summarizing and 

understanding/remembering learning strategies.  In order to fully understand the relationships among the 

variables measured here and math achievement, a similar tracing of the paths down the tree can be done 

for each terminal node. 
 

Discussion 

 The purpose of this study was to demonstrate two approaches for developing recursive partitioning 

models in the presence of multilevel data.  These methods account for the data structure in different ways.  

MLEDA does not alter the basic algorithm underlying RF, but rather changes the way in which variable 

importance is calculated, by using a simulated cross-validation dataset rather than the typical out of bag 

sample that is used in standard RF analyses.  In this way, the multilevel data structure is appropriately 
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accounted for and the artificial reduction in OOB error that occurs for standard RF is avoided, leading to 

more accurate measures of relative variable importance.  In contrast, the RE-EM tree approach explicitly 

models random effects (e.g., intercepts and slopes), and uses residuals from this model in place of the 

actual dependent variable values, thereby accounting for the multilevel data structure.  The two 

approaches differ in terms of their focus, with MLEDA being very much an exploratory tool providing 

researchers with global information regarding which predictors are most closely associated with the 

outcomes, and RE-EM tree displaying each specific split in the tree, along with sample sizes and means 

for the various terminal nodes.   

 As was noted previously, multilevel data presents researchers with methodological challenges, 

particularly with respect to correct identification of the importance of each predictor variable’s 

relationship with the outcome.  At the same time, given the ubiquity of such data structures in educational 

and psychological research, coupled with the need to use data mining techniques such as recursive 

partitioning with large, complex datasets, researchers need access to techniques that properly account for 

multilevel data structure.  The two methods presented here do so, and provide the user with a variety of 

information about relationships in the data.  In terms of which to use when, some recommendations can 

be made based upon the work presented here, as well as prior research in this area.  First, if determining 

which independent variables and low level interactions of these are most strongly related to the outcome 

is of primary importance, then MLEDA may be preferable to RE-EM tree because it yields such 

information in an easy to interpret fashion.  In addition, unlike RE-EM trees, MLEDA provides the 

researcher with an index of variable importance, such that the relative magnitude of relationships with Y 

can be compared.  On the other hand, if the researcher would like to understand in more detail the specific 

mechanisms that differentiate individuals on the dependent variable with respect to the predictors, then 

RE-EM tree may be preferable.  Whereas MLEDA yields its results in a black box way, such that the 

individual trees are not visible, Re-EM tree provides the user with the tree so that the paths to the terminal 

nodes can be clearly delineated.  Thus, the mechanisms associated with appearance in one of the terminal 

nodes can see be clearly seen in the resulting trees.  This type of result may be particularly interesting to 

those who are using RP to assist in development of a diagnostic framework for the outcome. 
 

 
Figure 5.  RE-EM tree for mathematics achievement with intercept random effect. 
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APPENDIX 
attach(metacog.sample) 
 
#Initial MLEDA plot 
plot_ml(the_data = metacog, 
        var_name = c("METASUM", "UNDREM", "CSTRAT", "ELAB", "MEMOR", "ses", 
"schoolses", "Sex", "countryses"), 
        var_level = c(1, 1, 1, 1, 1, 1, 1, 1, 2), 
        cluster = "COUNTRY", 
        outcome = "Math") 
 
#Obtain the information needed to estimate ICC 
null_mod <- lmer(Math ~ 1 + (1 | COUNTRY), data = metacog.sample) 
summary(null_mod) 
 
#Create cross validation samples 
data_fold <- create_fold(metacog.sample, "COUNTRY", 2) 
 
 
validate_ml(the_data = data_fold, 
            formula = "Math ~ METASUM+ UNDREM+ CSTRAT+ ELAB+ MEMOR+ 
            ses+ schoolses+ Sex+ countryses", 
            stat_method = "rf", 
            cluster = "COUNTRY") 
 
#Fit standard multilevel and random forest models using cross validation sample 
naive_mod <- lmer(Math ~ METASUM+ UNDREM+ CSTRAT+ ELAB+ MEMOR+ 
            ses+ schoolses+ Sex+ countryses+(1|COUNTRY), 
                  data = data_fold[data_fold$fold == 1, ]) 
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rf_mod <- randomForest(Math ~ METASUM+ UNDREM+ CSTRAT+ ELAB+ MEMOR+ 
            ses+ schoolses+ Sex+ countryses, 
                       data = data_fold[data_fold$fold == 1, ]) 
 
#Create list for variable importance 
mod_list <- list(naive = naive_mod, cart_forest = rf_mod) 
 
# Plot variable importance  
importance_ml(mod_list) 
 
#Plot School SES by SES 
plot_ml(the_data = metacog.sample, the_mod = rf_mod, var_name = c("CSTRAT", "Sex"), 
        var_level = c(1, 1), cluster = "COUNTRY", outcome = "Math", interact = TRUE) 
 
plot_ml(the_data = metacog.sample, the_mod = rf_mod, var_name = c("ses", 
"countryses"), 
        var_level = c(1, 1), cluster = "COUNTRY", outcome = "Math", interact = TRUE) 
 
plot_ml(the_data = metacog.sample, the_mod = rf_mod, var_name = c("Sex", "MEMOR"), 
        var_level = c(1, 1), cluster = "COUNTRY", outcome = "Math", interact = TRUE) 
 
plot_ml(the_data = metacog.sample, the_mod = rf_mod, var_name = c("ses", 
"countryses", "schoolses"), 
        var_level = c(1, 2, 1), cluster = "COUNTRY", outcome = "Math") 
 
*****REEMtree***** 
library(REEMtree) 
attach(metacog.sample) 
 
#Fit the random intercept REEM tree model 
metacog.reemtree.intercept<-REEMtree(Math ~ METASUM+ UNDREM+ CSTRAT+ ELAB+ MEMOR+ 
            ses+ schoolses+ Sex+ countryses, data=metacog.sample, random=~1|COUNTRY, 
tree.control(nobs, minsize=20)) 
 
#Plot the tree 
plot(metacog.reemtree.intercept) 
 
#Obtain summary information about the tree 
summary(metacog.reemtree.intercept) 
metacog.reemtree.intercept.best<-prune.tree(metacog.reemtree.intercept, best=10) 
 
#Fit a random intercept and random slope for METASUM model 
metacog.reemtree.slope.metacog<-REEMtree(Math ~ METASUM+ UNDREM+ CSTRAT+ ELAB+ MEMOR+ 
            ses+ schoolses+ Sex+ countryses, data=metacog.sample, 
random=~1+METASUM|COUNTRY) 
 
#Plot the tree 
plot(metacog.reemtree.intercept) 
 
#Obtain the summary information about the tree 
summary(metacog.reemtree.slope.metacog) 

 

 


