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Generalized Variance Inflation Factors (GVIFs) are a means of assessing multicollinearity for related sets 

of variables in regression models (Fox & Monette, 1992; Fox, 2016); however, they do not frequently 

appear in statistical literature. R is the only statistical software that has packages that report GVIFs. The 

main purpose of this paper is to demonstrate how GVIFs are a function of multivariate regression models 

that can be performed with other statistical software. 

 wo of the most used indices for assessing multicollinearity in linear regression models are the 

standard Variance Inflation Factor (VIF) and its reciprocal Tolerance (TOL=1/VIF). Fox and 

Monette (1992) contend that related sets of regressors (e.g., a set of coding scheme regressors that 

represent a categorical variable; polynomial terms) represent singular independent variables, and therefore, 

standard VIFs are not fully applicable. The reasoning underlying this stipulation is subtle but can been 

shown through the vector geometry of linear models (Fox, 2016, Ch. 10). Briefly, regression models are 

invariant to transformation and span the same subspace, regardless of the coding scheme used for the 

regressors. Therefore, any linear transformation of the regressors will produce the same predicted values. 

For example, orthogonal coding schemes that represent a categorical variable (e.g., Helmert) will have 

regressors that are uncorrelated with each other; thus, there is no correlation (i.e., collinearity) among this 

set of variables. A Reference Cell (i.e., Dummy; Indicator) coding scheme applied to the same data will 

produce the same predicted values but will impose “artificial” collinearity among the regressors that is not 

of concern (Fox, 2016, p. 357). 

  Fox and Monette (1992) introduced the Generalized Variance Inflation Factor (GVIF) as a means of 

assessing multicollinearity for terms in regression models that are based on related sets of regressors, and 

thus, have more than 1 degree-of-freedom (df). Despite this important development, the GVIF is rarely 

cited in statistical literature and is mentioned in only a few statistics books; most include Fox’s (2016, 2020) 

own work. Furthermore, the R packages vif in the car library (Fox & Weisberg, 2011) and gvif in the 

glmtoolbox library (Vanegas, Rondón, & Paula, 2023) are the only statistical software that directly 

computes GVIFs. The purpose of this paper is to: review issues of multicollinearity; reintroduce GVIF 

using Fox & Monette’s (1992) approach; conceptualize TOL, VIF, and GVIF as functions of multivariate 

regression models; and present approaches to computing GVIFs in popular statistical software that only 

report standard VIFs. Although this paper focuses on GVIFs for categorical variables in linear models, this 

method may be applied to other types of related regressors. This includes regressors that are functions of 

each other such as interaction and polynomial terms. The Appendix shows annotated SAS, R, STATA, and 

SPSS code to perform the major analyses presented.  
 

Notation 

   Although scalar notation will be used throughout this paper, matrix notation for the general linear 

model (GLM) will also be employed for generalization to multivariate regression. The GLM parameter 

model in matrix notation is expressed as:  

              y = Xβ + ε ,            (1) 
 

where N is the sample size, k=0 to K is a subscript for the regressors, K is the total number of regressor 

variables, p=K+1 is the number of parameters estimated by the regression model, y is a Nx1 vector for the 

dependent variable, X is a Nxp design matrix that contains the K regressor variables with a N-dimensional 

vector of ones adjoined to estimate the regression intercept, β is a px1 vector unknown population regression 

coefficients that must be estimated from the sample data, and ε is a Nx1 vector of population error terms. 

The parameter model in (1) has the following statistical model: 
 

             y = Xb + e ,            (2) 
 

where b is a px1 vector of regression coefficients derived from the sample data and e is a Nx1 vector of 

sample residuals. The Ordinary Least Squares (OLS) solution for the sample regression coefficients is:  
 

             b = (X′X)-1(X′y) ,                             (3)  

T 
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where (X′X)-1 is the inverse of the pxp uncorrected sum of squares and cross-product matrix for the x-

variables and X′y is the px1 vector of uncorrected cross-products between the x-variables and dependent 

variable, y. 
 

Collinearity and Multicollinearity 

 Collinearity (also known as multicollinearity) refers to a situation in which explanatory variables (x) in 

a multiple regression model are linearly related. Collinear variables contain much of the same information 

about the dependent variable (y), and therefore, suffer from redundancy.1 Severe degrees of 

multicollinearity can lead to computational problems in that the inverse of the X′X matrix may be difficult 

to solve using the standard computer algorithms in many statistical software. Furthermore, if an 

approximate inverse is obtained it may be numerically inaccurate. Due to these computational issues, 

approaches such as ridge (Hoerl & Kennard, 1970), LASSO (Tibshirani, 1996), and elastic net (Zou & 

Hastie, 2005) regression have been developed. 

  Even when an accurate (X′X)-1 is obtained, multicollinearity has several other deleterious effects on 

regression models including bias of the regression coefficients, instability of the regression solution, and 

difficulties in the interpretation of results (Johnson, Jones & Manley, 2018). Furthermore, multicollinearity 

not only affects the magnitude of the regression coefficients, but also inflates the variances (i.e., standard 

errors) of the coefficients and decreases the Full Model R2 in linear models. This may lead to a failure to 

reject a false null hypothesis (i.e., Type 2 error). Thus, when there is substantial multicollinearity, loss of 

statistical power for tests performed in a regression model may be a concern. Yet, removing highly collinear 

variables from regression models is debatable (O’Brien, 2016).  

 

Motivating Example 

  Suppose investigators regress scores from an actuarial certification exam (y) onto a set of continuous 

and categorical variables. The regressor variables include: scores on the Graduate Records Examinations 

Verbal (GREV) and Quantitative (GREQ) subscales; the examinee’s self-reported Age, Gender, and coding 

scheme regressors to represent four Ethnicities (Asian, Black or African American; Hispanic; White). Also, 

suppose the examinees were randomized to two different educational preparation conditions: (a) a new 

experimental preparation training program and (b) a traditional preparation program. These hypothetical 

data, with a total sample size of N=100, are available for download in both Microsoft Excel and text formats. 

Table 1 gives definitions for each variable included in the dataset. The Excel sheet has a data dictionary 

that also describes the variables.  

  A K=8 regressor model will be investigated: 
 

        y = b0 + b1x1 + b2x2 + b3x3 + b4x4 + b5x5 + b6B + b7H + b8W + e       (4) 
 

where x1 represents GREV scores centered at 150; x2 represents GREQ scores centered at 150; x3 is an 

indicator code representing membership of the new experimental training program; x4 is an indicator code 

representing being Male; and x5 represents Age centered at the mean of 30.05 years. The variables, B, H, 

and W are Indicator codes representing membership in the Black, Hispanic, or White Ethnic groups, 

respectively. Table 2 provides a summary of several string (character) variables2 and coding schemes for 

Ethnicity variables. These centered continuous variables and coded categorical variables in model (4) yield 

a regression intercept (b0) that can be interpreted as the predicted value for a 30-year-old Asian Female in 

the traditional preparation group that scored 150 on both the GREV and GREQ. The focus of this example 

is on the Ethnicity coding variables because this J=4 level between-subjects factor is represented by 3 

dummy-coded regressors (i.e., 3 dfs) and therefore, GVIF is considered a more appropriate method of 

evaluating multicollinearity for the Ethnicity factor (Fox & Monette, 1992). 

  Table 3 reports the descriptive statistics for each Ethnic group. There are non-significant between-group 

mean differences on the continuous actuarial exam score outcome, y (p=0.2085). There are between-group 

Ethnic differences on the other variables in model (4), which indicate multicollinearity. Specifically, there 

are non-significant between-group mean differences on the continuous regressors (GREV, p=0.6005; Age, 

p=0.4199) and proportional differences on the categorical regressors (Training Condition, p=0.0678; 

Gender, p=0.7060). There are significant Ethnic groups differences on the GREQ score, p=0.0042. 

Although most of these between-group Ethnic differences are not statistically significant, any between-

group differences for the other covariates in the model will result in some degree of collinearity.3  
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Table 1. Data Dictionary for Motiving Example 

Continuous Variables 

     y     Score on an Actuarial Certification Exam (Range 130-170) 

 GREV    Score GRE Verbal (Range 130 to 170) 

 GREV_C (x1)  Score GRE Verbal centered at 150 (Range -20 to 20) 

 GREQ    Score GRE Quantitative (Range 130 to 170) 

 GREQ_C (x2)  Score GRE Quantitative centered at 150 (Range -20 to 20) 

 Age    Years (Range 20 to 36) 

 Age_C    (x5)  Years centered at mean age 30.05 (Range -5 to 11) 

 Age_2      Years Squared (Age2) 

 Age_C2      Mean Centered Age Squared (Age_C2) 
 

Categorical Variables 

 TRT   (x3)  Dummy Code for Educational Program (Traditional = 0; Experimental = 1) 

 Tx     Effect Code for Educational Program  (Traditional = -1; Experimental = 1) 

 Male   (x4)  Dummy Code for Reported Gender  (Female = 0; Male = 1) 

 Sex     Effect Code for Reported Gender   (Female = -1; Male = 1) 

 Ethnicity   String Variable for Ethnicity 

       (W =White; B = African American or Black;  H = Hispanic; A = Asian) 

 EthGRP1    String Variable for Ethnicity  

      (1A = Asian; 2B = African American or Black; 3H = Hispanic; 4W =White) 

 EthGRP2    String Variable for Ethnicity  

      (1B = African American or Black; 2A = Asian; 3H = Hispanic; 4W =White) 

 EthGRP3    String Variable for Ethnicity  

      (1H = Hispanic; 2A = Asian; 3B = African American or Black; 4W =White) 

 EthGRP4    String Variable for Ethnicity  

      (1W =White; 2A = Asian; 3B = African American or Black; 4H = Hispanic) 

 EthGRP1R    String Variable for Ethnicity (Reverse Order of EthGRP1) 

      (1W =White; 2H = Hispanic; 3B = African American or Black; 4A = Asian) 

     A    Indicator (Dummy)  Code for Asian Ethnicity 

     B     Indicator (Dummy)  Code for African American (AA) or Black Ethnicity 

     H    Indicator (Dummy)  Code for Hispanic Ethnicity 

     W    Indicator (Dummy)  Code for White Ethnicity  

  ETHN_H1   Helmert Contrast (Whites vs All Other Ethnic Groups) 

 ETHN_H2   Helmert Contrast (Hispanics vs Blacks/AA & Asians; Whites Excluded) 

 ETHN_H3   Helmert Contrast (Blacks/AA vs Asians; Whites & Hispanics Excluded) 

 

Table 2. Summary of Coding Scheme for Ethnicity 

Ethnicity N EthGRP1 EthGRP2 EthGRP3 EthGRP4 EthGRP1R A B H W H1 H2 H3 

Asian 17 1A 2A 2A 2A 4A 1 0 0 0 –7 –4 –28 

Black / AA 28 2B 1B 3B 3B 3B 0 1 0 0 –7 –4   17 

Hispanic 20 3H 3H 1H 4H 2H 0 0 1 0 –7   9   0 

White 35 4W 4W 4W 1W 1W 0 0 0 1 13   0   0 

Note: For EthGRP1-EthGRP4 the Reference Ethnic group (first group is default Reference group in R 

lm package) is bolded. 
 

 The results for model (4) are reported in Table 4. The overall K=8 variable model accounts for 43.44% 

of the variance in y (p<0.0001). The regression results indicate that after adjusting for other variables in the 

model GREV (p=0.0315) and GREQ (p<0.0001) are positively related to y (i.e., higher GRE scores are 

associated with higher scores on the actuarial certification exam). The type of preparation program (TRT) 

was also significantly related to y (p=0.0153). Given the indicator coding scheme for TRT, the results 

indicate that after adjusting for the other covariates examinees that were in the new experimental 

preparation program scored 3.55 units higher than examinees that went through traditional preparation.  
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Assuming that the actuarial 

exam, like the GRE, was scaled 

to have a standard deviation of 

10, then these results would 

translate into a covariate-

adjusted effect size of 0.355.4 

The regression coefficients (b6-

b8) for the codes representing 

the Ethnicity factor (x6-x8) are 

differences in predicted values 

(i.e., least squares means) 

between the reference group 

(Asian; b0) and each of the other 

Ethnic groups (Blacks, 

Hispanics, Whites, 

respectively). None of the 

regression coefficients tested by 

this particular coding scheme were statistically significant. Specifically, the predicted values for Blacks (b6 

= –2.0256, p=0.3782), Hispanics (b7 = –0.1859, p=0.9533), and Whites (b8 = –2.3467, p=0.2737) do not 

significantly differ from the predicted values for Asians. 

 In terms of evaluating multicollinearity, Table 4 shows that Age (x5) and the dummy variables 

representing preparation condition (TRT; x3) and gender (Male; x4) have very small VIFs (high tolerance). 

The GREV (x1) and GREQ (x2) scores have VIFs of 1.46 and 1.66, respectively, also indicating a small 

degree of multicollinearity. The Ethnicity variables using the model (4) reference cell coding scheme with 

Asians as the reference group, indicate larger amounts of multicollinearity with VIFs ranging from 1.78 to 

2.24. The last two columns of Table 4 report GVIF-related values that can be produced with either the vif 

(Fox & Weisberg, 2011) or gvif (Vanegas, et al., 2023) R packages. For the single df regressors (x1-x5), 

the GVIFs are the same as the standard VIFs that would be reported by other statistical packages (e.g., SAS; 

STATA; SPSS). Unlike other statistical software, the vif and gvif R packages report a single GVIF with 

3 dfs for the Ethnicity factor. The last column reports GVIF(1/(2df)), a scaling to “preserve comparability 

across subspaces of different dimension” (Fox & Monette, 1992, p. 180) and make the single df and the 

multiple df GVIFs “roughly comparable” (Fox, 2016, p. 635). Both GVIF and its scaled value indicate a 

much lesser degree of collinearity than the reference cell coding scheme for model (4). SAS, STATA, R, 

and SPSSS code to perform model (4) appear in Appendices A.1 through A.4, respectively. Appendices 

A.5 and A.6 show output from the R lm package along with output from vif and gvif packages. Note 

that if dummy coded variables that represent the Ethnicity factor are entered into lm, then the vif and 

gvif packages do not invoke the computation of GVIF (Appendix A.5). If a single string variable that 

represents the Ethnicity factor is entered into lm, then the vif and gvif packages compute and report 

GVIF (Appendix A.6).   

 To demonstrate issues with interpreting standard VIFs for related sets of regressors, three alternate 

version of the K=8 regressor model in (4) with different coding schemes were performed: 
 

        y = b0 + b1x1 + b2x2 + b3x3 + b4x4 + b5x5 + b6A + b7H + b8W + e       (5) 

        y = b0 + b1x1 + b2x2 + b3x3 + b4x4 + b5x5 + b6A + b7B + b8W + e       (6) 

        y = b0 + b1x1 + b2x2 + b3x3 + b4x4 + b5x5 + b6A + b7B + b8H + e       (7) 
 

The Refence Cell Coding schemes for Models 5, 6, and 7 force the Reference Ethnic group to be Blacks, 

Hispanics, and Whites, respectively. The results for the Ethnicity coding scheme variables for Models 5 

through 7 appear in Tables 5 through 7, respectively. Because the models are invariant to transformation 

and span the same subspace, most of the results do not change with changes in the coding scheme for the 

Ethnicity categories. The Full Model and the associated global F-test are identical for models 4 through 7: 

R2 = 0.4344; F(8,91)=8.74, p <0.0001. The coefficients, standard errors (SEs), p-values, TOLs, and VIFs do 

not change for any of the single df variables (x1-x5), and thus, are not reported in Tables 5-7. For the 

Ethnicity results, values that differ across models 4-7 are in bold blue font in Tables 4-7. The intercepts 

and their SEs change because each coding scheme forces a different Ethnic group to be the Reference cell.  

Table 3. Descriptive Statistics for Ethnicity. 

Ethnicity N y GREV GREQ Age Condition Male 

Asian 17 
153.06 

(9.61) 

149.35 

(10.48) 

150.24 

(10.56) 

30.53 

(2.70) 

5 

(29.41%) 

10 

(58.8%) 

Black  

or AA 
28 

148.68 

(8.68) 

148.04 

(8.71) 

141.43 

(7.35) 

30.18 

(2.75) 

17 

(60.71%) 

17 

(60.7%) 

Hispanic 20 
153.90 

(9.01) 

151.75 

(9.83) 

150.10 

(10.86) 

30.55 

(2.48) 

8 

(40.00%) 

15 

(75.0%) 

White 35 
150.80 

(7.91)  

148.69 

(9.94) 

146.17 

(9.99) 

29.43  

(2.92) 

22 

(62.86%) 

23 

(65.7%) 

p-values  0.2085W 0.6005W 0.0042W 0.4199W 0.0678P 0.7060P 

TOTAL 100 
151.21 

(8.74) 

149.23 

(9.63) 

146.32 

(10.10) 

30.05 

(2.75) 

52 

(52%) 

65 

(65%) 

Note:  W: p-value from Welch ANOVA F-test.  

   P: p-value from Pearson Chi-Square test. 
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Table 4. Results of Model (4): Reference Ethnic Group (Asians). 

Variable b SE(b) p-value TOL VIF GVIF GVIF(1/(2df)) 

GREV (x1) 0.1891 0.0866 0.0315  0.68415 1.46168 1.461678 1.208999 

GREQ (x2) 0.3864 0.0879 <0.0001  0.60324 1.65772 1.657716 1.287523 

TRT     (x3)    3.5526 1.4365  0.0153  0.91317 1.09509 1.095089 1.046465 

Male    (x4)     1.6017 1.4785  0.2815  0.94575 1.05736 1.057364 1.028282 

Age    (x5) –0.4412 0.2618  0.0954  0.91415 1.09391 1.093911 1.045902 

B         (x6) –2.0256 2.2872 0.3782 0.44594 2.24245 

1.327977 1.048411 H         (x7) –0.1859 2.2900 0.9355 0.56055 1.78398 

W        (x8) –2.3467 2.1309 0.2737 0.45529 2.19640 

Intercept    153.5427 2.4893 <0.0001  - - - - 

Full Model R2 = 0.4344; F(8, 91) = 8.74, p <0.0001 F(3,91) = 0.62, p = 0.6013 

Note: Last Two Columns contain output from the R package vif.  
 

Table 5. Results of Model (5): Reference Ethnic Group (Blacks). 

Variable b SE(b) p-value TOL VIF GVIF GVIF(1/(2df)) 

A         (x6)   2.0256 2.28724 0.3782 0.63715 1.56949 

1.327977 1.048411 H         (x7)   1.8397 2.15591 0.3957 0.63242 1.58122 

W        (x8) –0.3211 1.79936 0.8588 0.63852 1.56613 

Intercept    151.5171 2.4979 <0.0001  - - - - 

Full Model R2 = 0.4344; F(8, 91) = 8.74, p <0.0001 F(3,91) = 0.62, p = 0.6013 
 

Table 6. Results of Model (6): Reference Ethnic Group (Hispanics). 

Variable b SE(b) p-value TOL VIF GVIF GVIF(1/(2df)) 

A         (x6)   0.1859 2.2900 0.9355 0.63563 1.57324 

1.327977 1.048411 B         (x7) –1.8397 2.1559 0.3957 0.50192 1.99234 

W        (x8) –2.1608 2.0053 0.2841 0.51411 1.94512 

Intercept    153.3568 2.5773 <0.0001      

Full Model R2 = 0.4344; F(8, 91) = 8.74, p <0.0001 F(3,91) = 0.62, p = 0.6013 
 

Table 7. Results of Model (7): Reference Ethnic Group (Whites). 

Variable b SE(b) p-value TOL VIF GVIF GVIF(1/(2df)) 

A         (x6) 2.3467 2.1309 0.2737 0.73408 1.36225 

1.327977 1.048411 B         (x7) 0.3211 1.7994 0.8588 0.72055 1.38783 

H        (x8) 2.1608 2.0053 0.2841 0.73099 1.36800 

Intercept 151.1960 2.2425 <0.0001     

Full Model R2 = 0.4344; F(8, 91) = 8.74, p <0.0001 F(3,91) = 0.62, p = 0.6013 
 

The regression coefficients (b6-b8) for the codes representing the Ethnicity variable are differences in 

expected values between each group and the reference group (intercept; b0). Consequently, some of the 

regression coefficients and their SEs change with changes in the coding scheme. Of importance to the goal 

of this paper, the values for VIF and TOL change with changes in the coding scheme. 

  For model (5), regression coefficients (b6-b8) for the codes representing the Ethnicity variable (x6-x8) 

are differences in predicted values between the reference group (Blacks; b0) and each of the other Ethnic 

group (Asians, Hispanics, Whites, respectively). Specifically, the predicted values for Asians (b6 = 2.0256, 

p=0.3782), Hispanics (b7 = –1.8397, p=0.3957), and Whites (b8 = –0.3211, p=0.8588) do not significantly 

differ from Blacks (Table 5). For model (5), the Ethnicity variables using the Reference Cell coding scheme 

with Blacks as the Reference group, indicate smaller amounts of multicollinearity with VIFs of 

approximately 1.57 compared to the VIFs from model (4). These changes in the standard VIFs due to 

changes in coding schemes are problematic for interpretating multicollinearity and its effects on statistical 

significance and power for the Ethnicity factor. For example, the results of model (4) and model (5) both 

indicate that the pairwise comparison between Asians and Blacks (b6 in both models) have the same 

covariate adjusted mean difference (b6 = 2.0256; in absolute value), SE = 2.2872, and p-value = 0.3782. 

Yet, these regression coefficients have different indices for multicollinearity (VIF = 2.24245 in model 4; 
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VIF = 1.56949 in model 5). In principle, for two variables with the same coefficient in absolute value, the 

variable with the larger VIF might be expected to have a larger SE, because in a homoscedastic model the 

SEs uses the same Mean Square Error (MSE). This is not the case, however, for the Asian vs Black pairwise 

difference because the B and A dummy codes have different variances.5 By examining Tables 4 through 7, 

several examples of regression coefficients that lead to the same pairwise difference, SE, and p-value but 

quite different values for VIF and TOL can be found.  

  For single df regressors (x1-x5), the GVIF(1/(2df)) transformation is simply taking the square root of the 

standard VIF. Depending on the chosen reference group the standard VIFs for the Ethnicity dummy codes 

range from 1.368 to 2.24245 with square roots ranging from 1.1696 to 1.4975 (see Tables 4-7). The scaled 

GVIF(1/(2df)) = 1.048411 for Ethnicity falls below the square root of the two extreme standard VIFs using 

Reference Cell coding. Thus, scaled GVIF indicates that Ethnicity as a singular independent variable based 

on set of related coding vectors has a lesser degree of collinearity than would be indicated by the standard 

VIFs from any of the reference cell coding schemes. This highlights that “artificial” or at least 

“inconsistent” collinearity can be imposed by a coding scheme. The fact that the VIFs and TOLs change 

based on changes in coding scheme supports Fox and Monette’s (1992) contention that standard VIFs are 

not applicable to related sets of regressors and GVIF is more appropriate. 
 

Omnibus Test of the Ethnicity Factor 

  An omnibus F-test for whether the four ethnic groups have the same means after adjusting for the other 

covariates (H0: Lβ=c) can be formed using General Linear Hypothesis (GLH) Testing of the form: 
 

              F = [(Lb-c)′(LVL′)-1(Lb-c)] ,                        (8) 
 

where L is a qxp vector of contrast values; c is qx1 vector of null values (in this case and typically, a vector 

of zeros), and q is the dfs for the hypothesis tested. Under the assumption of homoscedasticity, V = 

MSE(X′X)-1. In this case, testing that all regression coefficients associated with Ethnic group differences is 

equal to c=0 uses a qxp (3x9) L matrix: 
 

          0 0 0 0 0 0 1 0 0 

        L =  0 0 0 0 0 0 0 1 0 

          0 0 0 0 0 0 0 0 1 ; 
 

which results in testing the joint null hypothesis, H0: β6 = 0; β7 = 0; β8 = 0. This 3-df omnibus test for 

Ethnicity, does not change with changes in the coding scheme; it is invariant to transformation. Therefore, 

“artificial” collinearity imposed by some coding schemes will have no effect on the omnibus test; only 

collinearity with other covariates in the model will affect the magnitude and power of the omnibus test. 

Applying this L matrix to models 4 through 7 (or any valid coding scheme for Ethnicity) results in the same 

value for the F-test in (8), F(3,91) = 0.62, p = 0.6013, indicating no statistically significant differences among 

the Ethnic groups. Code to perform the test in (8) appear in Appendices A.1 (SAS proc reg), A.2 

(STATA regress) A.3 (R lm and glh.test from the gmodels library), and A.4 (SPSS UNIANOVA). 
 

Standard Variance Inflation Factors and Auxiliary Tolerance Models 

  Values for tolerance can be shown to be equal to 1-R𝑘𝑘′
2  of auxiliary “tolerance” models in which each 

xk variable is regressed on to the other xk′ variables in the model. For example, to find the TOL and VIF for 

x1 (GREV), the following K=7 regression model can be used: 
 

         x1 = a0 + a2x2 + a3x3 + a4x4 + a5x5 + a6A + a7B + a8W + e       (9) 
 

As with regressing y onto the K=8 regressor models 4 through 7, the choice of coding scheme for Ethnicity 

is inconsequential to the R2 of model (9). This model with x1 representing GREV scores yields an R𝑘𝑘′
2  = 

0.315855, and therefore, TOL = 1–0.315855 = 0.684145. The standard VIF is the reciprocal of TOL, VIF 

= 1/(1–0.315855) = 1.461678. As can be seen, these values match the results reported in Table 4.  

  The “tolerance” model concept provides a heuristic for explaining TOL and VIF; however, it is not 

necessary to perform K auxiliary models to obtain these indices. As can be seen in equation (37) in the 

Discussion section, VIFs are a transformation of the (X′X)-1 matrix used in the OLS regression solution (3). 

Because (RXX)-1 is also a transformation of (X′X)-1, standard VIFs can be directly calculated from the matrix 

solution for a standardized regression model: 

           b* = (Rxx)
-1rXy                       (10) 
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where b* is the Kx1 vector of standardized regression coefficients, (RXX)-1 is the inverse of the KxK 

correlation matrix among the x-variables, and rxy is the Kx1 vector of correlations between the x-variables 

and y. Computationally, VIFs are the diagonal of (RXX)-1 : 
 

           VIF = diag[(Rxx)
-1]                (11) 

 

(Marquardt, 1970). Table 8 shows Rxx for the variables used in models 4-7. To obtain a valid inverse and 

calculate VIF, one row and column for the Ethnicity Indicator variables from Table 9 needs to be removed. 

Table 9 shows (RXX)-1, for model (4) (row 6 and column 6 removed from Table 8, Asians are the reference 

group). As can be seen the bolded diagonal matches the VIF values reported in Table 4. Appendices A.7 

through A.9 show SAS, SPSS, and STATA matrix language code to perform these VIF calculations, 

respectively.  
 

Table 8. Correlation Matrix for the Variables included in Models 4 through 7. 
 GREV GREQ Age TRT Male A B H W 

GREV 1 0.5272 -0.0717 -0.0250 0.0461 0.0058 -0.0777 0.1315 -0.0417 

GREQ 0.5272 1 0.1037 0.0246 -0.0622 0.1764 -0.3036 0.1881 -0.0109 

Age -0.0717 0.1037 1 -0.0263 -0.1703 0.0792 0.0293 0.0912 -0.1664 

TRT -0.0250 0.0246 -0.0263 1 -0.0336 -0.2046 0.1088 -0.1201 0.1595 

Male 0.0461 -0.0622 -0.1703 -0.0336 1 -0.0586 -0.0560 0.1048 0.0110 

A 0.0058 0.1764 0.0792 -0.2046 -0.0586 1 -0.2822 -0.2263 -0.3321 

B -0.0777 -0.3036 0.0293 0.1088 -0.0560 -0.2822 1 -0.3118 -0.4576 

H 0.1315 0.1881 0.0912 -0.1201 0.1048 -0.2263 -0.3118 1 -0.3669 

W -0.0417 -0.0109 -0.1664 0.1595 0.0110 -0.3321 -0.4576 -0.3669 1 
 

Table 9. Inverse of Correlation Matrix [(Rxx)
-1] for the Variables included in Model 4. 

 GREV GREQ Age TRT Male B H W 

GREV 1.46168 -0.84809 0.18481 0.08572 -0.08349 -0.25556 -0.14736 -0.10127 

GREQ -0.84809 1.65772 -0.19258 -0.16865 0.12635 0.63421 0.09155 0.29989 

Age 0.18481 -0.19258 1.09391 0.01310 0.16885 -0.00819 -0.04684 0.16279 

TRT 0.08572 -0.16865 0.01310 1.09509 0.01905 -0.36874 -0.10495 -0.37816 

Male -0.08349 0.12635 0.16885 0.01905 1.05736 0.03010 -0.13653 -0.02498 

B -0.25556 0.63421 -0.00819 -0.36874 0.03010 2.24245 1.11266 1.48773 

H -0.14736 0.09155 -0.04684 -0.10495 -0.13653 1.11266 1.78398 1.16899 

W -0.10127 0.29989 0.16279 -0.37816 -0.02498 1.48773 1.16899 2.19640 
 

Generalized Collinearity 

 As previously stated, categorical factors with J > 2 levels (i.e., have more than 1 df) represent singular 

independent variables and the set of related variables (i.e., coding scheme) that represent these categories 

can impose “artificial” and inconsequential collinearity (Fox, 2016, p. 357). There are a multitude of coding 

schemes that can validly represent the q=(J-1) dfs of a categorical predictor. Effect, Polynomial, Cell Mean, 

and Helmert6 coding schemes are employed in many research applications. Reference Cell (i.e., Indicator; 

Dummy) coding, however, is the most commonly used approach and is the focus in this paper.  

  The correlations among a set of dummy coded variables are affected by the choice of reference category 

when the categories have unequal sample sizes. As demonstrated in Tables 4-7, the “artificial” collinearity 

can depend on which set of q=(J-1) dummy codes are used. In practice, data analysts often want a 

regression model with VIFs below some acceptable threshold (Buteikis, 2020). Consequently, 

researchers are sometimes advised to pick the category with the most cases to serve as the reference group 

for a set of dummy regressors in order to reduce multicollinearity (Allison, 2012; Fox, 2016. p. 357). In 

Table 4, the Ethnic group with the smallest sample size, Asians (nj=17) were the Reference group in model 

(4), and this led to the highest standard VIFs. By contrast, in Table 7, Whites (nj=35) were the Reference 

group, which led to the lowest standard VIFs. Using the group with the smallest sample size as the reference 

category may be a poor computational choice, resulting in elevated levels of multicollinearity and 

potentially unstable results. But because the models are invariant to transformation, the choice of coding 
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scheme is not fundamental to model fit or calculating predicted values. As shown in Tables 4-7, these 

practices can alter estimates of multicollinearity (i.e., standard VIFs). GVIFs, however, are independent of 

the bases selected for the subspaces spanned by the columns of X, and therefore, are invariant to the choice 

of coding scheme for categorical variables.7  
 

Computing Generalized Variance Inflation Factors 

  Using the matrix formulation in (1) and (2), the Full Design matrix, X, for model (4) is formed as: 

          X = 1N | x1 | x2 | x3 | x4 | x5 | B | H | W                 (12) 

where 1N, N-dimensional vector of ones adjoined to K=8 regressor variables to estimate the regression 

intercept (b0). To calculate GVIF, Fox and Monette (1992) partition the design matrix, X, and re-express 

the model as: 
 

           y =  1Nb0   + ZbZ  +  WbW + e  ,             (13) 
 

where W is a Nxq matrix containing the matrix for the variable(s) being evaluated for multicollinearity and 

Z is a Nx(K-q) matrix containing the remaining regressors, excluding the constant (b0). Fox and Monette 

(1992) proposed a statistic based on Wilks’ Lambda (λW) defined as:  
 

           GVIF = 
det⁡(𝐑𝐖𝐖)det⁡(𝐑𝐙𝐙)

det⁡(𝐑𝐗𝐗)
               (14) 

 

where RXX is the correlation matrix for all K variables in the full design matrix, X, RWW is a partition of 

Rxx that is the qxq correlation matrix for the variable(s) being evaluated for multicollinearity, W, and RZZ 

is a partition of Rxx is the correlation matrix for the M=(K-q) remaining regressors (covariates), Z. 

  For any single df variable (continuous or dummy code for a binary variable), GVIF reduces to the 

standard VIF (Fox & Monette, 1992). To demonstrate for GREV (x1), X for models (4) and (12) is 

partitioned into W, a Nx1 matrix containing x1, and Z, a Nx7 matrix containing the remaining regressors 

(x2-x8), excluding the constant: 
 

           W =  x1  and                   (15) 
 

           Z = x2 | x3 | x4 | x5 |B | H | W  .            (16) 
 

RXX (Table 8) is partitioned in to (a) RWW = R11, a 1x1 matrix with only the correlation for x1 (GREV) and 

itself, a scalar value of RWW = R11 = 1, and (b) Rzz , a 7x7 correlation matrix for the other 7 regressor 

variables in Models 4-8. The determinant of RWW is also 1: det(RWW) = det(1) = 1. For Model 4, the 

determinant of the 7x7 RZZ is det(Rzz) = 0.5398237, and the determinant of 8x8 Rxx is det(Rxx) = 0.3693177. 

Thus,  

   GVIF1 = 
det⁡(𝐑𝐖𝐖)det⁡(𝐑𝐙𝐙)

det⁡(𝐑𝐗𝐗)
   =    

⁡(𝟏)(𝟎.𝟓𝟑𝟗𝟖𝟐𝟑𝟕)

(𝟎.𝟑𝟔𝟗𝟑𝟏𝟕𝟕)
    = 1.461678, (17) 

 

matching the standard VIF reported for GREV (x1) in Table 4.  

 Related set of variables requiring more than 1 coefficient, and thus multiple dfs, are evaluated using the 

GVIF. For Ethnicity (x6-x8), X for models (4) and (12) is partitioned into W, a Nx3 matrix containing coding 

scheme variables for Ethnicity, and Z, a Nx5 matrix containing the remaining regressors (x1-x5), excluding 

the constant: 

           W = B | H | W  and                (18) 

           Z =  x1 | x2 | x3 | x4 | x5 .                (19) 
 

In this case, RXX is partitioned in to (a) RWW a 3x3 (qxq) correlation matrix for Ethnicity the coding scheme 

variables, W, and (b) Rzz 5x5 correlation matrix for the other 5 regressors, Z, (first 5 rows and columns of 

Table 8). For model (4), the determinant of RWW, det(RWW) = 0.7320946. The determinant of RZZ is det(Rzz) 

= 0.6699208. Thus,  

   GVIFETHN = 
det⁡(𝐑𝐖𝐖)det⁡(𝐑𝐙𝐙)

det⁡(𝐑𝐗𝐗)
  = 

⁡(𝟎.𝟕𝟑𝟐𝟎𝟗𝟒𝟔)(𝟎.𝟔𝟔𝟗𝟗𝟐𝟎𝟖)

(𝟎.𝟑𝟔𝟗𝟑𝟏𝟕𝟕)
  = 1.327977,           (20) 

 

which matches the GVIF produced by the vif and gvif R packages (see Table 4). Note that the choice 

of coding scheme will affect the determinants of the RXX, RZZ, and RWW correlation matrices; however, it 

will not affect the value of GVIF. Table 10 reports the determinants of RXX, RZZ, and RWW for each choice 

of reference cell coding scheme for Ethnicity (Models 4-7) that comprise the GVIF computations 

demonstrated for GREV (17) and Ethnicity (20). Note regardless of coding scheme, the GVIF is invariant 

to transformation, even though the determinants differ by coding scheme.   Appendices A.7, A.8, and A.9   
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Table 10. Determinants to Compute GVIF for GREV (17) and Ethnicity (20) for  

Each Refence Cell Coding Scheme Models 4-7. 

 Model 4 Model 5 Model 6 Model 7 

 
GREV 

(q=1) 

Ethnicity 

(q=3) 

GREV 

(q=1) 

Ethnicity 

(q=3) 

GREV 

(q=1) 

Ethnicity 

(q=3) 

GREV 

(q=1) 

Ethnicity 

(q=3) 

RWW 1 0.4540598 1 0.6487488 1 0.51488 1 0.732095 

RZZ 0.3348096 0.6699210 0.4783672 0.6699210 0.3796565 0.6699210 0.539824 0.669921 

RXX 0.2290583 0.2290583 0.3272726 0.3272726 0.2597401 0.2597401 0.369318 0.369318 

GVIF 1.461678 1.327977 1.461678 1.327977 1.461678 1.327977 1.461678 1.327977 

Note: GVIF = [det(RWW)*(det(RZZ)]/det(RXX) 
 

contain matrix language code to compute GVIF from the data via the Fox & Monette (1992) approach (14) 

for SAS/IML, SPSS MATRIX, and STATA matrix, respectively. 
 

Generalized Variance Inflation Factors and Auxiliary Tolerance Models 

  Unfortunately, the vif (Fox & Weisberg, 2011) and gvif (Vanegas et al., 2023) packages in R are 

the only statistical software that compute and report GVIF. To demonstrate how to compute GVIF using 

other popular statistical software (e.g., SAS, SPSS, STATA), we return to the heuristic concept of tolerance 

being 1-R𝑘𝑘′
2  from auxiliary “tolerance” models in which each xk variable is regressed on to the other xk′ 

variables in the model. For example, model (9) can be re-expressed as a multivariate regression model, 

which in scalar notation is: 

           x2 + x3 + x4 + x5 + B + H + W   = a0 + a1x1 + e .            (21) 
 

In general, matrix notation for a multivariate “tolerance” model can be expressed as: 
 

          Z = WA +  E ,                  (22) 
 

where q is the number of regressors being evaluated for multicollinearity, M=(K-q) is the number of 

remaining covariates, W is an Nx(q+1) design matrix with the variable(s) being evaluated for 

multicollinearity from the partition in (13) with a vector of ones (1N) adjoined to estimate M intercepts, Z 

is an NxM matrix of the remaining covariates (dependent variables) from the partition in (13), A is a 

(q+1)xM matrix of regression coefficients from the auxiliary model, and E is a NxM matrix of sample 

residuals.  

  To obtain GVIF for x1 (GREV) from model (21) and the partition in (16), Z is a horizontal concatenation 

of GREQ, TRT, Male, Age, B, H, and W: 

           Z =  x2 | x3 | x4 | x5 | B | H | W ;              (23) 
 

and from the partitioning in (15), W is GREV with a vector of ones adjoined to estimate M = 7 intercepts: 

             W = 1N | x1                   (24) 
 

To compute Wilks’ lambda from these data matrices, define H0, as a NxN projection “Hat” matrix 

constructed from the vector of ones:  

           H0 = 1N[(1′N1N)-1]1′N.                 (25) 
 

Define HW, as a NxN Hat matrix based on (24):  
 

           HW = W[(W′W)-1]W′ .                (26) 
 

The MxM Total Sums of Squares matrix T is computed as: 
 

            T = Z′(IN – H0)Z ;                 (27) 
 

where IN is an N-dimensional Identity matrix. The MxM Residual Sums of Squares matrix R is computed 

as: 

            R = Z′(IN – HW)Z .                 (28) 
 

The MxM Model Sums of Squares matrix M is computed as: 
 

            M = Z′(HW – H0)Z .                (29) 
 

As in univariate ANOVA models:  T = M + R. Wilks’ lambda is computed as: 
 

          λW = 
det⁡(𝐑)

det⁡(𝐓)
 .                  (30) 
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For model (22), the determinant of the Total SS matrix is det(T) = 10.57217x1013 and the determinant of 

the Residual SS matrix is det(R) = 7.2328973x1012. The Wilks’ lambda of this model is λW = 0.68414503, 

which is the Tolerance for x1 (GREV), and therefore, GVIF = (1/λW) = 1.46168, which matches the TOL 

and VIF for GREV in Table 4. Therefore, by taking the reciprocal of λW in (30):      
 

          GVIF = 
det⁡(𝐓)

det⁡(𝐑)
 .                 (31) 

 

  For related sets of regressor variables that have multiple dfs (e.g., categorical variables), GVIF provides 

a single value to evaluate multicollinearity. Again, following the heuristic approach to explaining TOL and 

VIF, the auxiliary “tolerance” model for Ethnicity is a multivariate analysis of variance (MANOVA) 

regression model with the following scalar notation: 
 

           x1 + x2 + x3 + x4 + x5  = a0 + a1B + a2H + a3W  + e .           (32) 
 

In matrix notation for model (32) and the partition in (20), Z is a horizontal concatenation of GREV, GREQ, 

TRT, Male, and Age: 

            Z =  x1 | x2 | x3 | x4 | x5                  (33) 
 

and from the partition in (18), W is the Reference Cell coding scheme for Ethnicity with a vector of ones 

adjoined to estimate M = 5 intercepts: 

             W = 1N | B | H | W                  (34) 
 

For model (32), the determinant of the Total SS matrix is det(T) = 26.456489x1013 and the determinant of 

the Residual SS matrix is det(R) = 19.922399x1013. From (30), the Wilks’ lambda is λW = 0.75302505, 

which could be thought of as a “Generalized Tolerance”, and therefore, from (31), GVIF = (1/λW) = 

1.327977, which matches the GVIF for Ethnicity in Tables 4-7 from the vif and gvif R packages.  To 

obtain the Wilks’ λW for GREV and Ethnicity:  Appendix A.10 contains annotated SAS proc reg and 

proc glm code; Appendix A.11 contains annotated STATA manova code; Appendix A.12 contains 

annotated SPSS GLM code; and Appendix A.13 contains annotated R lm and anova code. The user will 

need to take the take the reciprocal of λW to obtain GVIF (ie., GVIF=1/λW). Appendices 14 and 15 contain 

SAS/IML and STATA matrix code to compute GVIF via the multivariate regression approach (31), 

respectively. SPSS MATRIX code for this approach appears in Appendix A.8. 
 

Discussion 

 In homoscedastic linear models, the covariance matrix for the regression coefficients, V(b), is: 

            V(b) = MSE(X′X)-1 ;               (36) 

and the diagonal of V(b) contains the squared Standard Errors (i.e., variance of the regression coefficients), 

which can be re-expressed as: 

     𝑆𝐸𝑘
2 = MSE(X′X)k

-1 =   
𝑀𝑆𝐸

𝑆𝑆𝑘(1−R𝑘𝑘′
2 )

 =  
𝑀𝑆𝐸

𝑆𝑆𝑘(TOL𝑘)
 =  

𝑀𝑆𝐸(VIF𝑘)

𝑆𝑆𝑘
  ;         (37) 

where (X′X)k
-1 is the kth diagonal element of the (X′X)-1 matrix and SSk is the mean corrected Sum of 

Squares for the kth x-variable. As can be seen in (37), standard VIFs can be interpreted as the degree to 

which the square of the Standard Error (SEk) for each regression coefficient (bk) in the model is inflated by 

multicollinearity (Marquardt, 1970). Equation (37) also shows that for each x-variable and SEk only differs 

by the diagonal value, (X′X)k
-1. Holding the regression coefficient (bk), MSE, and SSk constant, VIFk inflates 

the SEk for any one test, tk=(bk/SEk). This in turn yields a larger p-value which is less likely to reject the null 

hypothesis (H0: βk = 0) and lead to a potential Type 2 error (i.e., loss of power)8. For Reference Cell coding, 

both VIFk and SSk change with a change in the Reference group; thus, a regression coefficient that represents 

a pairwise contrast will retain its SE and p-value but have a different index of collinearity. Again, this 

reflects on the dubious nature of interpreting standard VIFs that come from related sets of regressors (e.g., 

coding schemes for categorical factors). 

  In the context of between-subjects designs with covariates (i.e., ANCOVA), GVIFs estimate 

multicollinearity for the omnibus test of a categorical factor that is represented by a related set of regressors 

(i.e., coding scheme). This points to the issue that there are two types of “dependency” when analyzing 

categorical variables in ANCOVA models. First, there is multicollinearity with the other covariates in the 

model. As previously mentioned, this occurs because of between-group mean differences on continuous 
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covariates and proportional differences on categorical covariates. For example, if there is collinearity, then 

the expected value of any of the other covariates depends on the categorical variable.2  

  Secondly, the groups in a between-subjects design are independent because membership to each 

category is mutually exclusive; however, there may be a dependency among statistical tests if a set a priori 

or post hoc contrasts are performed. If the contrasts are orthogonal to each other, then corrections for 

multiple testing such as the Bonferroni or Dunn-Šidák, which are based on an assumption of independence, 

should be used. If all pairwise comparisons are performed, then there is a known dependency among the 

test statistics. Type 1 error rate inflation due to the dependency created by performing all pairwise contrasts 

should be corrected with a multiple comparison procedure such as the Tukey-Kramer studentized range 

test. This form of dependency due to multiple testing of dependent contrasts is a completely separate issue 

than linear dependency in the X design matrix due to multicollinearity. 
 

Conclusion 

  Tables 4 through 7 show that standard VIFs depend on the coding scheme used for a multiple df 

categorical variable in a linear regression model, thus demonstrating that these coding schemes create 

“artificial” collinearity (Fox, 2016, p.357), which supports the use a single estimate of GVIF in these 

situations (Fox & Monette, 1992). GVIFs are invariant to the choice of coding scheme for categorical 

variables and estimate multicollinearity for the omnibus test of terms represented by a related set of 

regressors (i.e., coding scheme). Unfortunately, R is the only statistical software that has packages compute 

and report GVIF. We have demonstrated how to compute GVIF using multivariate regression models. 

GVIF is calculated for sets of related regressors, in this case a set of indicator regressors for a categorical 

variable, but this method may be applied to other types of related regressors, such as polynomial and 

interaction terms. It should be noted that for generalized linear models (e.g., logistic regression), a slightly 

different approach to computing GVIFs is necessary (Fox, 2020). 
 

Endnotes 

1. Suppose a linear model with K=2 continuous regressors. In the presence of collinearity, the estimate of 

one variable's, x1, impact on the dependent variable, y, while controlling for the other, x2, tends to be 

less precise than if predictors were uncorrelated, r12=0. If x1 is highly correlated with x2, then the usual 

interpretation of a regression coefficient is affected because x1 and x2 have a particular bivariate space. 

To elaborate, with a strong positive correlation (e.g., r12=0.95), thre may not be large values of x1 that 

coordinate with small values of x2. Consequently, there may not be a set of observations for which all 

changes in x1 are independent of changes in x2, resulting in imprecise estimates of the effect of 

independent changes in x1 and x2. 

2. There are several versions of string (character) variables for Ethnicity because SAS and SPSS make the 

last category, alphanumerically, the Reference group by default, whereas STATA and R make the first 

category the Reference group by default. These variables were created so that the reader can replicate 

the analyses in this article using the default settings in their preferred software. 

3. To elucidate, in an Analysis of Covariance (ANCOVA) model, the categorial variable (G) and the 

continuous covariate (X) are orthogonal (G⊥X) if and only if the categories have identical means on 

the covariate, otherwise there is some degree of collinearity between G and X. This generalizes to 

proportional differences for categorical covariates. 

4. There are other choices for the assumed standard deviation (SD) used as the denominator in Cohen’s d. 

This includes the sample SD=8.74 or the root mean square error (RMSE) from a regression model. The 

unadjusted mean difference for the preparation program factor is 3.13. This would yield effect size 

estimates of d=0.313, using the assumed population SD of 10, of d=0.358, using the sample SD, and 

d=0.362, using the RMSE of 8.644 from an ANOVA. The covariate-adjusted mean difference of 3.55 

could also yield effect sizes of d=0.406, using the sample SD of 8.74, or of d=0.518, using the 

ANCOVA RMSE of 6.858. 

5. Suppose two regression coefficients with the same absolute value but different values for VIF as is the 

case with B in model (4) and A in model (5). In principle, the variable with the larger VIF might be 

expected to have a larger SE, because the SEs uses the same mean square error (MSE). This is not the 

case, however, for the Asian vs Black pairwise difference because the B and A dummy codes have 

different variances, and thus different SSk (see eq. 37). Because linear regression models are invariant 
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to transformation, all x-variables could be standardized to have the same mean and variance, and thus 

the same SSk. Performing analogous regression models, such as (4) vs (5), with the standardized x-

variables will yield the same MSE, TOLs, VIFs, t-statistics, and p-values as original models; however, 

this transformation will change the scale of the variables, yielding different regression coefficients and 

SEs. 

6. Although applying Helmert coding to the Ethnicity factor does not make a great deal of sense, it is used 

to demonstrate orthogonal coding. Table 2 shows one of J!/2 = 12 possible versions of a Helmert-type 

coding scheme for the Ethnicity factor that are orthogonal to each other based on a method shown in 

Pedhazur (1982, p. 324). The reader can verify that these vectors have means of zero and are 

uncorrelated, and thus, would have VIF and TOL of 1 in an ANOVA model. 

7. Researchers often employ more complex regression terms to investigate whether a continuous variable 

has a non-linear relationship with the outcome by using polynomial regressors. For example, if the 

investigator suspect Age (x) has a non-linear relationship to the outcome, then quadratic and cubic 

polynomial terms could be constructed as x2 and x3, respectively. Since all values for Age are positive, 

x, x2, and x3 will be highly correlated creating a extremely large degree of collinearity. As mentioned, 

this could lead to a very unstable regression solution. As with choice of coding scheme with categorical 

factors, the correlations among a set of polynomial regressors in an explanatory variable x are affected 

by linear transformation of the x-values. It is common practice to subtract the mean from x prior to 

constructing polynomial regressors (i.e., centering) to lessen the collinearity among polynomial 

regressors. Fox and Monette (1992) contend that in this situation assessing collinearity for Age should 

be treated as a singular independent factor with 3 dfs, instead of 3 separate variables with 1 df each.  

  Similarly, researchers may choose to investigate whether the relationship of one factor is modified by 

another factor and construct interaction terms via cross-products of the variables. If two dummy coded 

binary variables (g and z) are used, then the cross-product (gz) will have some degree of collinearity 

with g and z, even if g and z are uncorrelated (orthogonal). If a cross-product interaction term is formed 

with a dummy coded binary variable (g) and a continuous variable (x), then g, x, and the cross-product 

(gx) will necessarily be correlated because when g=0, gx also equals 0. Although this “false” 

collinearity and the standard VIFs could be lessened by using a different coding scheme (i.e., Effect 

coding), Fox (2016) maintains that collinearity for such related sets of regressors should be evaluated 

with GVIFs. 

8. In actuality, statistical power in a linear regression model is more complicated because multicollinearity, 

which leads to large VIFs, also tends to reduce the Full Model R2 leading to a larger MSE.  
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