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Recommendations from popular statistics texts regarding avoidance of predictor variable multicollinearity 

in the use of multiple regression are considered from the perspective of the alternate purposes of 

explanation and prediction. As opposed to prior studies that consider the effect of multicollinearity on 

prediction accuracy by varying a constant proportion eigenvalue decrement, a method for manipulating 

multicollinearity while maintaining a real data set’s eigenvalue structure is used. For 21 data sets 

examined, it is shown that multicollinearity has no effect in respect to either relative or absolute 

prediction accuracy. 

s mentioned in a prior publication in this journal (Morris & Lieberman, 2015), texts used in 

multiple regression courses (Belesley, Kuh, & Welch, 1980; Brook & Arnold, 1985; Chatterjee & 

Price, 1977; Cliff, 1987; Cohen, Cohen, West & Aiken, 2003; Gnanadesikan, 1977; Kerlinger & 

Pedhazur, 1973; Kleinbaum, Kupper, Nizan, & Rosenberg, 2013; Lomax & Hahs-Vaughn, 2012; Meyers, 

Gamst, & Guarino, 2006; Pedhazur, 1982; Stevens, 2009; Tabachnick & Fidell, 2012) provide a 

consistent warning to avoid the dangers of multicollinearity among predictor variables.   

  However, two different goals in multiple regression modeling may be of interest: prediction or 

explanation. These have been distinguished elsewhere (Kerlinger, 1973, p. 9-10; Kerlinger & Pedhazur, 

1973, p. 48-49; Morris & Lieberman, 2015).  Briefly, the distinction is that, in the case of explanation, 

one’s interest is in parameter estimation, whereas in prediction, interest is in model accuracy. 

Consideration of the potentially different effect of multicollinearity on prediction and explanation 

analyses does not appear to be considered in these mainstream texts.   

  The aforementioned recommendations regarding the prediction performance of regression models 

over a wide span of multicollinearity conditions has been examined (Morris & Lieberman, 2015).  

Multicollinearity depends upon the structure of the predictor variable intercorrelation matrix (R) 

eigenvalues (λ). The λs of R will, other than with artificially orthogonalized experimental data, 

necessarily decrease from first to last, but it is the severity of that decrease that determines 

multicollinearity. It is this dependence of multicollinearity on severity of eigenvalue decrement that 

Darlington (1978) used, and that was also used in the subsequent examination mentioned, to manipulate 

multicollinearity. As originally manipulated by Darlington, eigenvalues were set to decrease with a 

constant proportion (e.g., λ2/λ1 = λ3/λ2 = λ4/λ3 … etc. = .50).  Such “eigenvalue-ratios” of .30, .40, .50, .65, 

.80, and .95 have been examined in a variety of studies (Morris, 1982; Morris & Huberty, 1987; Morris & 

Lieberman, 2015). Results have been that OLS regression is insensitive to multicollinearity if the criterion 

is prediction accuracy. Surprise, and some degree of disbelief, regarding these results have been evident, 

which is consistent with the advice in the aforementioned texts.   

  Although the predictor variable λs are necessarily a monotonically decreasing function, they do not 

necessarily decrease with a constant proportion, nor according to any other prescribed mathematical 

pattern; they decrease, in any particular data set, as nature “decides.” The purpose of this study was to 

extend these results to the λ decrement structures of real data.   
 

Theoretical Framework 

  Several indices of multicollinearity are currently in use, including the Variance Inflation Factor (VIF, 

and its redundant inverse, the “Tolerance”) the MI indices (Thisted & Morris, 1980), and Condition 

Indices (Belesley, 1991). The Condition Index (CI) will be of principal use herein. For the entire 

prediction problem, it is defined as: 

             CI= √λmax/√λmin,            (1) 
 

where λmax and λmin are the largest and smallest λs of R. As the first λ is necessarily the largest, and the 

last λ is necessarily the smallest from a full-rank R, for a p variable predictor R, we can equivalently use 

the definition of: 

             CI = √λ1/√λp              (2) 

A 
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  To further investigate the effect of multicollinearity on regression performance with arguably more 

realistic characteristics, the present study used real data to determine the eigenvalue structure, rather than 

prescribing a constant proportional decline. Of course, to examine the effect of multicollinearity on 

prediction accuracy, it must be manipulated, but a specific data set has only one degree of 

multicollinearity, regardless of how one measures it. So, in order to manipulate multicollinearity, but still, 

as much as possible, maintain the λ “scree” pattern of decrement of the real data, the following 

mechanism was used.   

  To make multicollinearity larger, in respect to that manifested in the original data, a portion, Xshift, of 

the sum of the second through pth eigenvalues was added to the first eigenvalue, and to lessen 

multicollinearity, a portion of the first eigenvalue was distributed evenly across all other (second through 

pth) eigenvalues. This way, rank was maintained, and multicollinearity was manipulated from that of the 

original data, but, as the “shift” of component variance from first to remaining, or remaining to first, λ 

was constant, the pattern of λ decrease was parallel to that of the original data from component 2 through 

p, thus closely mimicking the real data structure. That is, in using this multicollinearity manipulation 

strategy, the only λ for which the “scree” is not parallel to that of the original data is λ1, wherein 

multicollinearity was manipulated. Component-criterion correlations were maintained as in the original 

data, thus, in turn, the data set R
2
 was maintained. 

 

Method 

  To cover a very wide multicollinearity range, the CI was increased or decreased through several 

levels from that of the native data.  One can show that the variance proportion, Xshift, needed for the 

movement of eigenvalue variance from, or to, λ1, to or from, the remaining p-1 λs to achieve any desired 

CI is given by: 

       Xshift = (p – 1)(λ1 – λpCI
2
)/(λ1(CI

2 
+ p - 1)),         (3) 

 

with all symbols previously defined. Then, to achieve the desired CI, λs are modified as: 
 

        λ1(modified) = λ1 – Xshiftλ1, and            (4) 
 

        λi(modified), (i>1) = λi + Xshiftλ1/(p-1)          (5) 
 

  If the desired CI is greater than that of the original data, Xshift becomes negative (thus moving 

component variance to λ1 from the remaining p-1 λs) and positive (doing the exact opposite) when the 

desired CI is less than that of the original data. Recognizing that the λs must decrease in magnitude gives 

rise to an upper bound for Xshift, and a corresponding lower bound for an accomplishable CI as: 
 

         CIlb = √(λ1 + λ2(p - 1))/√(pλp + λ1 - λ2)          (6) 
 

  To illustrate, a plot (see Figure 1) is included for a well-known simple four predictor variable data set 

from Kerlinger and Pedhazur (1973, p. 292). The original data manifests a CIo of 2.5 – trivial collinearity. 

The decline in λs is: from λ1 to λ2, 32%; from λ2 to λ3, 81%; and from λ3 to λ4, 60%. Note that after the 

decrement from λ1 to λ2, the proportion of decline lessens dramatically, as opposed to the aforementioned 

simulation studies wherein there is a constant proportion decline. Another way to look at this is that in 

those previous studies the most and least severe degrees of collinearity considered were represented by 

constant proportions of .30 and .95, respectively, both of which are approximated in this real data set. The 

purpose then, herein, is to allow the natural decline in eigenvalues to obtain to more closely approximate 

real data conditions. 

  With the formula mentioned above, one can add or subtract a portion, Xshift, of λ1 to, or from, the 

second through fourth λs to obtain whatever CI one wishes for this data set. As the latter (2 through p) λ 

decline is mapped as it is in the original data, any concern over the artificial nature of the simulated 

constant proportion decrease of λs in previous studies should be alleviated. Figure 1 shows the original λ 

decline pattern (CIo=2.5), and the decline calculated via the Xshift that gives rise to a CI of 1.5 (thus, less 

collinearity than that of the original data) and 30 (far more collinearity than that of the original data). The 

pattern of decline is, as one can see, necessarily perfectly mapped regardless of CI; the plots will always 

be perfectly parallel to the pattern of the real data for λs 2 through p, regardless of native pattern or p.  
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Figure 1. λs for original and modified Kerlinger and Pedhazur data. 
 

Data Source 

  For each data set, multicollinearity was manipulated over a very wide range, up and down from the 

original CIo (also presented). The smallest target CIlow was 1.5.  As a CI of 1.0 represents predictor 

variable orthogonality, a CI of 1.5 represents very low collinearity. For some data sets, a CI of 1.5 was 

not possible due to the aforementioned lower limit, and in those cases the approximate lowest CI 

available was calculated in 10% increments from 1.5, as 1.65, 1.8, 1.95, etc, until an obtainable CIlow was 

achieved. In addition, CIs of 15, 30, 75, and 150, representing a 10, 20, 50 and 100-fold increase, 

respectively, were used. A CI of 30 is often posited as a basis for concern. In addition, a CI of 150 was 

chosen as the infamous Longley (1967) data -- the standard-bearer for multicollinearity -- manifests a CI 

of about 110. Thus, even greater multicollinearity is included for all data sets in this study than that of the 

Longley data. 

  For each real data set, a population of 10,000 subjects was created (Morris, 1975; Morris, 1982) that 

manifested each of the desired CIs, with the eigenvalue decline pattern created from the original data by 

the appropriate Xshift for each CI.   

  Samples of the original size represented in the data set were selected. The sample regression weights 

were then cross-validated by using them to predict the criterion for all 10,000 population subjects; this 

was replicated 10,000 times with the mean performance presented.  Both relative accuracy, as measured 

by the cross-validated correlation between predicted and actual criterion score, Rcv, and absolute accuracy, 

as measured by the MSEcv [Σ(Zy–ŷ)
2
/n] (predicting the standardized Zy so that results were scaled similarly 

across data sets), were included. 

  A Fortran 90 computer program compiled by Intel Parallel Studio XE 2018 was used to accomplish 

all simulations. The random normal deviates required were created by the “Rectangle-Wedge-Tail” 

method (Marsaglia, MacLauren, & Bray, 1964), with the required uniform random numbers generated by 

the “shuffling” Algorithm M recommended by Knuth (1969, p. 30). Dolker and Halperin (1982) found 

this combination to perform most satisfactorily in creating random normal deviates. 
 

Results 

  The source for data were the original 21 data sets used in a comparison of OLS and ridge regression 

(Morris, 1986). Those data sets seem appropriate herein as they were selected to vary widely in respect to 

multicollinearity, n/p and R
2
. The program, however, is completely general, thus can be used with any 

real data set. Citations for the data set source for those that are published are provided; the three data sets 

that are not published are available from the authors.   

  Figure 2 illustrates regression performance for the aforementioned Kerlinger and Pedhazur data 

(1973). [The CIo of the original data is designated with an *.] As well, VIF ranges for the CI levels are 

also provided. Multicollinearity was varied extremely via the CIs as specified, and if you prefer VIFs, you 

can see that they ranged from representing near orthogonality (< 1.2) in the CI=1.5 condition, to VERY 

extreme multicollinearity (2822) in the CI=150 condition. Regarding the effect of multicollinearity on 

prediction accuracy, as can be seen, relative (Rcv) and absolute (MSEcv) accuracy were totally unaffected  
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Figure 2. Rcv and MSEcv performance by CI/VIF for Kerlinger and Pedhazur data. 

     
Figure 3. Rcv and MSEcv performance by CI/VIF for Longley data. 
 

by multicollinearity – flat with no trend. Not only is this visually apparent from the Figure, but the mean 

Rcv varied across multicollinearity conditions by no more than .0001, and to four significant digits, there 

was zero variance for MSEcv.   

  Figure 3 illustrates the same information for the aforementioned Longley (1967) data. These data 

were posited by Longley as constituting a regression problem so ill-conditioned as to be a challenge for 

digital computers to solve. With a native CIo of around 110, it can be seen from the Figure that the VIFs 

of the original data vary from about 144 to 1210. Through the mechanism mentioned, CIs were 

manipulated, as in the former data set, from near orthogonality, with CI=1.8, and VIFs<1.4, to even more 

collinearity than in the original Longley data, with CI=150, and VIFs that ranging to 2277. Figure 3 

shows the same visual effect – accuracy was flat with no trend in respect to multicollinearity. In addition, 

neither Rcv nor MSEcv varied by as much as .0001 as multicollinearity increased. [It may appear from the 

plot that the Rcv is “1” and MSEcv is “zero,” but the respective values across all six multicollinearity 

conditions were respectively .9965 and .0084.] 

  The results for the remaining 19 data sets are presented in tabular form (see Table 1) as the results are 

essentially identical. There, the data characteristics are included (p, n, R
2
, CIo) as well as the Rcv and 

MSEcv. As can be seen, the CIlow obtainable was often 1.5, and when not, close enough to afford little 

collinearity, except in data set #18. The eigen-structure of this data set is unusual in the proximity of λ1 

and λ2 (3.29 and 3.16, respectively) producing a CIlow of around 13. For all other data sets, a CIlow was 

attainable that none would argue represents collinearity. As well, for data sets # 13, 14 and 15, the CIo 

was smaller than 1.5, thus the CIo was used as the CIlow. In all cases, the remaining CIs, representing an 

increase to extreme collinearity (15, 30, 75, and 150), were used.  
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 For all data sets, Rcv did not vary in more that the ten-thousandths decimal place across 

multicollinearity conditions, most often not even there. MSEcv was even more stable with only one data 

set showing any variance, even in the ten-thousandths place. Regarding such fluctuations, they were 

random given the simulation; for the conditions that did manifest these very small differences, the largest 

collinearity condition was as likely to achieve greater accuracy as less. Therefore, the Rcv and MSEcv 

figures (displayed to thousandths precision) in Table 1, represent the accuracy across all multicollinearity 

conditions. Thus, further strong evidence is afforded regarding the warnings regarding multicollinearity 

leveled by previously mentioned texts; they do not apply to the objective of prediction, whether 

considering a constant eigenvalue decline as has been previously documented, or that of real data 

structures as is included in this paper. 
 

Table 1. Data Sets, Characteristics and Cross-validation Performance 

Data Set Number and Description p n  R
2
 CIo  CIlow  Rcv  MSEcv 

  1 Marquardt & Snee Acetylene (1975)  3 16 .92 7.0 1.80 .952 .108 

  2 Chew & Morris Lollipop (1984)  5 293 .94 24.6 1.95 .969 .062 

  3 Hoerl Kansas Corn Yield (1982)  6 51 .80 4.7 2.10 .882 .233 

  4 Draper & Smith Chemical (1966, p. 204)  3 21 .91 3.2 1.50 .951 .107 

  5 Drehmer & Morris Example (1981)  9 14 .82 15.3 3.45 .751 .793 

  6 Golf Score from Task Perf 4 120 .84 1.9 1.50 .915 .165 

  7 Draper & Smith Chemical (1966, p. 366)  4 13 .98 37.3 3.30 .988 .030 

  8 Hocking & Dunn Example (1982)  3 20 .62 11.5 1.50 .757 .478 

  9 Hoerl & Kennard Example (1981)  5 15 .99 18.2 1.50 .990 .024 

10 Kerlinger & Pedhazur GPA (1973, p. 292)  4 30 .64 2.5 1.50 .773 .444 

11 Longley Collinearity Example (1967)  6 16 .99 110. 1.80 .997 .008 

12 Morris, et al. Selection Example (1980)  4 83 .47 8.1 1.50 .674 .560 

13 Rulon, et al. Mechanics (1967, p. 399) 3 93 .26 1.3 1.30 .495 .772 

14 Rulon, et al. OC Agents (1967, p. 402) 3 66 .32 1.1 1.10 .549 .721 

15 Rulon, et al. Pass Agents (1967, p. 396) 3 86 .19 1.4 1.40 .415 .849 

16 Retention from Demos & WISC 10 29 .31 4.6 2.55 .395 1.103 

17 Piers-Harris from IQ & Ach 7 55 .18 4.2 1.50 .340 .954 

18 Draper & Smith Steam (1966, p. 352) 9 25 .92 28.0 13.0 .941 .131 

19 Draper & Smith Chemical (1966, p. 233)  4 16 .82 3.9 1.50 .876 .275 

20 Cooley & Lohnes Talent (F) (1971, p. 353)  12 271 .33 6.1 1.80 .552 .703 

21 Cooley & Lohnes Talent (M) (1971, p. 349)  12 234 .41 7.8 1.95 .619 .624 

  Note.  From Morris, J. D. (1986), Educational and Psychological Measurement, 46, 853-867. 
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