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The two-group cross-validation classification accuracies of six algorithms (i.e., least squares, ridge
regression, principal components, a common factor method, equal weighting, and logistic regression)
were compared as a function of degree of validity concentration, group separation, and number of
subjects. Therein, the findings of two previous studies were extended to the latter three methods with
particular interest in how logistic regression faired as a function of validity concentration. In respect to
validity concentration, as well as group separation and N, logistic regression was a mirror image of least
squares. The same relative decrease, in respect to alternate methods, in accuracy with increasing validity
concentration previously evidenced with least squares was observed. However, the large number of
samples in which logistic regression failed to yield a solution may be a cause for concern.

T his investigation extends Morris and Huberty (1987) by contrasting the accuracy of six algorithms

for classifying subjects into one of two groups. Ordinary Least Squares (OLS), Ridge Regression
(Ridge), Principle Components (PC), Pruzek and Frederick’s (1978) common factor method
(Pruzek), Equal Weighting (Equal), and Logistic Regression (LR) are the techniques that were compared.

Darlington (1978) posited that regression cross-validation accuracy is a function of R% N, and
validity concentration, where R? represents the squared multiple correlation and N is the sample size. In
Darlington’s formulation, validity concentration was used to describe a data condition in which the
principal components of the predictors with large eigenvalues also have large correlations with the
criterion. Thus, validity concentration requires at least a modicum of predictor variable collinearity (i.e.,
large predictor eigenvalues), but collinearity is only necessary, not sufficient, for validity concentration.
Darlington suggested that the most useful statistical technique for practical prediction problems, therein,
may be ridge regression.

Through simulation, Morris (1982) re-examined the performance of Ridge with the same data

structures on which Darlington posited the technique's superiority. With large validity concentration,
Ridge was, indeed, more accurate than OLS, but contrary to Darlington's suggestions, Ridge was never
the most accurate prediction technique. That is, in each case in which Ridge surpassed OLS due to large
validity concentration, other contending weighting methods surpassed it.
Morris and Huberty (1987) examined a subset of the methods (e.g., OLS, Ridge, and PC) considered in
Darlington (1978) and Morris (1982) in the context of two-group classification accuracy, rather than
regression, using the same simulated data conditions, but extending them to three different population
model accuracies and two different sample sizes; not including the Pruzek nor Equal methods as in Morris
(1982).

The present study uses the same data conditions as in Morris and Huberty (1987), but includes the
Pruzek and Equal methods. In addition, Logistic Regression (LR), an increasingly popular classification
technique, was included. The same difficulties with multicollinearity (well-known with the OLS
algorithm), have been mentioned (Hosmer & Lemeshow, 2000) as theoretically problematic to LR.
Furthermore, ridge techniques have been suggested as a solution (Schaefer, 1986). However, the degree
of effect of multicollinearity, and potentially resulting validity concentration, on the classification
accuracy of LR has not been empirically and systematically examined.

Method
For easy comparison, all prediction algorithms that were included in the Morris and Huberty (1987)
comparison (e.g., OLS, Ridge, and PC) were identically executed to those used in that comparison, and
the Pruzek and Equal methods were identically calculated to that in Morris (1982). Specifically:
OLS: Fisher’s LDF was used.
Ridge: Empirical ridge regression weights were calculated using the biasing parameter, k, due to
Lawless and Wang (1976).
PC: The principal components predictions were obtained with a regression model using all
principal components with eigenvalues larger than one (i.e., Kaiser’s rule).
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Equal: A predictor was assigned a standardized weight of one and the same sign as the predictor-
criterion correlation if the value of that correlation was statistically significant (p < .01). If no
predictor-criterion correlation was this large, in absolute value, the predictor with the largest
correlation was assigned a 1 with appropriate sign. This last step was executed so that there
would be no case in which all predictors were assigned zero weights; thus, resulting in
predicted values with no variance.

Pruzek: The common factor method of Pruzek and Frederick (1978) was used with rank
determined by Kaiser’s rule, as with PC, and communalities were iterated from squared
multiple correlations.

LR: The logistic regression maximum likelihood solution was calculated with iteration using the
Newton-Raphson method. Iteration was halted when all weights changed by no more than
.001. In this subroutine, failure in solution generation was captured as caused by 1) complete
separation, 2) a singular weight covariance estimate occurrence at an iteration, or 3) non-
convergence of weights that were increasing to infinity.

The same fundamental data configurations that were originally posited by Darlington (1978) were
used. Thus, all data conditions were such that there were 10 predictor variables. Four levels of collinearity
were created so that the eigenvalues of the predictor variable intercorrelation matrix decreased by .50, .65,
.80, and .95. Since the eigenvalues had to sum to 10, they were uniquely determined in each condition.
Six levels of validity concentration were created and the component validities were proportional to a
power of the eigenvalues, with powers of .1, .5, 1, 2, 4, and 10 considered. Darlington specified one
population squared multiple correlation of .25. Thus, in this case, as the squared component validities had
to sum to .25, they were also uniquely determined. Darlington also used one sample size of 40.

Procedure

As in Morris and Huberty (1987), these 24 conditions were expanded in a fully crossed design to
include two more population multiple correlations of .75 and .95. As well, a sample size of 100 was also
included and a total of 144 data conditions were considered. A population of 10,000 subjects, as opposed
to 1,000 in Morris and Huberty, was created that manifested each of the 72 (4 X 6 X 3) desired sets of
collinearity, validity concentration, and multiple correlation characteristics. Manipulating sample size was
done by simply selecting 40, or alternatively 100, subjects in a sample with replacement.

The algorithm used to create the population covariance matrices representing the respective
eigenstructure and validity concentration is described in Morris (1982), and the algorithm for creating the
population of 10,000 subjects manifesting each of these desired covariance matrices is described in
Morris (1975). As in Morris and Huberty (1987), to translate each of these data structures to a two-group
classification problem, each population was dichotomized at the median criterion score and the prediction
weights from randomly selected samples of the desired size were calculated to predict the dichotomous
criterion by each of the six methods. The sample weights were then cross-validated by using them to
classify all 10,000 population subjects. The total number of correct classifications was used to compare
the relative accuracies of the methods. This procedure was replicated 100 times within each data
condition with the mean classification accuracy representing the accuracy of each method. A Fortran 90
computer program compiled by Intel Parallel Studio XE 2011 was used for accomplishing all simulations.

Results

Tables 1, 2 and 3 show the results of all 144 simulation combinations. An orientation regarding
validity concentration in the tables may be helpful. Within a table (i.e., thus, the population multiple
correlation), as eigenvalue ratio becomes larger, multicollinearity becomes smaller. Within eigenvalue
ratio, validity concentration becomes larger as power becomes larger. For each table, for example, the .50
eigenvalue ratio and .1 power offer the highest multicollinearity and lowest validity concentration
considered.

Although statistical significance was not considered nearly as important as establishing trends over
the data conditions, an overall Hotelling T? test and post hoc comparisons were used to contrast the
methods’ classification hit-rates as found in Morris and Huberty (1987). Thus, in line with Morrison’s
suggestion (1976), the means were ordered and pairwise post hoc contrasts were used to contrast larger
means with smaller means until a statistically significant (p < .01) difference was found; thus, delineating
best methods.
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Table 1. Mean Proportion Correctly Classified for R? = .25.

Eigenvalue Method
Ratio Power N =40 N =100
OLS Ridge PC Pruzek Equal LR/#* OLS Ridge PC Pruzek Equal LR/#*
.50 1 .5878 .5699 .5480 .5455 5460 .5882/100 .6288 .6049 5735 5704 5803 .6287/100
5 .5868 .6011 .5899 .5856 5917  .5871/100 .6266 6317 .6152 6116 .6228 .6264/100
1. 5875 .6158 .6141 .6088 .6196  .5867/99 6262 6422 .6390 .6352 6402 .6258/100
2. .5904 .6276 .6299 .6248 .6313  .5895/99 .6294 .6497 .6533 .6506 .6532  .6285/100
4. 5911 .6286 .6321 .6280 .6308  .5893/99 6261 .6488 .6530 .6509 .6550 .6258/100
10. .5909 6279 .6333 .6286 .6340 .5892/98 6271 .6483 .6519 .6504 6562 .6266/100
.65 1 .5990 .5853 5579 .5594 5636 .5974/100 .6356 6229 .5836 .5808 5947  .6350/100
5 5952 5976 .5818 .5810 5843 .5944/100 .6330 6311 .6078 .6054 6176 .6327/100
1. .5930 .6098 .6050 .6023 .6009  .5929/98 6316 .6383 6279 .6249 .6335 .6314/100
2. 5914 .6169 .6227 .6165 .6135  .5906/97 6271 .6404 .6438 .6398 6452 .6268/100
4. 5914 6211 .6295 .6231 .6182  .5905/99 .6286 6437 .6504 6478 6496 .6282/100
10. .5920 .6219 .6309 .6250 .6200 .5912/99 6273 .6437 .6499 .6480 .6470 .6267/100
.80 1 .5898 .5836 .5605 5748 5558  .5900/99 .6283 .6220 5817 .5908 5868 .6279/100
5 .5894 .5888 5707 .5820 5611 .5894/99 6276 .6244 5928 5989 5975 .6272/100
1. .5898 5958 5851 5917 5702 .5899/99 .6282 .6283 .6106 .6134 6121  .6277/100
2. .5898 .6028 .6025 .6032 5827  .5905/99 .6265 6313 .6285 .6269 6251  .6260/100
4. .5898 .6057 .6134 .6081 5850 .5903/100 .6253 6331 .6400 .6368 .6303 .6248/100
10. .5908 .6100 .6231 .6136 .5884  .5906/99 .6265 6357 .6449 6411 6289 .6261/100
.95 1 5871 .5843 .5607 .5849 5634  .5858/98 .6252 6223 .5855 .6223 5941 .6253/100
5 5874 .5842 5623 .5848 5642  .5862/98 6262 6237 .5883 .6230 5940 .6263/100
1. 5876 .5843 .5624 .5849 5637  .5866/99 6261 6241 5910 .6232 5942 .6261/100
2. 5876 .5855 5652 .5868 5657  .5867/99 6261 .6244 5951 6231 5954 .6262/100
4. 5872 5867 .5688 5873 5661  .5871/99 .6258 .6240 .6006 .6224 5978  .6259/100
10. .5850 .5881 5760 5874 5642 .5848/100 .6259 .6259 6139 .6260 6031 .6255/100

Note: The best performing method or set of methods is in bold (p<.01).
* Number of samples for which LR calculable; not included in contrast if any not calculable.
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Table 2. Mean Proportion Correctly Classified for R? = .75.

Eigenvalue Method
Ratio Power N =40 N =100
OLS Ridge PC Pruzek  Equal LR/#* OLS Ridge PC Pruzek  Equal LR/#*
.50 1 7560 .7064  .6248 .6139 6375 .7449/45 7982 7564  .6591 .6495 .6649 .8003/100
5 7595 7681  .7197 .7080 7326 .7514/50 8042  .8011  .7446 7410 1247 .8062/100
1. 7615 7948 7734 .7628 7721 .7487/57 8054 8162  .7947 .7905 .7580 .8069/100
2. .7634 8031 .8066 7977 .7950 .7466/49 8046  .8184  .8205 .8162 .7935 .8051/100
4. 7626  .8035  .8133 .8057 .8143 .7532/47 8057 .8201  .8270 8241 8227 .8066/100
10. .7609 .8010 .8115 .8045 .8154 .7487/53 8027 .8160 .8219 .8196 .8250 .8039/100
.65 1 7613 .7391  .6410 .6456 .6660 .7616/41 8049 .7916  .6647 6709 6922 .8061/100
5 7619 .7606  .6916 .6943 7161 .7572/50 8053 .8031  .7183 7261 .7296 .8057/98
1. 7619 7771 7425 7418 .7568 .7473/50 8047  .8092  .7662 .7693 .7638 .8053/100
2. 7715 7977  .7938 7871 7918 .7622/51 8067 .8155  .8110 .8079 .7905 .8081/100
4. 7677 7994 8106 .8003 .8004 .7512/53 8087 .8174  .8264 8227 8119 .8092/100
10. 7677 7994 8123 .8034 .8065 .7556/51 8066  .8150 .8244 .8218 .8260 .8071/100
.80 1 .7585  .7506  .6482 .7016 6760 .7502/58 8015 .7984  .6748 7320 7077 .8024/100
5 7598 7574 6744 7152 .6947 .7485/59 .8042 8034  .7034 .7504 71255 .8048/100
1. 7565 .7605  .7046 .7295 .7155 .7494/64 .8047  .8056 .7352 .7680 .7469 .8047/100
2. 7582 7709  .7486 7572 .7533 .7581/57 8048  .8075 .7772 7918 .7819 .8043/100
4. 7527 7738  .7840 .7780 .7616 .7424/51 8045 .8084  .8091 .8107 7942 .8045/100
10. 7627 7819 7971 1847 .7585 .7489/46 .8024 8064 .8170 8121 .8119 .8025/100
.95 1 7559  .7541  .6563 .7389 .6868 .7442/44 7978  .7973  .6877 7913 .7623 .8001/100
5 7551 7533  .6575 .7389 6831 .7391/45 7981 .7978  .6910 7923 .7603 .8005/100
1. 7560 .7549  .6610 7421 .6881 .7446/44 7984 7980  .6957 7923 .7604 .8011/100
2. 7526  .7529  .6647 .7399 .6876 .7485/43 7977 7976  .7028 7921 .7570 .8006/100
4. 7511 7531  .6730 .7399 .6834 .7429/53 7950 .7951  .7167 .7904 .7551 .7969/100
10. 7538 .7576  .6942 7457 .6966 .7434/50 8017  .8023  .7505 .7989 7749 .8039/100

Note: The best performing method or set of methods is in bold (p<.01).
* Number of samples for which LR calculable; not included in contrast if any not calculable.
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Table 3. Mean Proportion Correctly Classified for R? = .95.

Eigenvalue Method
Ratio Power N =40 N =100
OLS Ridge PC Pruzek  Equal LR/#* OLS Ridge PC Pruzek  Equal LR/#*
.50 1 8415 7747 6556  .6263 6774  .8649/4 .8873 8312 6928 .6808 6905  .9009/58
5 8407 .8426 .7637  .7472 7731 .8271/2 .8885 .8812 .7896 .7866 7541  .8982/66
1. 8480 .8756 .8377  .8276 8165  .8132/2 .8922 9041 .8608 .8565 7962 .9028/54
2. 8429 8848 .8881  .8745 .8626  .8316/1 .8919 9071 .9068 .8992 .8535  .8987/53
4. 8431 8851 .8979  .8889 .8986  .8737/2 .8885 .9035 9117 .9067 9014  .8976/67
10. 8450 .8850 .8997  .8884 9069  .8671/4 .8903 .9051 9133 .9085 9182  .8990/61
.65 1 8441 8117 .6688  .6750 .7060  .8830/3 .8901 .8769 .6938 7027 7213 .9007/57
5 8460 .8428 .7357  .7396 .7659  .8866/1 .8913 .8889 .7590 7723 7625  .8999/59
1. 8444 8589 .8007  .8011 8092  .7995/1 .8917 .8967 .8238 .8334 .8068  .9016/62
2. 8493 8769 .8705  .8633 .8533  .8281/1 .8951 .9032 .8917 .8896 .8465  .9039/60
4. 8489 8783 .8961  .8816 8763  .8891/1 .8934 9021 9149 .9080 8791  .9044/54
10. 8433 8763 .8973  .8840 8912  .8437/5 .8904 .8989 9124 .9064 9122  .8993/60
.80 1 8434 8362 .6765  .7563 7217 .8541/4 .8920 .8892 7070 7991 7470  .9010/55
5 8431 8406 .7103 7774 .7419  .0000/0 .8896 .8889 .7408 .8164 .7686  .9008/54
1. 8415 .8459 .7525  .7981 7753  .8460/3 .8903 .8908 7824 .8382 7978  .8997/65
2. 8421 8533 .8126  .8325 8299  .8584/4 .8932 .8949 .8428 .8709 8441  .9021/52
4. 8389 .8558 .8577  .8568 .8410  .0000/0 .8928 .8961 .8922 .8972 .8557  .9016/52
10. 8407 .8605 .8814  .8650 .8351  .8555/2 .8940 8973 9093 .9021 9021  .9030/49
.95 1 8391 .8383 .6919  .8128 .7568  .8608/2 .8860 .8860 7237 .8707 8225  .8976/57
5 8384 8383 .6946  .8129 .7533  .0000/0 .8859 .8859 1277 .8708 .8230  .8986/57
1. .8380 .8382 .6974  .8134 7528  .7810/1 .8869 .8868 7328 8713 8242  .8982/57
2. 8380 .8386 .7033  .8140 .7501  .8189/3 .8863 .8864 7438 8720 8222 .8996/62
4. 8329 8351 .7126  .8107 7469  .8176/3 .8837 .8840 7624 .8703 8205  .8965/64
10. 8354 8395 .7388  .8182 7762  .8306/6 .8873 .8879 .8044 8772 8327  .8991/61

Note: The best performing method or set of methods is in bold (p<.01).
* Number of samples for which LR calculable; not included in contrast if any not calculable.
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The obvious effect of increased accuracy as the population multiple correlation or sample size
increased is evident. As would be expected, the trend regarding validity concentration was parallel to that
found in Morris and Huberty (1987) in respect to OLS, Ridge, and PC. OLS was superior at smaller levels
of validity concentration. As validity concentration increased within an eigenvalue ratio level, Ridge
became superior, and if the validity concentration became large enough (note that the eigenvalue ratio
limited the validity concentration), PC eventually became superior. These results are consistent with prior
literature (with a different Fortran compiler, word length, random seed, and random number generator)
and should provide increased comfort regarding the performance of the methods previously examined.

In respect to Pruzek and Equal, there is also similarity with regression results (Morris, 1982). With
increasing validity concentration, Pruzek appears to function much as does PC, exceeding the
performance of OLS and LR, and eventually Equal becomes superior at the very largest validity
concentration levels. In respect to OLS, this finding is consistent, although perhaps less dramatic than in
Morris (1982) in the regression case. This may be due to the lessened variance of the dichotomous
criterion. In addition, the fact that Pruzek’s common factor method is using dimensionality delivered by
the Kaiser eigenvalue-less-than-one dimensionality rule, derived from a principal components solution,
may disadvantage the technique. Other research shows that prediction from a common factor perspective
(Morris & Guertin, 1977), and specifically from extensions of the Pruzek method (Pruzek & Lepak,
1992), are particularly meritorious.

It seems that our canned admonitions regarding the hazards of multicollinearity in the use of OLS
methods may need a bit of refinement. For example, an examination of results for the .50 eigenvalue ratio
and .1 power (again, the largest degree of multicollinearity, but smallest degree of validity concentration)
in each table illustrates that OLS, along with LR, performs just fine and, indeed, is always superior to
other methods. This result is consistent with the two-group classification results in Morris and Huberty
(1987) and with the regression results in Morris (1982). One can see that within an eigenvalue ratio, other
methods only become superior to OLS and LR as power, and thus validity concentration, becomes larger.
At the largest eigenvalue ratio, this occurs quickly with increasing validity concentration. That is, as the
eigenvalue ratio becomes larger, thus representing lower levels of multicollinearity, the process is slowed,
or at the larger population multiple correlations, stopped. Multicollinearity is a necessary, but not
sufficient, condition for validity concentration; yet, it is high validity concentration, not multicollinearity,
which is problematic for OLS herein.

LR deserves special attention. In situations in which there were no failures to derive maximum
likelihood weights, LR mirrored OLS essentially perfectly. Across all such data conditions, there was no
case in which LR was significantly different than OLS. Though, one might surmise that, as LR does not
require the same distributional assumptions as OLS, it may fair even better with non-normal data
(Joachimsthaler & Stam, 2007; Press & Wilson, 1978). Although, in the case of multivariate normal data,

OLS is more efficient (Efron, 1975). Yet, these comparisons are anecdotal with specific data sets
rather than a general examination accomplished by simulation varying population characteristics. This,
then, means that all of the results regarding the effects of multicollinearity and validity concentration on
OLS classification accuracy are also identically true for LR. The alternative methods that improve on
OLS accuracy with higher collinearity and validity concentration also improve on LR to essentially the
same degree and in the same pattern. As well, it is the effect of validity concentration that affects the
performance of LR and not multicollinearity without validity concentration.

However, as can be seen, there were many failures of the LR method to derive a model. It is well
known that in cases in which there is complete separation between groups, maximum likelihood weights
are not possible; thus, the logistic regression algorithm will necessarily fail to resolve to a weight
solution. There are alternatives, including exact logistic regression and penalized logistic regression
(Firth, 1993; Heinze & Schemper, 2002). However, as interest in this study was in the performance of
standard logistic regression routines available in standard statistical packages, such as SPSS; SAS; or
Minitab, that typical researchers would elect to use, those techniques were not considered. It is also the
case that in situations in which there is “near” complete separation, LR may fail to iterate to a model. This
was the case herein in many simulation conditions. When LR failed to develop a model for a particular
sample, the classification accuracy could, of course, not be included in the aggregate. Therefore, the
number of samples for which LR models were able to be used to classify, thus aggregate, is included in
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the tables. Also, in those cases, LR was excluded from statistical significance testing as it manifested
missing data and sometimes a lot of missing data.

For the smallest squared multiple correlation of .25 (i.e., representing the least group separation with
the mean Mahalanobis D? = .79), results were not too bad, with only 1 to 3 samples for which LR weights
were unavailable due to the algorithm’s failure in the smaller sample size. However, as population group
separation became larger, but by no means complete, failure increased dramatically. It was always worse
with the smaller sample size, but certainly of importance at the larger sample size. At the .75 squared
multiple correlation (Mean D? = 3.69), LR produced models for only about half of the samples for the N =
40 sample size across all eigenvalue ratio and validity concentration power conditions. For the N = 100
sample size, only in one instance was there LR regression model generation failure. However, at the .95
squared multiple correlation condition (D? = 6.22) for the N = 40 sample size, the largest number of
models produced was 5 out of 100 and in two conditions, LR was unable to produce any models for the
100 samples. At this level of group separation, even at the N = 100 sample size, models were produced
for no more than two-thirds of the samples.

Discussion

The performance of the additional methods, Pruzek and Equal, showed some similar performance
characteristics to former studies. Pruzek and Equal improved on OLS classification accuracy with
increasing validity concentration. In addition, whatever can be said of OLS can also be said of LR, as
their performance was so similar, under conditions of high validity concentration, LR is surpassed by the
alternate techniques sequenced in the same way as with OLS.

Further consideration regarding the technical specifics of the LR failures is necessary. A few of the
failures were due to the estimated weight covariance matrix becoming singular. Most were due to
iterations exceeding the programmed default of 20. However, it made no difference to increase that limit
all the way to 100. The reason that the iteration limit was being exceeded was that the weights were
increasing to infinity rather than converging. To allow the number of iterations to become essentially
limitless, at 100, caused the failure to then occur due to a subsequent singularity of the weight covariance
matrix. As is often the case in “runaway” maximum likelihood estimation, the weights are not converging
because they, or some subset of them, are increasing to infinity. Although increasing the iteration limit
made no difference, results using a limit of 20 are presented as that is the default limit for SPSS.
Extensive checking with SPSS LR was done on the same sampled data sets with the same results.

A question of interest regards how do these data conditions fit with what the typical researcher
encounters and how often do such failures accrue in practice? An additional difficulty is that LR programs
(e.g., SPSS, SAS, and Minitab) that fail with a data set, still report the weight set from the last iteration;
albeit, with a note that

iteration failed and no solution

. . . ) Model Summary

is possible. To its credit, = e
-2 Log 0¥ & Sne agelkerke

STATA does not rep_ort a_n Step likelihood Square Square

erroneous vector of weights if -

maximum likelihood 1 000 726 1.000

convergence is not possible. a. Estimation terminated at iteration number 20

STATA is. however. not the hecause maximum iterations has been reached.

! Final solution cannot be found.
mainstream software used for

LR. Another concern is Variables in the Equation
whether  those  erroneous B SE. Wald df Sig. Exp(B)
results are then reported by the | | Stee ! opa B7.625 | 44793133 000 1 999 | 2341E29
naive researcher. fcat 10,771 23052.901 000 1 1.000 | 47625.932
However, if one is careful mfcat 7485 | 11430954 000 1 999 | 1781.776
and considers the footnote, it schoolsat 3991 | 13653445 000 1 1.000 54117
is obvious that LR failed to st 070 130760 000 1 1.000 1.073
converge and therefore there is relentions | 32383 | 34125344 000 1 999 | 1.158E14
no LR model to summarize, Constant -294.890 | 116757.684 .000 1 .998 .000

nor LR WEightS even though a. Variable(s) entered on step 1: gpa, rfcat, mfcat, schoolsat, sri, retentions.

SPSS proffers such. The |[Figure 1. An example of an LR output in SPSS.
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maximum likelihood iterations failed to converge and these are merely the weights calculated in the 20th
iteration. The same failure is obtained if the maximum number of iterations is specified as 100 or other
larger numbers.

These results would support a recommendation that, for data with low validity concentration, OLS or
LR, if appropriate attention is paid to model generation failure, are superior and relatively equal choices.
Although, for anomalous data conditions, it may be that LR may have the edge. As validity concentration
increases, Ridge and reduced rank (i.e., PC or Pruzek) become top choices. At the very highest validity
concentration, the simple EW algorithm is the best choice. In addition, this trend is lessened as sample
size and degree of group separation increases.
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