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The two-group cross-validation classification accuracies of six algorithms (i.e., least squares, ridge 

regression, principal components, a common factor method, equal weighting, and logistic regression) 

were compared as a function of degree of validity concentration, group separation, and number of 

subjects. Therein, the findings of two previous studies were extended to the latter three methods with 

particular interest in how logistic regression faired as a function of validity concentration. In respect to 

validity concentration, as well as group separation and N, logistic regression was a mirror image of least 

squares. The same relative decrease, in respect to alternate methods, in accuracy with increasing validity 

concentration previously evidenced with least squares was observed. However, the large number of 

samples in which logistic regression failed to yield a solution may be a cause for concern. 

 his investigation extends Morris and Huberty (1987) by contrasting the accuracy of six algorithms 

for classifying subjects into one of two groups. Ordinary Least Squares (OLS), Ridge Regression 

(Ridge), Principle Components (PC), Pruzek and Frederick’s (1978) common factor method 

(Pruzek), Equal Weighting (Equal), and Logistic Regression (LR) are the techniques that were compared.  

  Darlington (1978) posited that regression cross-validation accuracy is a function of R
2
, N, and 

validity concentration, where R
2
 represents the squared multiple correlation and N is the sample size. In 

Darlington’s formulation, validity concentration was used to describe a data condition in which the 

principal components of the predictors with large eigenvalues also have large correlations with the 

criterion. Thus, validity concentration requires at least a modicum of predictor variable collinearity (i.e., 

large predictor eigenvalues), but collinearity is only necessary, not sufficient, for validity concentration. 

Darlington suggested that the most useful statistical technique for practical prediction problems, therein, 

may be ridge regression. 

  Through simulation, Morris (1982) re-examined the performance of Ridge with the same data 

structures on which Darlington posited the technique's superiority. With large validity concentration, 

Ridge was, indeed, more accurate than OLS, but contrary to Darlington's suggestions, Ridge was never 

the most accurate prediction technique. That is, in each case in which Ridge surpassed OLS due to large 

validity concentration, other contending weighting methods surpassed it.  

Morris and Huberty (1987) examined a subset of the methods (e.g., OLS, Ridge, and PC) considered in 

Darlington (1978) and Morris (1982) in the context of two-group classification accuracy, rather than 

regression, using the same simulated data conditions, but extending them to three different population 

model accuracies and two different sample sizes; not including the Pruzek nor Equal methods as in Morris 

(1982).  

 The present study uses the same data conditions as in Morris and Huberty (1987), but includes the 

Pruzek and Equal methods. In addition, Logistic Regression (LR), an increasingly popular classification 

technique, was included. The same difficulties with multicollinearity (well-known with the OLS 

algorithm), have been mentioned (Hosmer & Lemeshow, 2000) as theoretically problematic to LR. 

Furthermore, ridge techniques have been suggested as a solution (Schaefer, 1986). However, the degree 

of effect of multicollinearity, and potentially resulting validity concentration, on the classification 

accuracy of LR has not been empirically and systematically examined. 
 

Method 

  For easy comparison, all prediction algorithms that were included in the Morris and Huberty (1987) 

comparison (e.g., OLS, Ridge, and PC) were identically executed to those used in that comparison, and 

the Pruzek and Equal methods were identically calculated to that in Morris (1982). Specifically:  

OLS:  Fisher’s LDF was used. 

Ridge:  Empirical ridge regression weights were calculated using the biasing parameter, k, due to 

Lawless and Wang (1976).  

PC:  The principal components predictions were obtained with a regression model using all 

principal components with eigenvalues larger than one (i.e., Kaiser’s rule). 

T 
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Equal: A predictor was assigned a standardized weight of one and the same sign as the predictor-

criterion correlation if the value of that correlation was statistically significant (p < .01). If no 

predictor-criterion correlation was this large, in absolute value, the predictor with the largest 

correlation was assigned a 1 with appropriate sign. This last step was executed so that there 

would be no case in which all predictors were assigned zero weights; thus, resulting in 

predicted values with no variance. 

Pruzek:  The common factor method of Pruzek and Frederick (1978) was used with rank 

determined by Kaiser’s rule, as with PC, and communalities were iterated from squared 

multiple correlations. 

LR:  The logistic regression maximum likelihood solution was calculated with iteration using the 

Newton-Raphson method. Iteration was halted when all weights changed by no more than 

.001. In this subroutine, failure in solution generation was captured as caused by 1) complete 

separation, 2) a singular weight covariance estimate occurrence at an iteration, or 3) non-

convergence of weights that were increasing to infinity. 

  The same fundamental data configurations that were originally posited by Darlington (1978) were 

used. Thus, all data conditions were such that there were 10 predictor variables. Four levels of collinearity 

were created so that the eigenvalues of the predictor variable intercorrelation matrix decreased by .50, .65, 

.80, and .95. Since the eigenvalues had to sum to 10, they were uniquely determined in each condition. 

Six levels of validity concentration were created and the component validities were proportional to a 

power of the eigenvalues, with powers of .1, .5, 1, 2, 4, and 10 considered. Darlington specified one 

population squared multiple correlation of .25.  Thus, in this case, as the squared component validities had 

to sum to .25, they were also uniquely determined. Darlington also used one sample size of 40. 
 

Procedure 

  As in Morris and Huberty (1987), these 24 conditions were expanded in a fully crossed design to 

include two more population multiple correlations of .75 and .95. As well, a sample size of 100 was also 

included and a total of 144 data conditions were considered. A population of 10,000 subjects, as opposed 

to 1,000 in Morris and Huberty, was created that manifested each of the 72 (4 X 6 X 3) desired sets of 

collinearity, validity concentration, and multiple correlation characteristics. Manipulating sample size was 

done by simply selecting 40, or alternatively 100, subjects in a sample with replacement. 

 The algorithm used to create the population covariance matrices representing the respective 

eigenstructure and validity concentration is described in Morris (1982), and the algorithm for creating the 

population of 10,000 subjects manifesting each of these desired covariance matrices is described in 

Morris (1975). As in Morris and Huberty (1987), to translate each of  these data structures to a two-group 

classification problem, each population was dichotomized at the median criterion score and the prediction 

weights from randomly selected samples of the desired size were calculated to predict the dichotomous 

criterion by each of the six methods. The sample weights were then cross-validated by using them to 

classify all 10,000 population subjects. The total number of correct classifications was used to compare 

the relative accuracies of the methods. This procedure was replicated 100 times within each data 

condition with the mean classification accuracy representing the accuracy of each method. A Fortran 90 

computer program compiled by Intel Parallel Studio XE 2011 was used for accomplishing all simulations. 
 

Results 
  Tables 1, 2 and 3 show the results of all 144 simulation combinations. An orientation regarding 

validity concentration in the tables may be helpful. Within a table (i.e., thus, the population multiple 

correlation), as eigenvalue ratio becomes larger, multicollinearity becomes smaller. Within eigenvalue 

ratio, validity concentration becomes larger as power becomes larger. For each table, for example, the .50 

eigenvalue ratio and .1 power offer the highest multicollinearity and lowest validity concentration 

considered. 

  Although statistical significance was not considered nearly as important as establishing trends over 

the data conditions, an overall Hotelling T
2
 test and post hoc comparisons were used to contrast the 

methods’ classification hit-rates as found in Morris and Huberty (1987). Thus, in line with Morrison’s 

suggestion (1976), the means were ordered and pairwise post hoc contrasts were used to contrast larger 

means with smaller means until a statistically significant (p < .01) difference was found; thus, delineating 

best methods. 
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Table 1. Mean Proportion Correctly Classified for R
2
 = .25. 

Eigenvalue 

 

Method 

Ratio Power N = 40 

 

N = 100 

    OLS Ridge PC Pruzek Equal LR/#*   OLS Ridge PC Pruzek Equal LR/#* 

.50 .1 .5878 .5699 .5480 .5455 .5460 .5882/100 

 
.6288 .6049 .5735 .5704 .5803 .6287/100 

 

.5 .5868 .6011 .5899 .5856 .5917 .5871/100 

 
.6266 .6317 .6152 .6116 .6228 .6264/100 

 

1. .5875 .6158 .6141 .6088 .6196 .5867/99 

 

.6262 .6422 .6390 .6352 .6402 .6258/100 

 

2. .5904 .6276 .6299 .6248 .6313 .5895/99 

 

.6294 .6497 .6533 .6506 .6532 .6285/100 

 

4. .5911 .6286 .6321 .6280 .6308 .5893/99 

 

.6261 .6488 .6530 .6509 .6550 .6258/100 

 

10. .5909 .6279 .6333 .6286 .6340 .5892/98 

 

.6271 .6483 .6519 .6504 .6562 .6266/100 

.65 .1 .5990 .5853 .5579 .5594 .5636 .5974/100 

 
.6356 .6229 .5836 .5808 .5947 .6350/100 

 

.5 .5952 .5976 .5818 .5810 .5843 .5944/100 

 
.6330 .6311 .6078 .6054 .6176 .6327/100 

 

1. .5930 .6098 .6050 .6023 .6009 .5929/98 

 

.6316 .6383 .6279 .6249 .6335 .6314/100 

 

2. .5914 .6169 .6227 .6165 .6135 .5906/97 

 

.6271 .6404 .6438 .6398 .6452 .6268/100 

 

4. .5914 .6211 .6295 .6231 .6182 .5905/99 

 

.6286 .6437 .6504 .6478 .6496 .6282/100 

 

10. .5920 .6219 .6309 .6250 .6200 .5912/99 

 

.6273 .6437 .6499 .6480 .6470 .6267/100 

.80 .1 .5898 .5836 .5605 .5748 .5558 .5900/99 

 
.6283 .6220 .5817 .5908 .5868 .6279/100 

 

.5 .5894 .5888 .5707 .5820 .5611 .5894/99 

 
.6276 .6244 .5928 .5989 .5975 .6272/100 

 

1. .5898 .5958 .5851 .5917 .5702 .5899/99 

 
.6282 .6283 .6106 .6134 .6121 .6277/100 

 

2. .5898 .6028 .6025 .6032 .5827 .5905/99 

 

.6265 .6313 .6285 .6269 .6251 .6260/100 

 

4. .5898 .6057 .6134 .6081 .5850 .5903/100 

 

.6253 .6331 .6400 .6368 .6303 .6248/100 

 

10. .5908 .6100 .6231 .6136 .5884 .5906/99 

 

.6265 .6357 .6449 .6411 .6289 .6261/100 

.95 .1 .5871 .5843 .5607 .5849 .5634 .5858/98 

 
.6252 .6223 .5855 .6223 .5941 .6253/100 

 

.5 .5874 .5842 .5623 .5848 .5642 .5862/98 

 
.6262 .6237 .5883 .6230 .5940 .6263/100 

 

1. .5876 .5843 .5624 .5849 .5637 .5866/99 

 
.6261 .6241 .5910 .6232 .5942 .6261/100 

 

2. .5876 .5855 .5652 .5868 .5657 .5867/99 

 
.6261 .6244 .5951 .6231 .5954 .6262/100 

 

4. .5872 .5867 .5688 .5873 .5661 .5871/99 

 
.6258 .6240 .6006 .6224 .5978 .6259/100 

 

10. .5850 .5881 .5760 .5874 .5642 .5848/100 

 
.6259 .6259 .6139 .6260 .6031 .6255/100 

Note:  The best performing method or set of methods is in bold (p<.01).                                                                                                                      

* Number of samples for which LR calculable;  not included in contrast if any not calculable. 

       



Two-Group Classification 

Multiple Linear Regression Viewpoints, 2012, Vol. 38(1)                                                                                           37 

Table 2. Mean Proportion Correctly Classified for R
2
 = .75. 

Eigenvalue 

 

Method 

Ratio Power N = 40 

 

N = 100 

    OLS Ridge PC Pruzek Equal LR/#*   OLS Ridge PC Pruzek Equal LR/#* 

.50 .1 .7560 .7064 .6248 .6139 .6375 .7449/45 

 
.7982 .7564 .6591 .6495 .6649 .8003/100 

 

.5 .7595 .7681 .7197 .7080 .7326 .7514/50 

 
.8042 .8011 .7446 .7410 .7247 .8062/100 

 

1. .7615 .7948 .7734 .7628 .7721 .7487/57 

 

.8054 .8162 .7947 .7905 .7580 .8069/100 

 

2. .7634 .8031 .8066 .7977 .7950 .7466/49 

 

.8046 .8184 .8205 .8162 .7935 .8051/100 

 

4. .7626 .8035 .8133 .8057 .8143 .7532/47 

 

.8057 .8201 .8270 .8241 .8227 .8066/100 

 

10. .7609 .8010 .8115 .8045 .8154 .7487/53 

 

.8027 .8160 .8219 .8196 .8250 .8039/100 

.65 .1 .7613 .7391 .6410 .6456 .6660 .7616/41 

 
.8049 .7916 .6647 .6709 .6922 .8061/100 

 

.5 .7619 .7606 .6916 .6943 .7161 .7572/50 

 
.8053 .8031 .7183 .7261 .7296 .8057/98 

 

1. .7619 .7771 .7425 .7418 .7568 .7473/50 

 

.8047 .8092 .7662 .7693 .7638 .8053/100 

 

2. .7715 .7977 .7938 .7871 .7918 .7622/51 

 

.8067 .8155 .8110 .8079 .7905 .8081/100 

 

4. .7677 .7994 .8106 .8003 .8004 .7512/53 

 

.8087 .8174 .8264 .8227 .8119 .8092/100 

 

10. .7677 .7994 .8123 .8034 .8065 .7556/51 

 

.8066 .8150 .8244 .8218 .8260 .8071/100 

.80 .1 .7585 .7506 .6482 .7016 .6760 .7502/58 

 
.8015 .7984 .6748 .7320 .7077 .8024/100 

 

.5 .7598 .7574 .6744 .7152 .6947 .7485/59 

 
.8042 .8034 .7034 .7504 .7255 .8048/100 

 

1. .7565 .7605 .7046 .7295 .7155 .7494/64 

 
.8047 .8056 .7352 .7680 .7469 .8047/100 

 

2. .7582 .7709 .7486 .7572 .7533 .7581/57 

 

.8048 .8075 .7772 .7918 .7819 .8043/100 

 

4. .7527 .7738 .7840 .7780 .7616 .7424/51 

 

.8045 .8084 .8091 .8107 .7942 .8045/100 

 

10. .7627 .7819 .7971 .7847 .7585 .7489/46 

 

.8024 .8064 .8170 .8121 .8119 .8025/100 

.95 .1 .7559 .7541 .6563 .7389 .6868 .7442/44 

 
.7978 .7973 .6877 .7913 .7623 .8001/100 

 

.5 .7551 .7533 .6575 .7389 .6831 .7391/45 

 
.7981 .7978 .6910 .7923 .7603 .8005/100 

 

1. .7560 .7549 .6610 .7421 .6881 .7446/44 

 
.7984 .7980 .6957 .7923 .7604 .8011/100 

 

2. .7526 .7529 .6647 .7399 .6876 .7485/43 

 
.7977 .7976 .7028 .7921 .7570 .8006/100 

 

4. .7511 .7531 .6730 .7399 .6834 .7429/53 

 
.7950 .7951 .7167 .7904 .7551 .7969/100 

 

10. .7538 .7576 .6942 .7457 .6966 .7434/50 

 
.8017 .8023 .7505 .7989 .7749 .8039/100 

Note:  The best performing method or set of methods is in bold (p<.01).                                                                                                                      

* Number of samples for which LR calculable;  not included in contrast if any not calculable. 
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Table 3. Mean Proportion Correctly Classified for R
2
 = .95. 

Eigenvalue 

 

Method 

Ratio Power N = 40 

 

N = 100 

    OLS Ridge PC Pruzek Equal LR/#*   OLS Ridge PC Pruzek Equal LR/#* 

.50 .1 .8415 .7747 .6556 .6263 .6774 .8649/4 

 
.8873 .8312 .6928 .6808 .6905 .9009/58 

 

.5 .8407 .8426 .7637 .7472 .7731 .8271/2 

 
.8885 .8812 .7896 .7866 .7541 .8982/66 

 

1. .8480 .8756 .8377 .8276 .8165 .8132/2 

 

.8922 .9041 .8608 .8565 .7962 .9028/54 

 

2. .8429 .8848 .8881 .8745 .8626 .8316/1 

 

.8919 .9071 .9068 .8992 .8535 .8987/53 

 

4. .8431 .8851 .8979 .8889 .8986 .8737/2 

 

.8885 .9035 .9117 .9067 .9014 .8976/67 

 

10. .8450 .8850 .8997 .8884 .9069 .8671/4 

 

.8903 .9051 .9133 .9085 .9182 .8990/61 

.65 .1 .8441 .8117 .6688 .6750 .7060 .8830/3 

 
.8901 .8769 .6938 .7027 .7213 .9007/57 

 

.5 .8460 .8428 .7357 .7396 .7659 .8866/1 

 
.8913 .8889 .7590 .7723 .7625 .8999/59 

 

1. .8444 .8589 .8007 .8011 .8092 .7995/1 

 

.8917 .8967 .8238 .8334 .8068 .9016/62 

 

2. .8493 .8769 .8705 .8633 .8533 .8281/1 

 

.8951 .9032 .8917 .8896 .8465 .9039/60 

 

4. .8489 .8783 .8961 .8816 .8763 .8891/1 

 

.8934 .9021 .9149 .9080 .8791 .9044/54 

 

10. .8433 .8763 .8973 .8840 .8912 .8437/5 

 

.8904 .8989 .9124 .9064 .9122 .8993/60 

.80 .1 .8434 .8362 .6765 .7563 .7217 .8541/4 

 
.8920 .8892 .7070 .7991 .7470 .9010/55 

 

.5 .8431 .8406 .7103 .7774 .7419 .0000/0 

 
.8896 .8889 .7408 .8164 .7686 .9008/54 

 

1. .8415 .8459 .7525 .7981 .7753 .8460/3 

 
.8903 .8908 .7824 .8382 .7978 .8997/65 

 

2. .8421 .8533 .8126 .8325 .8299 .8584/4 

 

.8932 .8949 .8428 .8709 .8441 .9021/52 

 

4. .8389 .8558 .8577 .8568 .8410 .0000/0 

 

.8928 .8961 .8922 .8972 .8557 .9016/52 

 

10. .8407 .8605 .8814 .8650 .8351 .8555/2 

 

.8940 .8973 .9093 .9021 .9021 .9030/49 

.95 .1 .8391 .8383 .6919 .8128 .7568 .8608/2 

 
.8860 .8860 .7237 .8707 .8225 .8976/57 

 

.5 .8384 .8383 .6946 .8129 .7533 .0000/0 

 
.8859 .8859 .7277 .8708 .8230 .8986/57 

 

1. .8380 .8382 .6974 .8134 .7528 .7810/1 

 
.8869 .8868 .7328 .8713 .8242 .8982/57 

 

2. .8380 .8386 .7033 .8140 .7501 .8189/3 

 
.8863 .8864 .7438 .8720 .8222 .8996/62 

 

4. .8329 .8351 .7126 .8107 .7469 .8176/3 

 
.8837 .8840 .7624 .8703 .8205 .8965/64 

 

10. .8354 .8395 .7388 .8182 .7762 .8306/6 

 
.8873 .8879 .8044 .8772 .8327 .8991/61 

Note:  The best performing method or set of methods is in bold (p<.01).                                                                                                                      

* Number of samples for which LR calculable; not included in contrast if any not calculable. 
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  The obvious effect of increased accuracy as the population multiple correlation or sample size 

increased is evident. As would be expected, the trend regarding validity concentration was parallel to that 

found in Morris and Huberty (1987) in respect to OLS, Ridge, and PC. OLS was superior at smaller levels 

of validity concentration. As validity concentration increased within an eigenvalue ratio level, Ridge 

became superior, and if the validity concentration became large enough (note that the eigenvalue ratio 

limited the validity concentration), PC eventually became superior. These results are consistent with prior 

literature (with a different Fortran compiler, word length, random seed, and random number generator) 

and should provide increased comfort regarding the performance of the methods previously examined. 

  In respect to Pruzek and Equal, there is also similarity with regression results (Morris, 1982). With 

increasing validity concentration, Pruzek appears to function much as does PC, exceeding the 

performance of OLS and LR, and eventually Equal becomes superior at the very largest validity 

concentration levels. In respect to OLS, this finding is consistent, although perhaps less dramatic than in 

Morris (1982) in the regression case.  This may be due to the lessened variance of the dichotomous 

criterion. In addition, the fact that Pruzek’s common factor method is using dimensionality delivered by 

the Kaiser eigenvalue-less-than-one dimensionality rule, derived from a principal components solution, 

may disadvantage the technique. Other research shows that prediction from a common factor perspective 

(Morris & Guertin, 1977), and specifically from extensions of the Pruzek method (Pruzek & Lepak, 

1992), are particularly meritorious. 

  It seems that our canned admonitions regarding the hazards of multicollinearity in the use of OLS 

methods may need a bit of refinement. For example, an examination of results for the .50 eigenvalue ratio 

and .1 power (again, the largest degree of multicollinearity, but smallest degree of validity concentration) 

in each table illustrates that OLS, along with LR, performs just fine and, indeed, is always superior to 

other methods. This result is consistent with the two-group classification results in Morris and Huberty 

(1987) and with the regression results in Morris (1982). One can see that within an eigenvalue ratio, other 

methods only become superior to OLS and LR as power, and thus validity concentration, becomes larger. 

At the largest eigenvalue ratio, this occurs quickly with increasing validity concentration. That is, as the 

eigenvalue ratio becomes larger, thus representing lower levels of multicollinearity, the process is slowed, 

or at the larger population multiple correlations, stopped. Multicollinearity is a necessary, but not 

sufficient, condition for validity concentration; yet, it is high validity concentration, not multicollinearity, 

which is problematic for OLS herein. 

  LR deserves special attention. In situations in which there were no failures to derive maximum 

likelihood weights, LR mirrored OLS essentially perfectly. Across all such data conditions, there was no 

case in which LR was significantly different than OLS. Though, one might surmise that, as LR does not 

require the same distributional assumptions as OLS, it may fair even better with non-normal data 

(Joachimsthaler & Stam, 2007; Press & Wilson, 1978). Although, in the case of multivariate normal data,  

 OLS is more efficient (Efron, 1975). Yet, these comparisons are anecdotal with specific data sets 

rather than a general examination accomplished by simulation varying population characteristics. This, 

then, means that all of the results regarding the effects of multicollinearity and validity concentration on 

OLS classification accuracy are also identically true for LR. The alternative methods that improve on 

OLS accuracy with higher collinearity and validity concentration also improve on LR to essentially the 

same degree and in the same pattern. As well, it is the effect of validity concentration that affects the 

performance of LR and not multicollinearity without validity concentration. 

  However, as can be seen, there were many failures of the LR method to derive a model. It is well 

known that in cases in which there is complete separation between groups, maximum likelihood weights 

are not possible; thus, the logistic regression algorithm will necessarily fail to resolve to a weight 

solution. There are alternatives, including exact logistic regression and penalized logistic regression 

(Firth, 1993; Heinze & Schemper, 2002). However, as interest in this study was in the performance of 

standard logistic regression routines available in standard statistical packages, such as SPSS; SAS; or 

Minitab, that typical researchers would elect to use, those techniques were not considered. It is also the 

case that in situations in which there is “near” complete separation, LR may fail to iterate to a model. This 

was the case herein in many simulation conditions. When LR failed to develop a model for a particular 

sample, the classification accuracy could, of course, not be included in the aggregate. Therefore, the 

number of samples for which LR models were able to be used to classify, thus aggregate, is included in 
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the tables. Also, in those cases, LR was excluded from statistical significance testing as it manifested 

missing data and sometimes a lot of missing data. 

  For the smallest squared multiple correlation of .25 (i.e., representing the least group separation with 

the mean Mahalanobis D
2
 = .79), results were not too bad, with only 1 to 3 samples for which LR weights 

were unavailable due to the algorithm’s failure in the smaller sample size. However, as population group 

separation became larger, but by no means complete, failure increased dramatically. It was always worse 

with the smaller sample size, but certainly of importance at the larger sample size. At the .75 squared 

multiple correlation (Mean D
2
 = 3.69), LR produced models for only about half of the samples for the N = 

40 sample size across all eigenvalue ratio and validity concentration power conditions. For the N = 100 

sample size, only in one instance was there LR regression model generation failure. However, at the .95 

squared multiple correlation condition (D
2
 =  6.22) for the N = 40 sample size, the largest number of 

models produced was 5 out of 100 and in two conditions, LR was unable to produce any models for the 

100 samples. At this level of group separation, even at the N = 100 sample size, models were produced 

for no more than two-thirds of the samples. 
 

Discussion 

  The performance of the additional methods, Pruzek and Equal, showed some similar performance 

characteristics to former studies. Pruzek and Equal improved on OLS classification accuracy with 

increasing validity concentration. In addition, whatever can be said of OLS can also be said of LR, as 

their performance was so similar, under conditions of high validity concentration, LR is surpassed by the 

alternate techniques sequenced in the same way as with OLS. 

  Further consideration regarding the technical specifics of the LR failures is necessary. A few of the 

failures were due to the estimated weight covariance matrix becoming singular. Most were due to 

iterations exceeding the programmed default of 20.  However, it made no difference to increase that limit 

all the way to 100. The reason that the iteration limit was being exceeded was that the weights were 

increasing to infinity rather than converging. To allow the number of iterations to become essentially 

limitless, at 100, caused the failure to then occur due to a subsequent singularity of the weight covariance 

matrix. As is often the case in “runaway” maximum likelihood estimation, the weights are not converging 

because they, or some subset of them, are increasing to infinity. Although increasing the iteration limit 

made no difference, results using a limit of 20 are presented as that is the default limit for SPSS. 

Extensive checking with SPSS LR was done on the same sampled data sets with the same results. 

  A question of interest regards how do these data conditions fit with what the typical researcher 

encounters and how often do such failures accrue in practice? An additional difficulty is that LR programs 

(e.g., SPSS, SAS, and Minitab) that fail with a data set, still report the weight set from the last iteration; 

albeit, with a note that 

iteration failed and no solution 

is possible. To its credit, 

STATA does not report an 

erroneous vector of weights if 

maximum likelihood 

convergence is not possible. 

STATA is, however, not the 

mainstream software used for 

LR. Another concern is 

whether those erroneous 

results are then reported by the 

naïve researcher. 

 However, if one is careful 

and considers the footnote, it 

is obvious that LR failed to 

converge and therefore there is 

no LR model to summarize, 

nor LR weights, even though 

SPSS proffers such. The 

  

 
 Figure 1. An example of an LR output in SPSS. 
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maximum likelihood iterations failed to converge and these are merely the weights calculated in the 20th 

iteration. The same failure is obtained if the maximum number of iterations is specified as 100 or other 

larger numbers.     

  These results would support a recommendation that, for data with low validity concentration, OLS or 

LR, if appropriate attention is paid to model generation failure, are superior and relatively equal choices. 

Although, for anomalous data conditions, it may be that LR may have the edge. As validity concentration 

increases, Ridge and reduced rank (i.e., PC or Pruzek) become top choices. At the very highest validity 

concentration, the simple EW algorithm is the best choice. In addition, this trend is lessened as sample 

size and degree of group separation increases. 
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