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The sequential nature of observations in time series make them inherently prone to autocorrelation. This 

can be problematic because autocorrelation violates a major assumption associated with many 

conventional statistical methods. Although numerous analytic techniques address autocorrelation, the 

literature is generally devoid of discussions that contrast the benefits and disadvantages of various 

methods. This paper provides readers with a brief introduction to autocorrelation and related concepts, 

and uses empirical data from college course evaluations to contrast the results of four commonly used 

methods for adjusting autocorrelation in social science research. Implications of results and 

recommendations for choosing between these strategies are discussed. 

 time series is a collection of sequentially ordered observations of a variable that can be used to 

examine longitudinal causal patterns, forecast trends, or explore the impact of a single event at a 

specified point in time (McLeary & Hay, 1982). Historically, this type of data has been used in 

the fields of finance, sociology, economics, and meteorology to study a vast array of phenomena, such as 

global warming, financial trade markets, and unemployment rates (e.g., Edwards & Richardson, 2004; 

Jackman & Layard, 1991; Loomis, Castillejos, Gold, McDonnell, & Borja-Aburto, 1999; Shahbaz, 

Nanthakumar, Rashid, & Talat, 2015). More recently, educational researchers have begun to draw on the 

broad applicability of time series designs to examine long-term, time-dependent processes within the 

context of learning and education (e.g., Erdem & Ucar, 2013; MacSuga-Gage, & Gage, 2015; Umble, 

Cervero, Yang, & Atkinson, 2000). 

  Ironically, this increased interest in time series data can also pose analytic challenges for educational 

researchers who are not accustomed to working with temporally ordered data (Box-Steffensmeier, 

Freeman, Hitt, & Pevehouse, 2014). Unlike cross sectional data, which are collected at one point in time 

and can be structured within a data file in any order, time series data are collected and analyzed 

sequentially, which can produce observations and error terms that are correlated across time. The 

correlation of residuals across time—or autocorrelation—is problematic because it violates a critical 

assumption associated with certain statistical methods, such as ordinary least squares (OLS) regression. If 

not corrected, autocorrelation can seriously distort the results yielded from time series analysis (Chatterjee 

& Price, 1991; Pindyck & Rubinfeld, 1991).  

  Although there are several analytic options for adjusting autocorrelation, these methods have their 

respective limitations and vary considerably in complexity and sophistication (Brillinger, 2001). 

Choosing the most effective approach can be challenging for researchers who lack training in time series 

analysis because it involves a consideration of the specific characteristics of both the data and the 

modeling techniques. Unfortunately, those who turn to the extant literature for direction will find that it is 

generally devoid of sources that provide procedural comparisons or contrast the limitations of various 

strategies (see Nicholich & Weinstein, 1981 for an exception; see Huitema & McKean, 2007 for a 

comparison of statistical methods for identifying autocorrelation). Moreover, in many cases, authors 

either provide overly technical descriptions of procedures that can alienate novice researchers (e.g., Afzal, 

Gagnon, & Mansell, 2015) or fail to indicate how they addressed autocorrelation in their data altogether 

(e.g., Chao, 2012; Clyde & Klobas, 2001). This lack of readily accessible comparative information creates 

a burden for those who are new to time series analysis and require additional direction when formulating 

their analytic strategies.  

Objectives 

The purpose of this paper is to illustrate a time series analysis that is accessible to researchers with 

varying levels of statistical expertise and, in doing so, address a gap in the literature through the 

comparison of four analytic procedures employed on the same data. The paper begins with a summary of 

pertinent background information related to the nature of autocorrelation in time series data. Following 

this, we outline four commonly employed procedures used to address autocorrelation in social science 
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research and then use real data from college course evaluations to contrast the results of the procedures. 

Lastly, we present a general discussion regarding the implications of using one statistical method over 

another and provide additional recommendations for researchers who are considering working with time 

series data.
1
 

 

Background Information 
 There are several recurring concepts in the time series literature that should be clearly understood by 

anyone working with this type of data. However, time series are inherently complex and the literature is 

associated with a cumbersome degree of jargon that is somewhat inconsistent across disciplines (Tsay, 

2000). In this section, we provide a basic summary of essential background information and present it in a 

manner we hope will facilitate readers’ understanding of the results and discussion presented later in the 

paper.  
 

Time series, time series data, and time series analysis 

  First and foremost, we begin by describing what constitutes a time series and how it differs from time 

series data and time series analysis. This distinction is important because these terms are not synonymous 

and yet are often used interchangeably in the literature. Time series refers to a set of observations 

measured sequentially between equally spaced intervals of time (aka time lags), whereas time series data 

are a particular portion of a time series that are analyzed using various statistical methods. Finally, the 

umbrella of statistical techniques used to analyze time series data is referred to as time series analysis 

(McCleary & Hay, 1982).  

 When time series data are analyzed using an appropriate analytical strategy, they can be used to 

answer important empirical questions and provide valuable insight into real-world phenomena (e.g., Beck 

& Katz, 2011; Brown, Katz, & Murphy, 1984; Marston, 1988). However, in order to maximize the 

precision and efficiency of the parameter estimates yielded in time series analysis, the data should meet 

some basic requirements. One, the data should have a minimum of n > 30 observations for each variable 

in the series. Two, the lags between observations should be equally spaced throughout the series. Lastly, 

all observations in a time series should rely on the same measurement tool and be based on the same 

outcome (McLeary & Hay, 1982). Although there are analytical methods that can accommodate data that 

do not meet these requirements (e.g., short time series analysis for n < 30; Bloom, 2003), these are 

beyond the scope of this paper. 
 

Autocorrelation 
  In cross-sectional data, observations are randomly collected and thus, assumed to be independent of 

one another. In contrast, observations in a time series are collected in sequential order and are, therefore, 

effectively related to each other through time-dependent processes. This element of time series makes this 

type of data more likely to contain a chronic dependency among the residuals, which is referred to as 

autocorrelation (aka serial correlation). More specifically, in any given dataset that does not contain 

autocorrelated residuals, the degree of correlation between the residuals for two or more time points (i.e., 

rho) is equal to zero, ρ (𝜀𝑡 , 𝜀𝑡−𝑡𝑗
) = 0, where t=1,…N observations and j=the degree of lag between 

observations. In contrast, in data that contain autocorrelated residuals, the error term (𝜀) associated with 

each observation shares common variance with the error in a given number of preceding residuals in the 

series, such that 𝜀𝑡 =  𝜌𝜀𝑡−𝑗 +  𝜔𝑡, where 𝜔𝑡 are assumed to be i.i.d. N(0, σ²).  

 Although the presence of autocorrelation is not necessarily problematic in and of itself, it can present 

a challenge for researchers who are interested in examining unbiased associations between two or more 

variables in a time series. Autocorrelation can also introduce additional analytic hurdles for novice 

researchers with limited statistical expertise or those who simply favor certain types of estimation 

methods over others. For instance, using OLS regression with autocorrelated data violates a critical 

assumption associated with this statistical method, such that the residual error for each observation is 

assumed to be random and unrelated to other errors in the data sequence ρ (𝜀𝑡 , 𝜀𝑡−𝑡𝑗
) = 0, where 

𝜀𝑡 = 𝑦𝑡 − �̂�𝑡, and  𝑦𝑡 − �̂�𝑡 is the difference between the observed and predicted value for the outcome 

variable 𝑦 (Chatterjee & Price, 1991).
2 Violating this assumption is problematic because it hinders the 

extent to which the parameter estimates for 𝛽0 and 𝛽𝑘 (where k is the number of predictors) are the best, 
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Figure 1. Autocorrelation function plot of the 

 unstandardized residuals for the baseline model.  

Blue bars represent the coefficients. Lines are  

Upper and Lower Confidence Limits 

linear and unbiased estimates. More specifically, the standard errors (SE) for sample estimates may be 

biased along with overestimated degrees of freedom, all of which would produce 𝛽𝑘 estimates 

systematically varying from the true parameters, while generating excessively large 𝑡 statistics and small 

CIs for the estimates, which then increase the likelihood of Type I statistical significance decision errors 

(Shumway & Stoffer, 2010).   
 

Variability in Autocorrelation Patterns 

 Within the time series literature, there is an extensive degree of variability in the characteristics of 

analyzed data, as well as in the complexity of the time-dependent processes embedded within those data 

(Box-Steffensmeier et al., 2014; Box, Jenkins, & Reinsel, 1994; McCleary & Hay, 1982). Although there 

are dozens of ways to characterize different types of time-dependent processes, we limit our discussion by 

generally categorizing basic versus more complex processes. A first-order autocorrelation (i.e., lag-1 

autocorrelation), refers to cases where the error term associated with each observation in a series is 

correlated with the error term of the previous observation, whereas a higher-order autocorrelation (i.e., 

lag-2….n autocorrelation) indicates a more complex time-dependent process. This distinction is important 

because, as will be demonstrated, identifying higher-order autocorrelations often requires additional 

probing of the residuals and the use of more sophisticated adjustment strategies (McCleary & Hay, 1982).  
 

Diagnosing Autocorrelation 

Evaluating Residual Patterns 

  Given that autocorrelated residuals can reflect various lagged patterns, graphical representations of 

the error terms are useful for identifying different time-dependent patterns in data (McCleary & Hay, 

1982). For example, plotting the residuals against time is one method of doing this, such that a variable 

that represents time (e.g., the sequence order in which observations were measured) is plotted on the x-

axis against the residuals on the y-axis. 
 

Statistical Testing 

  Although there are several statistical tests for diagnosing autocorrelation, they often differ in the type 

of autocorrelation they are designed to assess and in the estimation methods they are compatible with 

(Box et al., 2014). In this paper, we limit our discussion to two widely used autocorrelation tests, the 

Durbin-Watson (Dw) and the Ljung-Box (Q) (McCleary & Hay, 1982).  

 The Durbin-Watson is designed to identify first-order autocorrelations in OLS regression models. 

Values for Dw can range from 0-4, with lower values reflecting a higher degree of autocorrelation 

(Durbin & Watson, 1950; 1951). The statistical significance of  Dw is assessed by checking the value of 

the test statistic against the confidence intervals (CI) for the critical values specified for a given model.
3
 

The CIs are based on both the k and n of the specific analysis, where (k) refers to the number of predictors 

(including the constant) and (n) refers to the sample size. A Dw < the lower limit of the CIdL indicates the 

error terms are positively correlated and statistically significant, whereas a Dw > the higher limit of the 

CIdU indicates the positive correlation is not 

statistically significant.
4
 Although a statistically 

significant Dw implies a first-order autocorrelation, 

this result should not be interpreted as confirming a 

lag-1 autocorrelation—instead, it should be 

interpreted as an indication that further probing of 

the error terms is warranted (Blattberg, 1973; Zinde-

Walsh & Galbraith, 1991). One limitation of the 

Durbin-Watson is that it is not considered to be a 

reliable test for autocorrelation in models that are 

estimated using lagged predictor variables (Durbin 

& Watson, 1950; 1951)—a point we draw on later.  

 The Ljung-Box (Q) has broader applicability 

than the Durbin-Watson because it can be applied to 

any time series and can be used in models that 

contain lagged predictors (Wooldridge, 2016). 

Another advantage of the Ljung-Box is that it can be 
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computed for individual time lags within the same time series. For example, in most versions of SPSS, 

the autocorrelation function (ACF) can be used to produce a table that includes the autocorrelation 

coefficient and SE of each coefficient for individual lags, as well as the Ljung-Box statistic for each 

coefficient and its respective alpha. The ACF can also be used to produce a graphic plot of the 

autocorrelation coefficients for a series of lags (see Figure 1). Both the ACF table and plot are useful tools 

for examining and identifying patterns in residuals.  
 

Addressing Autocorrelation 
 The four analytic strategies outlined in this section were primarily chosen for two reasons. First, all 

four strategies are commonly used to address autocorrelation in educational research and second, given 

their straightforward nature, they are generally accessible to researchers with varying levels of statistical 

expertise. The first three procedures outlined are described specifically in relation to OLS regression and 

can be considered relatively simple alternatives to the Autoregressive Integrated Moving Average 

(ARIMA) modeling technique.
5
 For each method, we provide a brief statistical explanation, procedural 

instructions for SPSS, and a brief discussion regarding strengths and limitations.
6,7

 
 

Modeling and Controlling for a Linear Time Trend 

  Oftentimes the presence of autocorrelation in time series can be attributed to an underlying time trend 

between the variables in the series, such that the values for both the outcome and predictor are either 

increasing or decreasing at a similar rate. In these cases, if the underlying trend that relates the variables is 

not addressed, the regression analysis may yield spurious results that include exaggerated estimates of the 

model’s explanatory power and biased parameter estimates. To diagnose a linear time trend in time series 

data, a simple scatterplot of the residuals as a function of time can be evaluated for an upward or 

downward trend in values.  

 Once a linear time trend has been identified, the time trend can be estimated and used as a covariate 

in a subsequent model, or used to eliminate the trend from each variable prior to a subsequent analysis 

with the detrended data (Wooldridge, 2016). A time trend can be generated by computing a variable for 

time (t), where t=1…n, and t is simply the sequence number for each observation. In the first method, the 

variable t is included in the model as a covariate in order to obtain model and parameter estimates with 

and without the variance explained by the time trend. In the second method (Model 2), x and y are both 

regressed on t, and the unstandardized residuals yielded in each analysis are then used in the subsequent 

regression as the detrended x* and y*. Although there may be negligible differences in the R2 and β 

estimates, the R2 yielded in the regression of x* on y* (𝑅𝑀𝑜𝑑𝑒𝑙 2
2 ) should be almost identical to  𝑅𝐶ℎ𝑎𝑛𝑔𝑒

2  

from the regression analysis that contained the covariate with x added after the covariate. One benefit of 

these methods is that the specified models are tested on the entire sample, whereas some procedures, as 

we demonstrate, can negatively impact sample size.
8
 However, it should be noted that this strategy may 

not be an effective approach for time series that contain residuals displaying non-linear trends (e.g., cubic 

trend; quadratic trend), because those fluctuations are indicative of more complex time-dependent 

processes that will not be fully captured by a linear time trend.  
 

Lagged Covariate Predictor 

  Another method for adjusting autocorrelation within OLS regression is by including a lagged version 

of the outcome variable as a covariate predictor in the model (Hyndman & Athanasopoulos, 2014). When 

a variable is lagged, the values of the original variable are moved forward by the specified number of 

observations lag(j). The LAG command in SPSS can be used to create a variable with the specified lag(j) 

from an existing variable in the dataset (e.g., outcome_lag_1=LAG(outcome, 1). This new lagged 

outcome variable is then included as a covariate in the regression model as a way of removing the 

influence of the previous observation (𝑦𝑡−1) on the subsequent observation (𝑦𝑡). This strategy allows for 

more customization than the previous method, in that the researcher can decide the extent to which 

previous observations influenced each subsequent observation. However, using lagged predictor variables 

is also associated with a limitation, such that for every lag(j) specified in the model, the first j 

observations in the series are dropped from the analysis. This creates a declining power situation that can 

be problematic with smaller sample sizes and those lost cases themselves may contain valuable trend 

observations at the onset of the time series.   
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Cochrane-Orcutt Procedure 

  The Cochrane-Orcutt procedure is a transformation method, where the correlation coefficient rho (𝜌) 

of the residuals (𝑒𝑡 = Y𝑡 −  Y�̂�)—which is computed using �̂� =
∑ 𝑒𝑡𝑒𝑡−1

𝑛
𝑡=2

∑ 𝑒𝑡−1
2𝑛

𝑡=2
 —is used to adjust the values of 

the outcome y and all predictors 𝑥1, 𝑥2, etc., such that the values for y and x respectively, become 

𝑦𝑡
′ = 𝑦𝑡 − 𝜌(𝑦𝑡 − 1) and 𝑥𝑡

′ =  𝑥𝑡 + 𝜌(𝑥𝑡 − 1) (Cochrane & Orcutt, 1949). When used to adjust for a 

first-order autocorrelation, the Cochrane-Orcutt has been shown to be as effective as more complex 

techniques, such as the ARIMA modeling procedure described in the subsequent section (Beck & Katz, 

2011). This procedure can be easily executed in SPSS using the Cochrane-Orcutt command (i.e., AREG 

VAR=dependent with independent/ METHOD=CO) and autocorrelation should be assessed using the 

Ljung-Box test. However, because this transformation has a negative impact on sample size (i.e., n-1 for 

each lag specified in the adjustment), it may not be the most effective approach for time series that 

contain higher-order autocorrelations.  
 

The ARIMA Model 

  The ARIMA model (aka Box-Jenkins model) is an iterative and customizable modeling technique 

that can incorporate autoregressive (AR) terms “p”, differencing operations “d” (i.e., the integrated 

component in the model), and moving average (MA) terms “q”. This is a superior modeling technique 

that can account for multiple dynamic processes co-occurring in time series data (Box et al., 1994; Box-

Steffensmeier et al., 2014; McLeary & Hay, 1982). For our purposes, we limit our discussion to AR 

models; that is, ARIMA models (p, d, q) that only specify p, the number of terms that describe the 

dependency among successive observations. For example, an AR model with the specification (0, 0, 0), 

implies there is no relationship between adjacent observations (hence an OLS regression model), whereas 

a specification of (1, 0, 0) indicates there is a lag-1relationship (see the Appendix for step-by-step 

instructions for specifying this ARIMA model in SPSS). ARIMAs are estimated using non-linear 

maximum likelihood estimation (MLE) that retains the first observation and simultaneously estimates the 

autocorrelation coefficient and the 𝛽 estimates; they are considered more robust than OLS regression 

models that incorporate the Cochrane-Orcutt method (Shumway & Stoffer, 2010).  
 

Method 

Sample 

  The data were collected from end-of-semester course evaluations for 123 courses with a total of 2,648 

students (15 undergraduate-level courses and 108 graduate-level courses) taught by the same instructor at 

a private university in the Northeast. Most of the courses were lecture-based and focused on statistical 

techniques, measurement, or methodology. The data are updated at the end of each semester and are input 

in the order that the course was taught over the 33-year span.
9
 Most courses have a fixed schedule—for 

example, the General Linear Models course is taught every Fall, the Psychometrics course is taught every 

two years in the Spring, and Introductory Statistics was taught every Fall and Spring. Over time, the 

course offerings moved from general research methods and introductory statistics to higher-level 

multivariate and psychometrics courses. 
 

Course Evaluations 

  The number of questions and their wording on each mandated evaluation remained stable, ranging 

from 28-29 questions. The data can be summarized in four categories: 1) student-level perceptions (e.g., 

time spent on the course compared to other courses, the extent to which the student understood principles 

and concepts), 2) administrative characteristics (e.g., year the course was taught, class size, degree level 

of students), 3) instructor-specific variables (e.g., tenure status, rank, marital status), and 4) instructor 

evaluation ratings (percent of students in the course who marked either excellent, very good, good, 

acceptable, and poor). Student-level perceptions are generally recorded as the percent of students in each 

class who strongly agreed with the statement. The instructor variables are coded as categorical variables 

and the administrative characteristics consist of a combination of continuous and categorical variables. 

Each class record is associated with a total of 42 variables, that when used in combination, provide a 

complex picture of the teaching and learning environment within which a class was taught, and can be 

used to examine a host of pedagogically meaningful relationships (Burns & Ludlow 2006; Chapman & 

Ludlow 2010; Ludlow & Alvarez-Salvat 2001; Ludlow & Klein, 2014).   
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Figure 2. Unstandardized residuals plotted against time (i.e., 

the sequence order in which courses were taught). 

Variables 
  These data were used to test a plausible substantively meaningful model to illustrate issues with 

autocorrelation that are often encountered in OLS regression analysis of time series. Our model used a 

continuous variable for class size (size) to predict our outcome variable excell, which represented the 

percentage of students who gave a course an overall rating of “excellent”.
10

 Class sizes ranged from 3-52 

(M=21.5), and the percentage of students who rated a course as “excellent” ranged from 5.3% - 100% 

(M=42.2%). There were no missing data for either of these variables.  
 

Results 

Baseline Model 

  For the first analysis, we estimated a baseline model by regressing the outcome variable excell on the 

predictor variable size. As seen in Table 1, this analysis yielded a statistically significant 𝑅2 = .249 and a 

parameter estimate of b = -1.10, indicating that on average, with every one unit increase in size (i.e., one 

student), the value of excell (i.e., percent of students who gave the class a rating of “excellent”) decreased 

by 1.10 percent.  
 

Table 1. Model Estimates for Lag-1. 

Model 𝑁 𝑑𝑓 𝑅2 𝐴𝑑𝑗  𝑅2∗ 𝑏 𝛽 F 𝐷𝑤 

Baseline  125 123 0.249* - -1.10* -0.499* 40.17 1.61* 

Linear Trend 125 122 0.270* 0.264* -0.79* -0.357* 36.76 2.01 

Lag-1  124 121 0.276* 0.264* -1.11* -0.505* 22.65 - 

CO Transf. 124 122 0.270* - -1.01* -0.519* 44.35 - 

ARIMA AR(1) 125 - 0.273* - -1.09* - - 32.50* 

Note. 𝐷𝑤 is not provided for models that contain a lagged predictor variable (Q statistic is provided for 

the overall ARIMA model). * Denotes a statistically significant 𝑅2, 𝐴𝑑𝑗 𝑅2, 𝛽, 𝐷𝑤, 𝑜𝑟 𝑄 (𝑝 ≤ .05) 
 

 Figure 2
11

 presents the unstandardized residuals from this model plotted across the chronological 

teaching sequence of the classes. The solid, flat horizontal line represents the residual value of zero and 

variation around this line across the full sequence of the classes should be random and uniform. The 

dashed, positively sloped line represents the regression of the residuals on the class sequence. The 

corresponding fit of this line (captured by 𝑅2 
=.15) clearly demonstrates that systematic time-related 

variation remains in the residuals. 

 The Durbin-Watson tested for autocorrelation, and at 𝛼 = .05, the test statistic was below the lower-

bound threshold of the confident interval (Dw= 1.61; CI=1.69dL-1.72dU; k=2; n=123), indicating that the 

lag-1 autocorrelation in the data was statistically significant. Next, using the ACF function, we explored 

the values and statistical significance of the autocorrelation coefficients for the first 16 lags in the dataset. 

This analysis revealed statistically 

significant autocorrelation coefficients 

for lag-1, and lags-3-16, as well as a 

marginally significant autocorrelation 

for lag-2 (see Table 2). In addition, the 

ACF plot in Figure 1 highlighted a 

distinctive characteristic of the 

autocorrelation pattern; across various 

lags there was an increase in the 

autocorrelation coefficient for every 3
rd

 

lag, particularly in lag 1, 3, 6, and 9. 

Interestingly, these time lags of 1, 3, 

and 6 reflect the semesters in which 

certain graduate level classes were 

taught, whereas time lags 2, 4, and 5 

represent the semesters in which certain 

undergraduate courses were taught.  
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Table 2. ACF Comparison for Each Model (Post Lag-1 Adjustment) 

Model Lag-1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Baseline  .178*  .069† .175* .218* .164* .207*  .115* -.005* .219* .188*  .026* .102* .159*  .100* .178*  .094* 

Linear -.011 -.110 .109 .082 .004 .156 -.050 -.172 .139 .034 -.116 .001 .023 -.027 .083 -.045 

Lag-1   .038 -.004 .153 .170 .099 .183*  .077† -.061† .204* .151* -.034* .068* .134*  .080* .122*  .036* 

CO  -.012  .024 .172* .115 .134 .201*  .055† -.081† .147* .148*  .041* .103* .074*  .011† .270* -.044* 

ARIMA
1
 -.012  .008 .136* .169 .094 .173†  .084† -.068 .202* .154* -.026* .076* .131*  .044* .155*  .037* 

Note. Includes baseline model for comparison.  * Denotes a statistically significant lag (𝑝 ≤ .05) 

         † Denotes a marginally significant lag (𝑝 ≤ .10) 
 

Lag-1 Adjustment 

  In this section, we report the results from three sets of analyses using each of the procedures. For the 

first round of analyses, we only adjusted for a lag-1 autocorrelation.  
 

  Modeling and controlling for a linear time trend. Two models were estimated using the variable 

sequence (i.e., the order in which classes were taught). The first model was estimated using the variable 

sequence as a covariate when regressing excell on size, and the second model used the sequence variable 

to detrend the original excell and size variables. The detrended excell was regressed on the detrended size 

in lieu of the original variables (see linear trend and detrended models in Table 1). These analyses 

produced a 𝑏= -.787 for size and an 𝑅𝐿𝑖𝑛𝑒𝑎𝑟 𝑡𝑟𝑒𝑛𝑑
2 = 0.270, as well as a nonsignificant 𝐷𝑤= 2.01—which 

indicated the lag-1 autocorrelation had been successfully reduced to nonsignificance (see Table 1). As 

shown in Table 2, the autocorrelation coefficients for lags 1-16 were no longer statistically significant 

(𝑝 > 0.05).
12

 
 

  Lag-1 covariate. Next, we estimated a model that included a lagged covariate as a predictor. To do 

this, we computed a lag-1 version of our outcome variable 𝑒𝑥𝑐𝑒𝑙𝑙𝑙𝑎𝑔1
 and included this new variable as a 

covariate along with size in the regression. This produced an 𝑅2= .276 and 𝑏= -1.11 (see Table 1). The 

autocorrelation was assessed using the Ljung-Box statistic provided in the ACF table, which showed that 

lags 1-5 had been reduced to nonsignificance. However, lag-6 and lags 9-16 remained significant 

(𝑝 < 0.05), and lags 7 and 8 remained marginally significant (𝑝 < 0.10; see Table 2).  
 

  Cochrane-Orcutt lag-1. In the next model, we used the Cochrane-Orcutt transformation to compute 

adjusted variables for excell and size variables. The new variables were computed following the steps 

outlined next. First, we computed a lag-1 version of size (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑙𝑎𝑔1
), and then used the original 

variables, the lagged variables, and the ACF coefficient for the lag-1 autocorrelation 𝜌 = .178 (see Table 

1), to compute the new 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 − (𝜌 ∗ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑙𝑎𝑔1
) and 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 =

𝑜𝑢𝑡𝑐𝑜𝑚𝑒 − (𝜌 ∗ 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑙𝑎𝑔1
) variables.

13
 Using these adjusted variables, we then regressed 

𝑒𝑥𝑐𝑒𝑙𝑙𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑  on 𝑠𝑖𝑧𝑒𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑. This analysis yielded an R
2
 = .270 and b = -1.01 (see Table 1). The Box-

Ljung Q tested the autocorrelations for lags 1-16. The ACF indicated that the autocorrelations for lags 1-5 

and 8 were reduced to nonsignificance. However, the correlations for lags 9-16 remained statistically 

significant, and the correlations for lags 6 and 7 remained marginally significant (see Table 2). 
 

 ARIMA (1, 0, 0). This ARIMA model included a lag-1 autoregressive process AR(1), the other two 

parameters were set to 0, and included the original (i.e. unadjusted) size and excell variables as the 

predictor and outcome. Our specification included goodness of fit measures and parameter estimates 

(including 𝑅2 and 𝑏), as well as the Box-Ljung Q and the ACF coefficients. This analysis yielded an  

𝑅2 = .273 and 𝑏 = -1.09 (see Table 1). As seen in Table 2, the autocorrelation coefficients for lags 1-5 

and 8 are no longer significant, but the correlations for lags 9-16 remained statistically significant and the 

correlations for lags 6 and 7 remained marginally significant. As a result, the Box-Ljung was statistically 

significant (see Table 1).  
 

 Discussion. In the previous sections, we reported the results of four models estimated using various 

methods to adjust for the presence of lag-1 autocorrelation.
14

 Overall, the four analytic strategies showed 

varying degrees of efficacy in reducing the autocorrelation. As seen in Table 2, the linear time trend 

method was the only method that reduced the autocorrelations for lags 1-16 to nonsignificance. In 
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comparison, the other three models estimated using a lagged covariate, the CO adjustment, and the 

ARIMA model, continued to show statistically significant autocorrelations at varying degrees. Regarding 

the parameter estimates yielded in these analyses, relative to the baseline model, the linear time trend 

model showed the largest reduction in the magnitude of the 𝑏 coefficient, whereas the other three models 

yielded coefficient values similar to that of the baseline model.  

 The results underscore a couple of important points worth discussing. First, it is likely that the higher-

order autocorrelations still present in the data for the models that included the lagged covariate, the 

Cochrane-Orcutt adjustment, and the ARIMA, may be biasing the parameter estimates, which would 

explain why they were similar in value to the original baseline model. The results for the linear trend 

model support this idea because they showed that eliminating all of the significant autocorrelations in the 

data weakened the association between course excellence ratings (excell) and class size (size), possibly by 

reducing the bias introduced by the autocorrelations. 

 That being said, it is also important to note that modeling a linear trend may not have been the most 

appropriate method for adjusting the autocorrelation in our data. When controlling for a linear time trend, 

the shared variance between the residuals is assumed to be progressively increasing at a constant rate. 

However, because our data showed both positive and negative higher-order autocorrelations, controlling 

for a linear time trend does not sufficiently address the pattern of the autocorrelation in our data. 

Moreover, the other three strategies used in this series of analyses were specified to only adjust for a lag-1 

autocorrelation of ρ = .178, and were therefore limited in the extent to which they could reduce the 

strength of the higher-order correlations that were well above this value. Given that these procedures can 

be customized, we conducted another round of analyses using these methods to adjust for the statistically 

significant lag-3 autocorrelation still present in the data.  

 

Lag-3 adjustment 

  In the following sections, we report the results of the lag-3 adjustments and describe procedural 

differences associated with these analyses.  

 Lag-3 covariate. We computed a new version of our outcome as a lag-3 variable, 𝑒𝑥𝑐𝑒𝑙𝑙𝑙𝑎𝑔3
, and 

included this as a covariate along with size in the regression.
15

 As shown in Table 3, this yielded an 𝑅2= 

.306 and 𝑏= -.873. In addition, although the autocorrelation coefficient for lags 1-3 were reduced to non-

significance, the coefficients for lags 5-7 and 9-10 remained statistically significant (𝑝 ≤ .05), while lags 

4, 8, and 11-16 remained marginally significant (𝑝 ≤ .10; see Table 4). 
 

Table 3. Model Estimates for Lag-3 

Model 𝑁 𝑑𝑓 𝑅2 𝐴𝑑𝑗 𝑅2 𝑏 𝛽 F 𝐷𝑤 

Baseline  125 123 0.249* - -1.10* -.499* 40.17 1.61* 

Linear Trend 125 122 0.270* 0.264* -.787* -.357* 36.76 2.01 

Lag-3  122 119 0.306* 0.294* -.873* -.398* 25.82 - 

CO Lag-3 122 119 0.186*  -.927* -.431* 26.90  

ARIMA 3, 1 125  0.301*  -.898*   23.78† 

Note. Includes baseline and linear trend models for comparison. 𝐷𝑤 is not provided for models that 

contain a lagged predictor variable (Q statistic is provided for the overall ARIMA model).  

* Denotes a statistically significant 𝑅2, 𝐴𝑑𝑗 𝑅2, 𝛽, 𝐷𝑤, 𝑜𝑟 𝑄 (𝑝 ≤ .05) 
 

Table 4. ACF Comparison for Each Model (Post Lag-3 Adjustment) 

Model Lag-1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Baseline  .178*  .069†  .175* .218* .164* .207*  .115* -.005* .219* .188*  .026* .102* .159*  .100* .178*  .094* 

Linear -.011 -.110  .109 .082 .004 .156 -.050 -.172 .139 .034 -.116 .001 .023 -.027 .083 -.045 

Lag-3   .089 -.024 -.128 .206† .180* .116*  .005* -.031† .157* .105* -.009† .014† .122†  .073† .133† -.006† 

COLag-3  .126  .009  .016 .196 .169† .183*  .052* -.022† .197* .138*  .013* .076* .135*  .108* .163*  .030* 
ARIMA3,1 -.050  .010 -.081 .137 .096 .146  .007 -.091 .172 .102 -.011 .016 .087  .021 .183  .014 

Note. Includes baseline and linear trend models for comparison.  * Denotes a statistically significant lag 

(𝑝 ≤ .05). † Denotes a marginally significant lag (𝑝 ≤ .10)  
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 CO lag-3. In the second iteration of the CO method, we computed a new set of adjusted variables 

using the autocorrelation coefficient for lag-3 (𝜌 = .172) and then followed the same steps outlined 

previously. Next, we regressed the new 𝑒𝑥𝑐𝑒𝑙𝑙𝑙𝑎𝑔3  on the new 𝑠𝑖𝑧𝑒𝑙𝑎𝑔3  variable, which yielded an 𝑅2= 

.187 and 𝑏 = -.929 (see Table 3). As seen in Table 4, the autocorrelations for lags 1-4 were reduced to 

non-significance; however, several correlations remained statistically significant (i.e., lags 6-16) and 

marginally significant (i.e., lag 5). 
 

  ARIMA lag-3. The second ARIMA model was specified with an AR(3). There is one important 

difference to note between the specification of ARIMA models with higher-order versus first-order AR 

processes, such that ARIMA models with higher-order AR processes should be specified to include any 

previous lags that are of interest. In this instance, we estimated a model that built on the previous analysis 

and adjusted for both lag-1 and lag-3, with a syntax specification of [3;1, 0, 0].
16,17

 This analysis yielded 

an 𝑅2 = .301 and 𝑏 = -.898, and showed that the autocorrelation coefficients for lags 1-16 had been 

reduced to nonsignificance (see Tables 3 and 4). 
 

  Discussion. The analyses reported in the previous sections addressed the lag-3 autocorrelation that 

remained statistically significant in three out of the four analyses previously reported. Relative to those 

analyses, all three strategies showed greater efficacy in reducing the autocorrelation in the data. As a 

result, the regression coefficients yielded for size in all three models were smaller than those in the 

previous set of analyses, which further supports our prior argument, that the strength of the association 

between class size and students’ excellence ratings in the baseline model was biased upward, as a result of 

the autocorrelation. However, given the statistically significant lag-6 autocorrelation still remaining in 

two of the three models, we conducted one final round of analyses aimed at adjusting for the lag-6.  
 

Lag-6 adjustment 

  The series of analyses were conducted to address the lag-6 autocorrelation. When appropriate, we 

also describe procedural differences required for a specific analysis.  
 

 Lag-6 covariate. We computed a lagged version of excell as a lag-6 variable, 𝑒𝑥𝑐𝑒𝑙𝑙𝑙𝑎𝑔6
, and 

included this as a covariate along with size in the regression analysis. As shown in Tables 5 and 6, this 

yielded an 𝑅2= .360 and 𝑏= -.860, and reduced the autocorrelation coefficients for lags 1-16 to 

nonsignificance.  

 
Table 5. Model Estimates for Lag-6 

Model 𝑁 𝑑𝑓 𝑅2 𝐴𝑑𝑗  𝑅2∗ 𝑏 𝛽 F 𝐷𝑤 

Baseline  125 123 0.249* - -1.10* -.499* 40.17 1.61* 

Linear Trend 125 122 0.270* 0.264* -.787* -.357* 36.76 2.01 

Lag-6  119 116 0.360* 0.349* -.860* -.384* 32.10 - 

CO Lag-6 119 117 0.161* - -848* -.401* 22.10 - 

ARIMA 6, 3, 1 125  0.340*  -.656*   18.62 

Note. Includes baseline and linear trend models for comparison. 𝐷𝑤 is not provided for models that 

contain a lagged predictor variable (Q statistic is provided for the overall ARIMA model).  

* Denotes a statistically significant 𝑅2, 𝐴𝑑𝑗 𝑅2, 𝛽, 𝐷𝑤, 𝑜𝑟 𝑄 (𝑝 ≤ .05) 
 

Table 6. ACF Comparison for Each Model (Post Lag-6 Adjustment) 

Model Lag-1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Baseline  .178*  .069†  .175* .218* .164*  .207*  .115* -.005*  .219* .188*  .026*  .102* .159*  .100* .178*  .094* 

Linear -.011 -.110  .109 .082 .004  .156 -.050 -.172  .139 .034 -.116  .001 .023 -.027 .083 -.045 

Lag-6   .080 -.002  .021 .156 .156 -.097  .018 -.086  .079 .078 -.045  .024 .090  .084 .116 -.021 

COLag-6  .121  .025  .141 .188† .156*  .073†  .060† -.035  .178* .131*  .011†  .102† .141*  .124* .142*  .025* 
ARIMA6,3,1 -.042 -.031 -.080 .125 .107 -.049 -.041 -.121  .131 .057 -.056 -.001 .063  .032 .156 -.041 

Note. Includes baseline and linear trend models for comparison.   

* Denotes a statistically significant lag (𝑝 ≤ .05). † Denotes a marginally significant lag (𝑝 ≤ .10)  
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 CO lag-6. For the third iteration of the CO method, we computed a new set of adjusted variables and 

used the autocorrelation coefficient for the lag-6 (𝜌 = .207) from the original baseline model, in lieu of 

the coefficient for the lag-3. Next, we regressed the new 𝑒𝑥𝑐𝑒𝑙𝑙𝑙𝑎𝑔6 on the new 𝑠𝑖𝑧𝑒𝑙𝑎𝑔6 variable, which 

yielded an 𝑅2= .161 and 𝑏 = -.848 (see Table 5). As seen in Table 6, with the exception of lags 1-3, the 

remaining autocorrelation coefficients were either statistically significant at 𝑝 ≤ .05 (lags 5, 9-10, and 13-

16) or 𝑝 ≤ .10 (lags 4, 6-7, and 11-12).  
 

  ARIMA lag-6. The next ARIMA model was specified with an AR(6). As shown in Table 5, this 

yielded 𝑅2 = .340 and 𝑏 = -.656. In addition, the ACF analysis showed that all of the autocorrelations for 

lags 1-16 had been reduced to nonsignificance (see Table 6). 
 

 Discussion. The results of the third round of analyses yielded several interesting findings. First, the 

Cochrane-Orcutt transformation for the lag-6 was the least effective of all three methods in reducing 

autocorrelation in these data. Second, the models estimated with the lag-6 covariate predictor and the 

ARIMA lag-6 model reduced the autocorrelations for lags 1-16 to nonsignificance. However, the 

parameter estimate for the ARIMA lag-6 model (𝑖. 𝑒. , 𝑏 = −.656) was considerably weaker than the 

estimate from the lag-6 covariate model (𝑖. 𝑒. , 𝑏 = −.860). One potential explanation for this difference 

in estimates is that the R
2
 of the ARIMA indicated that this model had greater explanatory power than the 

lag-6 covariate model (.360 v. .306, respectively). Thus, the weaker ARIMA estimate but greater R
2
 is 

likely due to a greater reduction in the bias due to the correlated residuals. The broader implications of 

these differences in parameter estimates are discussed further in the next section. 

 In general, the overall reductions in autocorrelation observed after these analyses indicated that no 

further adjustments were warranted. Based on these results, the ARIMA technique was the most effective 

of the four procedures in reducing the autocorrelation in our data (see Figure 3) and increasing the 

explained variance of the model. This is likely because the estimation process used in ARIMA modeling 

(i.e., Maximum Likelihood Estimation) benefits from a full sample size and the additional data variability 

contributed by the first cases in the time series records. In contrast, the Cochrane-Orcutt method reduced 

the effective sample size and eliminated potentially influential observations from the earliest records in 

the data sequence. Although the impact on sample size may be less concerning for very large datasets 

and/or those containing only first-order autocorrelations, the removal of influential points can negatively 

impact the results. This was evident in our example, where the loss of the first six observations led to both 

a decrease in the explained variance of the model and parameter estimates that were biased upwards. 
 

Conclusions 

 The goal of this paper was to employ a relatively simple set of time series analysis procedures to 

illustrate different adjustments to handle the autocorrelation in the residuals that is characteristic of 

longitudinal data. We provided background information related to the nature of correlated residuals in 

time series data, as well as diagnosis procedures and subsequent addressing of autocorrelation. We then 

employed 25 years of college course evaluation data to illustrate the differences in procedures and results 

for four strategies commonly used to address autocorrelation.  

 Overall, the results highlight several analytic points. First, when working with time series data, it is 

imperative to probe for autocorrelation in a comprehensive manner that includes both an evaluation of the 

residual assumptions and statistical testing of the parameter estimates. This two-step process can help 

researchers identify time-dependent patterns in their residuals and facilitate the process of choosing an 

analytic strategy that is appropriate for both the magnitude and pattern of the autocorrelation in their data. 

Moreover, as demonstrated, when left uncorrected, autocorrelation can have a considerable impact on the 

accuracy of statistical estimates.  

 Second, the results suggest that addressing autocorrelation should be considered an iterative process 

that may require more than one round of adjustments. At the very least, our example underscores the 

importance of testing for autocorrelation even after an adjustment has been made to the data or model, 

because it may take more than one iteration of a procedure to successfully address the full impact of 

autocorrelation when it is present.  

 Third, because most analytic methods used to address autocorrelation differ in the types of 

adjustments they make, each procedure has a distinct impact on the results. This is important for two   
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Figure 3. Comparison of autocorrelation coefficient plots for lags 1-16: Baseline model (left) v. ARIMA 

lag-6 model right). Blue bars represent the coefficients. Lines are Upper and Lower Confidence Limits 
 

reasons. One, certain strategies may be better suited for certain types of autocorrelational patterns than 

others. As our example illustrated, given the higher-order autocorrelations in our data, estimating and 

controlling for a linear time trend would not have been the most appropriate strategy to address these 

autocorrelations. Two, considering that strategies vary in how they model the data, the resulting estimates 

can differ quite substantially from one strategy to another. Our advice to researchers would be to avoid 

using any one analytic method as a “one size fits all” solution, and to instead, rely on the unique 

characteristics of the data and research questions to guide the choice of analytic strategy.  

  Finally, even though this last point is specific to the present data context, the presence of a lag-1 

autocorrelation in the time series for one instructor’s professional teaching career is not particularly 

surprising. This is because the autocorrelation reflects (a) teaching practices that carry over from one class 

to the next (regardless of the content) and (b) students take multiple courses with this instructor and their 

perceptions about practice carry with them into the next course(s). It is somewhat more surprising, 

however, that these data contained lag-3 and lag-6 autocorrelations. These findings were initially 

considered “noise” until it was realized that they reflected a cyclical pattern due to when certain courses 

have been taught over the past 20 or so years. Some courses are offered only every third semester (e.g. 

fall, spring, summer, then fall again, spring again, and so on), others are offered every 6th semester (on a 

two-year cycle). Those patterns, similar to the lag-1 pattern, reflect an effect due to carried-over student 

perceptions and experiences, carried-over instructor teaching practices, and the very specialized content 

of those cycled courses. The point here is that in the analysis of an instructor’s teaching record (using 

student ratings of instruction) it is not sufficient to focus on the immediate courses taught during a given 

academic review year—it is necessary to take into account what the specific courses were that were 

taught and when they were last taught in order to frame an appropriate baseline for evaluation and 

analysis.  
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Endnotes 

 1. It is important to note that our interest was in comparing the manner in which each of the 

procedures addressed autocorrelation and parameter estimates—and not in specifying the ideal 

model for our data. 

 2. Assuming the model does not have issues with multicollinearity and that it has been properly 

specified. (i.e., includes all relevant predictor variables).  

 3. The critical values tables for the Durbin-Watson can be found here: 

web.stanford.edu/~clint/bench/dwcrit.htm. 

 4. A Dw > the CIdL but <CIdU is considered an inconclusive test result. 

 5. This is not to say that the adjustment procedures described are exclusively applicable to OLS 

regression, but that we are focusing on these applications for this paper. 

 6. These instructions are specifically for SPSS v. 22.0.0.1 and may vary for other versions of this 

software.  

 7. It is also important to note that we chose these procedures because they would be appropriate for 

researchers with limited statistical training, and not based on how appropriate they were for our 

data. 

 8. Here we refer to the Cochrane-Orcutt adjustment and methods that use lagged variables, although 

the specific number of cases dropped from analyses is determined by the lag(j) specified in the 

model. 

 9. The courses in the data were taught between 1984-2017. 

10. Each course was rated on a Likert-scale from 1= “Poor” to 5= “Excellent”. 

11. The unstandardized residuals yielded by regressing x on y should be plotted (y-axis) against the 

sequence in which the measurements in the data were taken (x-axis). 

12. The parameter estimates and the ACF coefficients for lags 1-16 were identical for both detrended 

models.  

13. There was no need to compute an additional lag-1 outcome variable, because we had already done 

so for the previous model and it was saved in our dataset. 

14. The detrended model is only discussed in the first section of the lag-1 adjustment results, as it was 

only estimated as a means of demonstrating an alternative method to modeling. 

15. For SPSS v. 22 and higher, this can be executed using the same syntax command described in the 

description of this method by changing the lag specification from a 1 to a 3.  

16. We recommend reviewing the syntax prior to running this analysis, as the default specification for 

higher-order AR processes vary across different versions of SPSS. 

17. This model was specified to include the same goodness of fit measures, parameter estimates, and 

statistics as the prior ARIMA (1, 0, 0). 
 

APPENDIX 
Procedure for Specifying ARIMA Model with an Autoregressive Order of (1) in SPSS 

1) ANALYZE  FORECASTING  CREATE MODELS  METHOD ARIMA SET CRITERIA TO 

(1,0,0). 

2) VARIABLES TAB  SELECT OUTCOME AN PREDICTOR(S). 

3) STATISTICS TAB  SELECT DISPLAY FIT MEASURES, R2, PARAMETER ESTIMATES, 

RESIDUAL AUTOCORRELATION FUNCTION FOR INDIVIDUAL MODELS. 
4) PLOTS TAB  SELECT RESIDUAL AUTOCORRELATION FUNCTION FOR INDIVIDUAL 

MODELS. 

5) OUTPUT FILTER TAB  SELECT INDLUDE OUTPUTS FOR ALL MODELS. 

6) SAVE TAB  SELECT NOISE RESIDUALS  OK  RUN SELECTION. 
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