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The results of Morris and Lieberman (2012) were extended to include more extreme multicollinearity 

conditions, with specific attention paid to the effect of a wide range of multicollinearity levels on 

Ordinary Least Squares and Logistic Regression cross-validated classification accuracy, and the attendant 

increase in prediction accuracy afforded by Ridge Regression and Principal Components models with 

increasing validity concentration. Even very extreme multicollinearity did not affect OLS or LR 

prediction accuracy, but, given attendant validity concentration, did enable Ridge Regression and 

Principal Components to exceed the accuracy of these typically used classification techniques. 

Clarification regarding how these results bear on admonitions regarding multicollinearity was tendered. 

 his investigation extends Morris and Lieberman (2012), which contrasted the accuracy of six 

algorithms for classifying subjects into one of two groups. Although the 2012 study considered a 

wide variety of alternate prediction methods, degrees of group separation, and validity 

concentration levels, only one of the levels of multicollinearity included would normally be deemed 

serious (Variance Inflation Factor (VIF) > 10). This study extends multicollinearity conditions 

considerably, paying particular attention to the effect of multicollinearity on the traditionally used 

Ordinary Least Squares (OLS) and Logistic Regression (LR) models, and the enabling effect of 

multicollinearity in respect to validity concentration for alternate methods.  

  Darlington (1978) posited that the relative performance of OLS versus alternative methods’ 

regression cross-validation accuracy is a function of R
2
, N, and validity concentration, where R

2
 

represents the sample squared multiple correlation and N the sample size. Darlington described validity 

concentration as a data condition in which the principal components of the predictor variable 

intercorrelation matrix, with large eigenvalues, also have large correlations with the criterion. Thus, 

validity concentration inherently depends on predictor variable collinearity; a modicum of predictor 

variable collinearity is necessary to result in large eigenvalues. But, collinearity is only necessary, not 

sufficient, for validity concentration. In respect to regression, Morris (1982) examined the performance of 

a variety of prediction models with the data structures posed by Darlington. Most pertinent to this study, 

Morris and Huberty (1987) examined a subset of the methods considered in Darlington and Morris (1982) 

[OLS, Ridge Regression (RR), and Principle Components (PC)] in the context of two-group classification 

accuracy (rather than regression) using the same simulated data conditions.   

  Morris and Lieberman (2012) used the same data conditions as in Morris and Huberty (1987), but 

included the Pruzek and Frederick (1978) and Equal Weighting techniques. In addition, LR was included. 

A synopsis of those results were that OLS and LR were superior at smaller levels of validity 

concentration (disregarding occasions in which LR estimates failed to converge due to maximum 

likelihood failure – a necessity with complete group separation in the sample) and as validity 

concentration increased, the alternate methods became superior. As in Darlington (1978), and all 

subsequently cited studies, multicollinearity was manipulated by creating data with varying predictor 

variable eigenvalue ratios (λr) of .95, .80, .65, and .50. These were simply specified as the proportion of 

decrease in the principal component eigenvalues in a 10 variable prediction problem. Thus, as the λr 

becomes smaller, multicollinearity of the predictors becomes larger. Therefore, the .50 λr condition 

represented the highest level of multicollinearity afforded in all of these studies. VIFs using the .50 λr 

condition ranged from about 12 to 39; thus, representing what might normally be judged a multicollinear 

predictor variable set. However, none of the other λr conditions manifested VIFs that would usually be 

considered multicollinear. As well, the .50 λr condition does not manifest the higher levels of 

multicollinearity often seen in real data sets. Thus, part of the goal of this study was to examine 

classification accuracy under more extreme multicollinearity conditions. 

 

Method 

  The point of this study was to extend results regarding the contrast between the standard classification 

methods (OLS and LR) and alternatives. The purpose was not an examination of the relative performance 
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of OLS versus LR. The commonly purported advantage of LR regards immunity to the distributional 

requirements of OLS; thus, as distribution shape was not manipulated in this study, such comparisons are 

judged inappropriate. The purpose was also not to identify the best alternate method, rather to consider 

accuracy trends of OLS and LR versus some typically available alternatives.  Therefore, other than the 

addition of LR, the same methods as included in the previously mentioned Morris and Huberty (1987) 

original presentation of alternatives to OLS prediction in the classification context were used herein. The 

methods used were: 

 OLS.  Fisher’s LDF.  

 Ridge.  Empirical ridge regression weights calculated using the biasing parameter, k, due to 

Lawless and Wang (1976).  

 PC.  Prediction from principal components with the number of components chosen by parallel 

analysis. This is a distinction from former studies in which the relatively naïve λ > 1.0 rule was 

used to decide dimensionality. 

 LR:  The logistic regression maximum likelihood solution was calculated with iteration using 

the Newton-Raphson method. Mimicking SPSS v. 22, iteration was halted when all weights 

changed by no more than .001. Failure in solution generation was captured as caused by 1) 

complete separation, 2) a singular weight covariance estimate occurrence at an iteration, or 3) non-

convergence of weights that were increasing to infinity. The same tolerance for extreme 

probabilities (10^8) as used in SPSS v. 22 was employed. 

All data conditions were such that there were 10 predictor variables. For Darlington’s condition of a 

constant proportion eigenvalue decrease, it is obvious that if the first eigenvalue can be calculated, all 

remaining eigenvalues are evident. The formula for calculating the first eigenvalue is λ1=p/(1 + ∑j=1
q 

λr
j
), 

where p is the number of components (or variables), and q =  p-1. Increased levels of collinearity were 

created such that λrs of .30 and .40 were used in addition to the previously mentioned .50 and .65 levels. 

This resulted in four conditions in which the VIFs were what would normally be considered problematic 

(.50 λr: VIFs ranged from about 12 to 39), very problematic (.40 λr: VIFs ranged from about 49 to 232), 

and what might be considered by many to be tragically problematic (.30 λr: VIFs ranged from about 340 

to 2000). In addition, one condition in which multicollinearity would be considered benign (.65 λr: VIFs 

ranged from about 3 to 6) was included. To provide context, one further comment (and the reason for its 

selection) about the .30 λr condition is needed. Although originally posited as a test of the ability of digital 

computers to accomplish the necessary inversion of a near singular matrix for regression (Longley, 1967), 

the infamous “Longley Data” has often been used as a reference point for very extreme multicollinearity 

(VIFs from 4 to 1789).  With VIFs of 340 to 2000, the .30 λr condition manifests greater multicollinear 

than the Longley data. It would be difficult to argue that an extreme range of multicollinearity has not 

been covered herein. 

Validity concentration was manipulated in exactly the same way, and with the same levels, as in the 

former cited studies. Six levels of validity concentration were created such that the component validities 

were proportional to a power of the eigenvalues; powers of .1, .5, 1, 2, 4, and 10 were used. Thus, as the 

squared component validities had to sum to the desired multiple correlation, they were also uniquely 

determined. 

 

Procedure 

  As in Morris and Huberty (1987), these 24 conditions (4 λr by 6 validity concentration conditions) 

were expanded in a fully crossed design to include two population multiple correlations (ρ
2
) of .25 and 

.75. A population of 10,000 subjects was created to manifest each of the desired sets of collinearity, 

validity concentration, and multiple correlation characteristics. Manipulating sample size was done by 

simply selecting 40, or alternatively 100, subjects in a sample (with replacement). The algorithm used to 

create the population covariance matrices representing the respective eigenstructure and validity 

concentration is described in Morris (1982), and the algorithm for creating the population of subjects 

manifesting each desired covariance matrices is described in Morris (1975).  

  To transform each of  these data structures into a two-group classification problem, each population 

was dichotomized at the median criterion score and the prediction weights from randomly selected 

samples of the desired size were calculated to predict the dichotomous criterion by each of the prediction   
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Table 1. OLS and LR Performance by Multicollinearity Condition 

  

Mean Performance 

λr VIF Range ρ
2 
= .25 

 

ρ
2
 = .75 

  (rounded) OLS LR   OLS LR 

.30 340 to 2000 .6136 .6127 

 

.7841 .7808 

.40 49 to 232 .6102 .6103 

 

.7820 .7807 

.50 12 to 39 .6082 .6077 

 

.7821 .7769 

.65 3 to 6 .6121 .6115 

 

.7857 .7813 

.80 1 to 2 .6085 .6083 

 

.7809 .7767 

.95 < 1 .6064 .6060 

 

.7761 .7723 

       F(5,66) = 

 

0.22 0.19 

 

0.26 0.19 

              
methods. The sample weights were then cross-validated by using them to classify all 10,000 population 

subjects. The total number of correct classifications was used to compare the relative accuracies of the 

methods. Toward greater stability, this procedure was repeated 1000 times within each data condition 

(rather than 100 replicates as in former studies) with the mean classification accuracy representing the 

accuracy of each method. The random normal deviates required were created by the “Rectangle-Wedge-

Tail” method (Marsaglia, MacLauren, & Bray, 1964), with the required uniform random numbers 

generated by the “shuffling” Algorithm M recommended by Knuth (1969, p. 30). Dolker and Halperin 

(1982) found this combination to perform most satisfactorily in a comparison of several methods of 

creating random normal deviates. A Fortran 90 computer program compiled by Intel Parallel Studio XE 

2013 was used for accomplishing all simulations. 

 

Results and Discussion 

  In consideration of the effect of multicollinearity on traditional classification methods, Table 1 shows 

the performance of OLS and LR methods for the .25 and .75 ρ
2
 conditions as a function of λr, collapsed 

across all other conditions. Only the previously mentioned .30, .40, and .65 λr conditions were considered 

henceforth in this paper, but in Table 1, the nearly orthogonal additional λr conditions of .80 and .95 were 

presented to capture the effect of a very broad range of collinearity conditions on prediction accuracy for 

traditional classification algorithms. Additionally an F-ratio from a one-way analysis of variance 

comparing the means across the six multicollinearity levels is included. One can see that the answer is 

very simple; multicollinearity, from non-existent to very extreme, has absolutely no effect on the cross-

validated classification accuracy of OLS or LR for either group separation level (ρ
2
). One might note that 

the F-ratios never even approached 1. Moreover, if one considers only two significant digits, variation in 

accuracy across multicollinearity levels (within a ρ
2
 level) is a maximum of .01 for both OLS and LR.   

  This is not to say that multicollinearity is unimportant; only that it is not important to cross-validated 

prediction accuracy. Philosophical precision regarding the goal of the research is necessary. The 

distinction between the goal of prediction, wherein interest is in creating a model that is maximally 

accurate versus that of explanation, in which judgments regarding the explanatory power of variables 

within a model is the interest, has been nicely detailed elsewhere (Kerlinger, 1973, p. 9-10; Kerlinger & 

Pedhazur, 1973, p. 48-49; Huberty, 2003). If prediction accuracy is the goal, then multicollinearity is not 

relevant. If, on the other hand, attention does not regard model prediction accuracy, but allocation of 

variable importance within the model, then, of course, multicollinearity tends to confound such judgment. 

If interest is in both goals, the researcher may need to contemplate their relative importance. However, it 

seems that what appear to be blanket warnings regarding multicollinearity in classification problems 

should at least be more precisely expanded in consideration of these alternate modeling goals (Hosmer & 

Lemeshow, 2000, p. 140-141; Schaefer, 1986). Herein, interest is in classification; however, the same 

comment can certainly be made regarding regression, or other prediction methods. 

  Tables 2 and 3 include the classification performance for all methods at each λr, validity concentration 

(power), and sample size for the .25 and .75 ρ
2
 conditions, respectively. Rounded VIF ranges are also   
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Table 2. Mean Proportion Correctly Classified for ρ2 = .25 (Mean Mahalanobis D2 = .79)     

  

Method 

λr Power N = 40 

 

N = 100 

[VIF Range]   OLS Ridge PC LR/#*   OLS Ridge PC LR/#* 

.30 .1 .6002 .5728 .5534 .5980/969 

 
.6361 .6024 .5724 .6358/1000 

[340 to 2000] .5 .5989 .6186 .6065 .5968/973 

 

.6339 .6433 .6260 .6337/1000 

 

1. .5943 .6288 .6265 .5928/972 

 

.6293 .6504 .6452 .6294/1000 

 

2. .5935 .6344 .6388 .5920/977 

 

.6291 .6540 .6557 .6292/1000 

 

4. .5944 .6359 .6414 .5930/976 

 

.6293 .6543 .6568 .6294/1000 

 

10. .5949 .6367 .6422 .5933/978 

 

.6293 .6544 .6568 .6293/1000 

           .40 .1 .5926 .5696 .5463 .5911/980 

 
.6297 .5999 .5634 .6294/1000 

[49 to 232] .5 .6003 .6145 .5980 .5984/966 

 

.6364 .6422 .6171 .6359/1000 

 

1. .5987 .6296 .6252 .5967/974 

 

.6344 .6524 .6426 .6342/1000 

 

2. .5934 .6300 .6349 .5917/970 

 

.6291 .6511 .6528 .6291/1000 

 

4. .5945 .6331 .6403 .5930/979 

 

.6303 .6530 .6572 .6304/1000 

 

10. .5943 .6331 .6406 .5929/979 

 

.6296 .6525 .6569 .6296/1000 

           .50 .1 .5936 .5730 .5469 .5924/984 

 
.6271 .6031 .5666 .6272/1000 

[12 to 39] .5 .5929 .6033 .5868 .5911/981 

 

.6259 .6302 .6088 .6259/1000 

 

1. .5933 .6186 .6134 .5914/977 

 

.6271 .6428 .6341 .6270/1000 

 

2. .5959 .6285 .6342 .5939/971 

 

.6309 .6503 .6521 .6307/1000 

 

4. .5941 .6289 .6383 .5923/973 

 

.6301 .6504 .6551 .6300/1000 

 

10. .5934 .6279 .6380 .5916/981 

 

.6286 .6491 .6541 .6286/1000 

           .65 .1 .5993 .5859 .5562 .5970/967 

 
.6351 .6216 .5779 .6350/1000 

[3 to 6] .5 .5979 .5997 .5798 .5956/970 

 
.6329 .6306 .6033 .6327/1000 

 

1. .5963 .6101 .6010 .5942/971 

 

.6309 .6383 .6247 .6308/1000 

 

2. .5939 .6163 .6220 .5921/976 

 

.6288 .6416 .6431 .6286/1000 

 

4. .5957 .6217 .6332 .5939/971 

 

.6310 .6458 .6526 .6308/1000 

 

10. .5955 .6231 .6356 .5933/974 

 

.6315 .6470 .6540 .6314/1000 

Note:  The best performing method or set of methods is in bold (p<.01).                                                                                                                    

* Number of samples for which LR calculable. 

       

included. As λr increases, multicollinearity becomes less; in turn, within each λr, validity concentration 

becomes larger as power increases. Thus, for example, the λr of .30 and power of .1 offers the highest 

multicollinearity and lowest validity concentration (within that λr condition). 

An overall Hotelling T
2
 test, and then post hoc comparisons, was used to contrast the methods’ 

classification hit-rates as in Morris and Huberty (1987). As interest was not in differentiating between 

OLS and LR, post hoc linear contrasts were between OLS and LR together and; alternatively, Ridge and 

PC. In line with Morrison’s suggestion (1976, p. 148), the means, as specified above, were ordered and 

pairwise post hoc contrasts were used to contrast larger means with smaller means until a significant (p < 

.01) difference was found, thus delineating best methods. 

 The results were so clear that both tables can be discussed together. As would be expected, trends 

regarding validity concentration were parallel to those found in Morris and Huberty (1987) and Morris 

and Lieberman (2012). One will note many samples, particularly of size 40, and more so for the higher   
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Table 3. Mean Proportion Correctly Classified for ρ2 = .75 (Mean Mahalanobis D2 = 3.69) 

  

Method 

λr Power N = 40 

 

N = 100 

[VIF Range]   OLS Ridge PC LR/#*   OLS Ridge PC LR/#* 

.30 .1 .7681 .6958 .6290 .7586/431 

 
.8079 .7317 .6481 .8081/999 

[340 to 2000] .5 .7656 .7836 .7327 .7573/491 

 
.8050 .8056 .7475 .8057/1000 

 

1. .7637 .8061 .7876 .7569/485 

 

.8047 .8201 .8002 .8054/1000 

 

2. .7639 .8103 .8128 .7564/466 

 

.8032 .8214 .8223 .8045/1000 

 

4. .7622 .8101 .8167 .7549/465 

 

.8018 .8212 .8250 .8037/1000 

 

10. .7612 .8097 .8168 .7549/482 

 

.8016 .8214 .8254 .8035/1000 

           .40 .1 .7683 .7089 .6289 .7609/449 

 
.8087 .7475 .6463 .8094/999 

[49 to 232] .5 .7680 .7786 .7170 .7584/452 

 
.8082 .8043 .7301 .8084/999 

 

1. .7647 .8016 .7748 .7566/481 

 

.8060 .8184 .7852 .8067/1000 

 

2. .7655 .8083 .8098 .7593/480 

 

.8054 .8211 .8187 .8062/1000 

 

4. .7622 .8059 .8155 .7546/473 

 

.8024 .8187 .8244 .8038/1000 

 

10. .7632 .8073 .8176 .7561/452 

 

.8036 .8206 .8268 .8052/999 

           .50 .1 .7574 .7093 .6201 .7520/486 

 
.7997 .7579 .6464 .8015/999 

[12 to 39] .5 .7647 .7721 .7079 .7574/471 

 
.8063 .8026 .7298 .8072/999 

 

1. .7669 .7975 .7640 .7580/493 

 

.8084 .8184 .7828 .8086/999 

 

2. .7649 .8030 .8023 .7561/500 

 

.8054 .8191 .8155 .8060/1000 

 

4. .7658 .8047 .8165 .7598/469 

 

.8062 .8199 .8260 .8072/1000 

 

10. .7625 .8013 .8138 .7543/484 

 

.8022 .8161 .8227 .8032/998 

           .65 .1 .7660 .7407 .6295 .7567/450 

 
.8052 .7916 .6559 .8060/999 

[3 to 6] .5 .7654 .7631 .6830 .7568/463 

 
.8041 .8008 .7089 .8051/1000 

 

1. .7654 .7809 .7360 .7567/471 

 

.8040 .8080 .7585 .8047/998 

 

2. .7702 .7964 .7892 .7615/499 

 

.8090 .8171 .8079 .8095/1000 

 

4. .7677 .7979 .8116 .7577/474 

 

.8086 .8172 .8254 .8087/999 

 

10. .7664 .7968 .8146 .7582/466 

 

.8071 .8162 .8258 .8075/999 

Note:  The best performing method or set of methods is in bold (p<.01).                                                                                                                    

* Number of samples for which LR calculable. 

       

group separation, for which LR failed to converge. This is due to complete, or quasi-complete, group 

separation in the sample and is discussed in Morris and Lieberman (2012). OLS and LR were superior at 

smaller levels of validity concentration. As validity concentration increased within λr level, Ridge became 

superior, and then at even higher validity concentration, PC became superior. The larger sample size (N = 

100) and group separation (ρ
2
 = .75) tended to retard this trend to a minor degree. 

  Further attention to the influence of multicollinearity and, in turn, validity concentration is needed. It 

is clear that multicollinearity, by itself, had no effect on cross-validated prediction accuracy of OLS and 

LR methods, and it only had an indirect effect (through “capping” the possible validity concentration) on 

the performance of the alternate methods. Across all multicollinearity levels, sample size, and group 

separation conditions, at the lowest level of validity concentration (power = .1), one can see that OLS and 

LR were clearly superior to the alternate methods. It is only upon validity concentration increasing that 

the alternative methods fair better than OLS and LR. One notes that the aforementioned advantage of the 

alternate methods induced by increasing validity concentration is lessened as multicollinearity decreases 
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(λr increases). This is because multicollinearity is necessary to obtain validity concentration; it is not 

possible for large eigenvalues to align with large component validities if there are no large eigenvalues.  

  The important lesson herein is that it is not a decline in accuracy of OLS or LR with increasing 

multicollinearity or validity concentration that advantages these alternative methods; indeed OLS and LR 

are insensitive to both multicollinearity and validity concentration. The superior performance of the 

alternative methods over OLS and LR arises from their ability to take advantage of validity concentration 

and; thus, given its presence, exceed the accuracy of OLS and LR.  
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