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The homogeneity of regression coefficients is one of the most important assumptions for appropriate of 

ANCOVA (Huitema, 1980). However, this assumption is not always met, but usual to reveal the 

heterogeneity of slopes, and thus leading to biased statistical testing results. Hence, an alternative 

approach to ANCOVA is required. In the present paper, Johnson- Neyman technique is briefly introduced 

including a sequence of statistical tests and Statistical Package Syntax. 

 he homogeneity of regression assumption is one of the most important assumptions underlying the 

appropriate use of ANCOVA (Huitema, 1980). When this assumption is violated, the ANCOVA is 

inappropriate way to use. In the following numerical example, the ANOVA F is not statistically 

significant. If the homogeneity of regression assumption is not tested, the conclusion that there are no 

treatment effects among groups is erroneous. The biased  Fcal is the result of violating the ANCOVA 

assumption. Johnson- Neyman is generally an appropriate alternative analysis. As Johnson and Fay 

(1950) pointed out,  

Modern statistical procedures are primarily concerned with two basic problems –determining 

significance and estimating parameter values. The Johnson-Neyman technique may be used for 

both problems; however, its primary contribution is the determination of significance of 

differences in groups, and its unique and additional contribution is in defining the population, in 

terms of control variables, for which the conclusion of [statistically] significant difference of 

mean performance may be held. (p. 349) 

  In the present paper, a numerical example was presented to further explain the concept of J-N 

technique. The practical application of this procedure in the present paper was limited to two groups and 

one covariate. The system of tests described below was based on the procedure by Pedhazur (1997). The 

numerical example is based on the design matrix by Huitema (1980) shown in Table 1. The data in Table 

1 are based on the experiment introduced by Huitema. The treatments are the two methods of therapy. 

The covariate is the scores on the sociability scale. The dependent variable is the aggressiveness score. 

Dummy code is used to categorize the group membership. 

  The overview procedure includes: 1) conduct a full regression model to test whether the main effects 

and interaction effects are sufficiently meaningful or not, and to obtain the sum of squares for calculating 

the limits of region of significance; 2) test the homogeneity assumption of slopes by testing the 

significance of interaction between group and covariate; 3) establish the region of significance.  
 

Step 1. Is the Proportion of Variance Accounted for Meaningful? 

  This test serves a go/no-go criterion for continuing with the subsequent procedures. R
2

y.D,X,DX indicates 

the proportion of variance accounted for by the main and interaction effects. Whether the R2
y.D,X,DX is 

statistically significant or not, if the value of R
2
y.D,X,DX is too small to be substantively meaningful, the 

analysis should be terminated, otherwise it is worthy to proceed to the next step (Pedhazur, 1997).We 

obtained the R Square of .938 which means 93.8% of variance is explained by the main and interaction 

effects. This result is NOT too small to be meaningful. Hence, the analysis can proceed to the next step. 

The relevant SPSS command syntax is:  
 

           REGRESSION VAR Y X D DX/DES/STAT ALL/ 

           DEP Y/ENTER X/ENTER D/ ENTER DX . 
 

The purpose of using STAT ALL subcommand is to obtain the Model Summary Table including the 

values of R Square Change, F Change and Sig. F Change, which equals the values obtained from 

ANOVA summary table. For instance, if we still want to know whether there are treatment effects or not, 

the correspondent F Change and pcal can be obtained directly from the Model Summary Table. In the 

present case, F Change ratio on treatment effects is 2.282 (pcal = 0.142 ) which is not significant at α=.05. 

Or we can also perform this analysis by using SPSS command GLM. The relevant SPSS syntax is  

  

T 
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           GLM Y BY D WITH X 

           /PRINT=DESCRIPTIVE/CRITERIA=ALPHA (.05)/DESIGN. 
 

The results of these three methods are identical, which are shown in Table 2, Table 3 and Table 4.   

  According to Pedhazur (1997), “…a test of significance can be conceived as an attempt to answer the 

question: Does additional information add significantly to the explanation of the dependent variable?” (p. 

563). Applied to the present numerical example, this statistical test on treatment or the difference between 

groups can be viewed as the test of the increment in the regression sum of squares due to the dummy 

vectors, D. Because of the equation: R
2
= SOSreg / SOStotal, the present test can also be viewed as the test of 

the increments in proportion of variance accounted for due to the dummy vectors, D. Hence, the same F 

ratio = 2.282 can been obtained through these three methods 

[only for heuristic purpose]. And the present F ratio is not 

statistically significant at α = 0.05. If the homogeneity of 

regression assumption is met, the researchers can conclude 

that there are no treatment effects. However, if the assumption 

of the homogeneity of the regression slopes is rejected, then 

the conclusion that there are no treatment effects must be 

erroneous. Further details are discussed in Step 2.   
 

Step 2. Is There a Statistically Significant Interaction? Or 

Is the Homogeneity of Regression Assumption Met? 

  In this step, we determine whether the ANCOVA is 

appropriate procedure for further analysis on difference 

between treatment groups based on the Yea/Nay of 

assumption of homogeneity of regression slopes. As 

Thompson (2006) explained, 

What ANCOVA actually does is to create a single 

regression equation, ignoring groups, to predict 

dependent variable scores using the covariates… These 

computations are legitimate if …homogeneity of 

regression assumption is met…If this assumption is not 

met, the use of an average, or “pooled” equation, for all 

the participants is unreasonable, creates e scores using a 

single regression equation that may not fit in any of the 

groups, and thus focuses the analysis on outcome scores 

that are inaccurate distortion for everybody. (p. 355) 

  Moreover, the test of ANCOVA assumption can also be 

conceived of as the test of the statistical significance of 

interaction effects. As Pedhazur (1997) noted, 

A test of coefficient for the product vector [bDX] is the 

test of the interaction and is equivalent to a test of 

increment in the proportion of variance accounted for by 

the product vector, over and above its constituent 

variables. Also, when one of the variables is categorical 

and the other is continuous, the test of an interaction 

addresses the question of whether the regression lines of 

the dependent variable on the continuous variable are 

parallel for all the categories of the categorical variable. 

In other words, a test of an interaction addresses the 

question of whether differences among regression 

coefficients from separate regression equations are 

statistically significant. (p. 583) 

  Hence, in Step 2, we can perform both two-sample t-test 

[on bDX] and ANOVA via regression to test the statistical 

 Table 1. Demonstration Data with 

Two-Group One-Covariate Design 

 
Y X D DX 

1 10.0 1.0 1.0 1.0 

2 10.0 2.0 1.0 2.0 

3 11.0 2.0 1.0 2.0 

4 10.0 3.0 1.0 3.0 

5 11.0 4.0 1.0 4.0 

6 11.0 5.0 1.0 5.0 

7 10.0 5.0 1.0 5.0 

8 11.0 6.0 1.0 6.0 

9 11.5 6.0 1.0 6.0 

10 12.0 7.0 1.0 7.0 

11 12.0 8.0 1.0 8.0 

12 11.0 8.0 1.0 8.0 

13 11.0 9.0 1.0 9.0 

14 12.5 10.0 1.0 10.0 

15 12.0 11.0 1.0 11.0 

16 5.0 1.0 0.0 0.0 

17 6.0 1.5 0.0 0.0 

18 6.0 2.5 0.0 0.0 

19 7.0 3.5 0.0 0.0 

20 8.0 4.5 0.0 0.0 

21 9.0 4.5 0.0 0.0 

22 9.0 5.0 0.0 0.0 

23 9.0 6.0 0.0 0.0 

24 10.5 6.0 0.0 0.0 

25 11.0 7.0 0.0 0.0 

26 12.5 7.0 0.0 0.0 

27 12.5 7.5 0.0 0.0 

28 14.0 8.0 0.0 0.0 

29 14.5 9.0 0.0 0.0 

30 16.0 10.0 0.0 0.0 
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significance of interaction effects, and expect to reach the same conclusion. As Thompson (2006) 

explained,  

Multiple regression is the most general case of the univariate general linear model (GLM), and 

subsumes other univariate parametric analyses (i.e., two- sample t-test, ANOVA, ANCOVA, 

Pearson r) as special cases. This implies that all analyses are correlational, yield r
2
-type effect 

size, and apply weights to measured variables to estimate latent variable scores. (p. 390)  

Hence, the conclusive results via the t-test and ANOVA should be identical. We will conduct the 

regression analysis by using SPSS syntax. Then we will compare the results obtained from the output 

table. The relevant syntax is  

             REGRESSION VAR Y X D DX/DES/STAT ALL 

        /DEP Y/ENTER X/ENTER D/ ENTER DX . 

or     

       GLM Y BY D WITH X /PRINT=DESCRIPTIVE/CRITERIA=ALPHA (.05) 

                   /DESIGN= X D D*X . 
 

  We can also build an ANOVA summary table by subtracting the smaller sum of square from the 

larger one, then producing an F ratio. Table 3, Table 5 and Table 6 present that the obtained F ratio of test 

of ANOVA assumption via two methods is identical, with value of 141.896, which is statistically 

significant, when compared with Fcrit = 4.23 (α =.05, dfreg=1, dferror= 26).  

  Moreover, the obtained tcal is -11.912, which is statistical significant, when compared with the 

pcal=0.000 [INPUT “= T.DIST.2T (11.912, 26)” in EXCEL (As for some previous versions, INPUT 

“=TDIST(11.912, 26,2) where the 11.912 is the tcal, 26 is the degree of freedom, and 2 indicates that the 

test is two tailed)]. Because of the equation: tcal
2 

= Fcal, (-11.912)
2 

= 141.896, the test results of 

homogeneity of regression slope via three different methods are identical, all of which are statically 

significant at α = .05. We can conclude that the regression slopes are heterogeneous and can determine 

that ANCOVA is quite inappropriate which are “an inaccurate distortion to everybody” (Thompson, 

2006, p. 583). The alternative technique is required. 

 

Step 3. Establish Region of Significance via Johnson-Neyman Technnique 

  When the homogeneity of regression assumption is rejected, the ANCOVA is not appropriate 

procedure for further analysis. In the present paper, the Johnson- Neyman Technique, as an alternative 

approach, is briefly introduced, with emphasis on two groups, one covariate. The procedure below was 

similar to the one presented by Huitema (1980). 

  To establish the limits of the region of non-significance (or significance), two X values need to be 

computed by using:  

         𝑋1 =
−𝐵−√𝐵2−AC

A
 

          𝑋2 =
−𝐵+√𝐵2−AC

A
                (1) 

         𝐴 =
−𝐹𝛼(1,𝑁−4)

𝑁−4
(𝑆𝑂𝑆𝑟𝑒𝑠) (

1

∑ 𝑥1
2 +

1

∑ 𝑥2
2) + (𝑏1 − 𝑏2)2 

          𝐵 =
𝐹𝛼(1,𝑁−4)

𝑁−4
(𝑆𝑂𝑆𝑟𝑒𝑠) (

𝑋1̅̅̅̅

∑ 𝑥1
2 +

𝑋2̅̅̅̅

∑ 𝑥2
2) + (𝑎1 − 𝑎2)(𝑏1 − 𝑏2) 

         𝐶 =
−𝐹𝛼(1,𝑁−4)

𝑁−4
(𝑆𝑂𝑆𝑟𝑒𝑠) (

𝑁

𝑛1𝑛2
+

𝑋1
2̅̅ ̅̅

∑ 𝑥1
2 +

𝑋2
2̅̅ ̅̅

∑ 𝑥2
2) + (𝑎1 − 𝑎2)2 

  Where X1 and X2 are limits of non-significance region 𝐹𝛼(2,𝑁−4) = critical value of F statistic for 

desired level of α and 1 and N-4 degrees of freedom (N= total number of participants)  

  𝑆𝑂𝑆𝑟𝑒𝑠= individual residual sum of squares 

  𝑋1
̅̅ ̅, 𝑋2

̅̅ ̅ = covariate means for sample 1 and sample 2 respectively 

  ∑ 𝑥1
2, ∑ 𝑥2

2 = covariate sums of squares for sample and sample 2 respectively 

  𝑎1 = regression intercept for sample 1 

   𝑎2 = regression intercept for sample 2 

   𝑏1 = regression slope for sample 1 

   𝑏2 = regression slope for sample 2  

The required values for the application of the formula to Table 1 are:  
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   𝐹𝛼(2,𝑁−4) = 4.225      𝑋1
̅̅ ̅= 5.8     𝑋2

̅̅ ̅ = 5.533    ∑ 𝑥1
2=130.4   ∑ 𝑥2

2 = 99.23  

    𝑆𝑂𝑆𝑟𝑒𝑠= 10.920        𝑎1= 9.857   𝑎2 = 3.155    𝑏1 = 0.209    𝑏2 = 1.237 

The values for A, B, and C are:A  

   A = 1.0253304       B = -6.7155607      C = 43.71518698   

   X1 = 6.04              X2 = 7.06 
 

  The detailed computations were omitted by Huitema (1980). The author of the present paper 

conducted the calculation by using the SPSS syntax. Figure1 presents the SPSS syntax relevant to the 

Johnson- Neyman technique.  

  The scores lie within the range of 6.04 and 7.06 are not statistically significantly different across 

treatments. We can conclude that the two methods of therapies are not different for participants whose 

sociability scores fall at the specific point within this range. However, there are two regions of 

significance, one for X above 7.06 and one for X scores below 6.04. If a score falls at the point below 

6.04, we can conclude that method 1 is superior to method 2 for participants whose sociability scores fall 

at the specific point below 6.04. If a score is above 7.06, we can conclude that method 2 is superior 

(Huitema, 1980).  

 

 
Figure 1. Johnson- Neyman technique SPSS syntax.  

  

SET PRINTBACK=LISTING.  

DATA LIST FILE= 'C:\SPSSWIN\huitema.txt' records=1/1  

Y 1-4 X 6-9 D 11-13 .  

compute DX= D*X.  

LIST VARIABALES = ALL/ FORMAT=NUMBERED.   

COMMENT ESTABLISH THE REGIONN OF SIGNIFICANCE. 

REGRESSION DEPENDENT= Y/ ENTER D X DX. 

TEMPORARY. 

SPLIT FILE BY D . 

REGRESSION VARIABLES = X Y/DEP Y/ENTER X . 

TEMPORARY. 

SPLIT FILE BY D . 

REGRESSION VARIABLES = X Y/DEP X/ENTER Y. 

COMMENT COMPUTATIONS J-N METHOD . 

DATA LIST FREE 

/Fcrit SSres  n1 avg1 SSx1 a1 b1 n2 avg2 SSx2 a2 b2 . 

BEGIN DATA 

4.225 10.920 15 5.8 130.4 9.857 0.209 15 5.53 99.233 3.155 1.237 

END DATA . 

list variables =Fcrit SSres n1 avg1 SSx1 a1 b1 n2 avg2 SSx2 a2 

b2/FORMAT=NUMBERED. 

COMPUTE T1 = (-1)* (Fcrit/(n1+n2-4))*SSres. 

COMPUTE T2= (-1) * T1 . 

COMPUTE A = T1* ((1/SSx1)+(1/SSx2))+ (b1-b2)**2 . 

COMPUTE B = T2* ((avg1/SSx1)+(avg2/SSx2)) + ((a1-a2) * (b1-b2)). 

COMPUTE C = T1* (((n1+n2)/(n1*n2))+ ((avg1**2)/SSx1)+((avg2**2)/SSx2)) + (a1-

a2)**2 . 

LIST VARIABLES = A B C / FORMAT=NUMBERED. 

COMPUTE X1= ((-1)*B +sqrt((B**2)-A*C))/A . 

COMPUTE X2 = ((-1)*B - sqrt((B**2)-A*C)) /A . 

LIST VARIBABLES= X1 X2/FORMAT=NUMBERED. 



Johnson-Neyman Technique 

General Linear Model Journal, 2016, Vol. 42(1)                                                                                                        29 

Group Differences (Main Effects)   

 The interaction between group and covariate is statistically significant, indicating that group 

differences vary upon the level of covariate. Within the region of significance, the group differences are 

statistically significant across the levels of covariate. While outside the region of significance, the group 

differences are small or not statistically significant or even zero across the levels of covariate. The group 

comparison, in fact, is the difference of least squares means (or estimated marginal means) at the mean of 

covariate. Researcher can also evaluate the group differences (or effects) at other specific values of 

covariate or even of multiple covariates.  

  Least squares means (LSmeans in SAS PROC GLM) or estimated marginal means (EMMEANS in 

SPSS) are the estimated marginal means adjusted for the covariate. Note that these statistics are 

predicated rather than observed means. One can easily obtain these statistics from SAS or SPSS.  

  In this example, the EMMENAS statement in SPSS and LSMEANS statement in SAS report the 

marginal means of Y at each level of the grouping variable D at a specific value of X, say 8. Moreover, 

these two statements also report the group difference along with statistical significance testing. Both 

statements output the same results: LSmean = 13.051 (D = 0), 95% CIs [12.575,13.528], LSmean 

=11.526 (D = 1), 95% CIs [11.096, 11.955]. The group difference at the value of 8 of covariate, X , is -

1.526, 95% CIs [-2.167, -.884]. The outputs are consistent with the results reported in the example 

illustrated by Huitema (1980). Moreover, the score of 8 is above 7.06, and it is located in the region of 

significance. Therefore, the group difference at this specific value of X is significant. Of course, one can 

also calculate the least squares means of each group, and group differences at the overall mean of 

covariate by simply inputting “X=MEAN” in SPSS or “At means” in SAS.  
 

Multiple Groups and Multiple Covariates  

 If more than two groups involved, researchers should employ adjustment technique when conducting 

pairwise comparisons. SPSS users can specify the option “ADJ” with Bonferroni or Sidak correction 

tests. SAS users can specify the option “ADJUST=” with Bonferroni, Sidak, Tukey and Scheffe 

correction tests.  

 If more than one covariate involved, researchers can conduct the group differences at the specific 

value of each covariate. To illustrate this case, I replicated the example in the textbook by Huitema (1980, 

p287). In this example, the researcher attempted to determine the treatment effect at the three covariate 

scores: X1 = 4, X2 = 9, and X3 = 3. SAS PROC GLM allows users to specify the values on multiple 

covariates. The SAS syntax is displayed as follows.   

 The SAS outputs are matched with the results reported by Huitema (1980). The treatment effect is -

3.485 with 95% CIs [-4.363,-2.606].  

 

  

/*SPSS SYNTAX*/ 

GET FILE "TABLE1.SAV" 

UNIANOVA Y BY D WITH X 

/METHOD=SSTYPE(3) 

/INTERCEPT=INCLUDE 

/EMMEANS=TABLES(D)WITH(X=

8) COMPARE(D) 

/CRITERIA=ALPHA(.05) 

/DESIGN=X D X*D. 

/*SAS SYNTAX*/ 

PROC GLM  DATA=JNT.TABLE1;  

CLASS D; 

MODEL Y = D X D*X/SOLUTION; 

LSMEANS D/ PDIFF=ALL TDIFF 

CL AT X=8;  

RUN; 

QUIT; 

/*SAS SYNTAX*/ 

PROC GLM DATA=JNT.TABLE3COV; 

CLASS D; 

MODEL Y = D X1 X2 X3 X1*D X2*D X3*D/ SOLUTION; 

LSMEANS D / PDIFF TDIFF CL AT (X1 X2 X3)=(4 9 3); 

RUN;QUIT; 
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Region of Significance  
  Originally, Johnson and Neyman (1936) designed a procedure to test the difference between 

treatment effects at a specific point on X. The established region of significance by the conventional 

procedure in the present case is non- simultaneous. The modified version was proposed by Potthoff 

(1964), who extend the procedure for establishing simultaneous region, which enable one to “state with 

95 percent confidence that there is a nonzero difference between the two groups simultaneously for all 

points in the region” (Potthoff, p. 241). To calculate simultaneous regions of significance, replace 

𝐹𝛼(1,𝑁−4) with 2𝐹𝛼(2,𝑁−4).  
 

Plotting the Region of Significance. Data visualization can be a conducive way for understanding the 

story told by the data. One way to plot the region of significance is using STATA plotting function.  

Figure 2 presented the group difference line, its confidence interval area, and region of significance based 

on the Table 1 data. As shown in Figure 2, when group differences confidence interval contains the value 

of zero, the corresponding upper limit and lower limit values are around 6.04 and 7.06 respectively. At X 

= 8, the corresponding Y value (group difference) is around -1.52. Hereinafter is the STATA Syntax.  

  If multiple group and multiple covariates involved, SPSS, SAS and STATA cannot visualize the 

multi-dimension data. Instead, one can plot the regression hyperspace by using Mathematica. Readers can 

consult the paper authored by Hunka and Leighton (1997).  
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Figure 2. Johnson-Neyman technique region of significance. 

Summary 

  As Huitema (1980) pointed out, “heterogeneous regression slopes associated with ANCOVA present 

interpretation problems because the magnitude of treat effect is not the same at different levels X” (p. 

270). Hence, prior to performing ANCOVA analysis, the assumption of homogeneity of regression must 

be met. For instance, Even if ANCOVA F is statistically not significant, the conclusion that there are no 

treatment effects might be incorrect, without testing the homogeneity of regression slopes. If the 

ANCOVA assumption is rejected, the alternative method, such as Johnson-Neyman technique can be 

adopted to do the further analysis by establishing region of significance. The present procedure can allow 

a researcher to make statements about the regions of non-significance and significance by identifying the 

values of X that are associated with significant group differences on Y.  
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