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Partialling correlations (partial, semipartial or bipartial) is built upon regression equation(s). It is imperative
that the assumptions of those models be considered. Those assumptions rest on the OLS residuals of those
models (e.g., linearity, homoscedasticity, normality, independence, absence from data with extreme
influence). Partial correlations of all types depend on residuals, but consideration of fit of data in respect to
those residuals is seldom done. Although this can be accomplished with repeated subsequent analyses,
partialling in commercial software does not directly render these assumption diagnostics. As these are
mandatory for use of least squares, examples are produced and an Excel program that automatically
performs an exhaustive set of diagnostic analyses and plots for partialling is offered.

P arsing effects is a fundamental part of science, from physics (partial pressure) to statistics (partial

correlation). Although the same model fit questions arise from all mathematical models (e.g.,

maximum likelihood), only least squares will be considered here. Although partialling is always a
function of residuals, typical commercial software [SAS, SPSS, Stata] relies on formulas, the residuals are
never calculated. [Minitab is an outlier in that it has no partialling program.] The difficulty with this is that
the usual assumptions of least squares model(s), which rely on residuals, are not tested. In addition,
partialling always reduces variance, so it important to see the degree of that reduction and how it manifests
in a scatterplot of the relevant residuals.

Perspectives - Theoretical Framework
All least squares partialling is done by a simple procedure. First, predict each variable from the variable we
which to “partial out” with least squares. Assume two variables, t and u, and the “controlled for” variable
is v. In standard score form this means creating the equations below and transformations for each subject.
t1 = rwVi, tires = ti-ti, with “res” for residual.
This subtraction gives the part of t that is not predictable from v, thus r(v,t.s)=0. And,
01 = IuwVi, Uires = Ui-Gj,
where, again, this gives the part of u that is not predictable from v, thus r(v,urs) = 0.
Thus, we now have two residuals, one from t and one from u, both uncorrelated with v. We now correlate
those two residuals for a partial correlation.
Ipartial = Nuv = r(tres,ures)-

That correlation is spoken of as the correlation between t and u, “controlling” for v. “Controlling” has a
very limited meaning -- only that the two residuals are now uncorrelated with v. Although not the point of
the present paper, much has been written about appropriate caution in interpretation of such a partial
correlation (e.g., Lynam, Hoyle, & Newman, 2006). Remembering that these correlations only regard the
linear relationship of v with t and u, we should understand that if there are other forms of relationship (e.g.,
quadratic) they remain. Moreover, one can’t claim that this is the same as the relationship between t and u
for subjects who have the same v score.

As the fundamental mathematics behind partialling is OLS regression, one can do the same with
multiple zs. As well, one can elect to only partial from one variable (say t), leaving u as raw. This is a
semipartial or part correlation. Tests of semipartial correlations are automatically rendered with any
multiple regression program; partialling the remainder of the variables from x, but not from y, for each x in
turn. And, given the flexibility of the underlying mathematics, one can choose to partial a different set of
variables from x than from y. Although this is done less frequently, it is often called a bipartial correlation.
Although the correlation of residuals from multiple regression equation(s) is the foundation of partialling,
we can derive formulas that render partial correlations directly from the relevant bivariate correlations (and
recursive “chaining” their application for higher order partial correlations) or use matrix algebra. Therein,
avoiding calculating residuals for each subject from regression equation(s). These formulas are found in
most intermediate statistics texts; for a good presentation see Cohen & Cohen (1983).

This mathematical shortcut gives us the following for first order partial and semipartial correlations:

rut.v:(rut—ruvrtv)/\/(( 1 'ruvz) (1'rtv2)) , and
ru(t.v)=(rulﬁruvrtv)/\/( 1 ‘rtvz)) .
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However, the problem with this approach is that we apparently forget where the residuals came from. As
with all multiple regression models, it is mandatory to check the assumptions of the multiple regression
model(s) that produce the residuals. Thus, consideration of linearity, homoskedasticity, independence, and
normality of the residuals, as well as data points with excessive leverage or influence, is, as in any regression
model, our responsibility. In addition, collinearity in the regression model(s) needs to be considered. These
typical regression examinations are essentially never done in partialling. [It is worthwhile to note that
diagnostics for a regression model including all constituent variables is not the same — wrong model.] To
accomplish these diagnostics, one would need to run regression analyses and diagnostics separately for
each regression model used to calculate residuals— two in the case of partial or bipartial correlation, and
one in the case of semipartial correlation.
Method

As with all model assumptions, rendering such regression diagnostic information should be part of
commercial partialling software, but it is not. The purpose of this paper is to point out this necessity, but
also to offer a flexible Excel program that automatically yields all of these diagnostics for any partial,
semipartial, or bipartial correlation requested. As well, the reduction in variance due to partialling must be
considered, and a scatterplot of the original and partialled residuals should be compared. One can then see
what partialling did at the subject level. SAS (an option in proc “corr”) is the only commercial software
platform known that offers this scatterplot comparison of original and partialled data.

The Excel program used herein has a very simple interface for specifying any partial, semipartial, or
bipartial correlation one wishes among variables entered. [Note that the Excel statistical “Analysis
Toolpak™ that has received some flack in the literature (e.g., McCullough & Berry, but see amelioration
with more recent versions, Melard, 2014) is not used — all programming is original. Moreover, with a very
large set of examples, an exact match with results obtained with the multiple runs necessary to obtain the
same in SPSS, SAS, or Systat is always obtained.] Correlations from partialling are calculated from actual
residuals with relevant residual plots (f with tres, and G with urs, each predictor with respective residuals,
Index, and P-P and Q-Q normal plots), leverage and influence statistics for total t and u models as well as
DFBETAS for individual predictors are all automatically generated. In addition, VIFs for each regression
model (if the number of predictors is >1) are automatically rendered.

Data Source
A venerable data set from Kerlinger and Pedhazur (1973, p. 292) including GPA, GRE (Quantitative and
Verbal), the Miller Analogies Test, and the Average Rating of faculty is used to demonstrate model
assumption testing that should be done, but also the program that can aid in that process.

Results

To allow variable choice and role, the program simply lists the names of all variables that were included in
the Input page twice. From those two lists, all one must do is to place a “t,” a “u,” and “p”s (variables to
partial out) under the desired variables in the respective lists. If no variables are given “p”s for either t or u,
this then necessarily becomes a semipartial correlation. If the same variable(s) are given ps for the “t” and
“u” variable, the result is a partial correlation and, finally, if different variables are given ps for t and u, the
result is a bipartial correlation. The program parses this as a partial, semipartial, or bipartial correlation, and
provides labels, and statistics appropriately.

The following screenshot shows the input to obtain the partial correlation between GRE-Q and GPA, with
GRE-V partialled out of both. Given appropriate assignation of variables, results are immediately rendered.
Here we see that the partial r is .471 [.126,.714], with p=.01. The CI is calculated in respect to the a entered
on the Input sheet; in this case .05, thus a 95% CI.

Place a t below one variable of interest and a P below each variable to be partialled from it:

GPA GRE-O GRE-V MAT AR
t p
Place a u below the other variable of interest and a P below each variable to be partialled from it:
GPA GRE-O GRE-V MAT AR
u P

Partial r= .471, [.126, .714], t(27) =2.774, p =.010.
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So, you can see that the reduction in variance
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for GRE-Q and GPA was about 78% and 66%, Variance

respectively. We believe that this is too Original Partialled % of Original

infrequently considered in partialling. t 2367.826 1850.653 78.16%
To consider what the partialling did to the .360 .238 56.19%

correlation between GRE-Q and GPA, we can

simply ponder the respective correlations; it was .610 in raw form, and .471 after “partialling out” GRE-V.
But even more information is available by considering what this did to the respective scatterplots. An “un-
partialled” and “partialled” scatterplot is automatically generated to allow consideration of how partialling
affected the relationship at the individual data point level. A screenshot for this example is:
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One might argue that, in this case, partialling (plot to right) introduced a bit of heteroskedasticity as it
appears that the spread of the GPA residuals is larger at lower levels of GRE-Q residual and less at higher
levels, in contrast to the raw score scatterplot (plot to left).

The usual requisite regression residual diagnostic plots are automatically generated for each regression

model. [If you have requested a semipartial correlation,

the plots for the “uncontrolled” variable will be

blank, as there are no residuals.] The residual plots (reduced in size from their usual portrayal for this

proposal) for these data are below.

Residual Analysis for t and u models, unless, with

ion, there are no predi in that case the plots are blank.
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For both the GRE-Q (t) and GPA (u) residuals, there appear to be no patterns (curvilinear, etc.) as a function
of predicted scores (plots to left). As well, both sets of P-P and Q-Q plots appear to satisfy the model
assumptions of residual normality relatively well for both models. Finally, Index plots that are often used
in consideration of independence show nothing of note.

Let’s say that you would like to know the correlation between GRE-Q with GRE-V, MAT, and AR
partialled out, with GPA, with no variables partialled out. This is a semi-partial correlation; the results (less
produced plots to reduce space) look like this.

Place a t below one variable of interest and a P below each variable to be partialled from it:

GPA GRE-Q GRE-V MAT AR
t P P P
Place a u below the other variable of interest and a P below each variable to be partialled from it:
GPA GRE-O GRE-V MAT AR
u

Semipartial r= 262, [—, —], t{25) =2.182, p =.0349.

Variance
Original Partialled % of Original
t 2367.826 1550.061 65.46%
u 360 360 100.00%

Thus, the semipartial correlation (.274) is significant with a=.05. What we have is the correlation of a
predictor (GRE-Q) with the variance of all other predictors (GRE-V, MAT, and AR) partialled out with a
criterion (GPA). That this is equivalent to a test of the contribution of GRE-Q to the regression model
predicting GPA using all four predictors; this is important illustrate to students.

Finally, let’s say that you would like to know the correlation between GRE-Q with GRE-V and MAT
partialled out, and GPA with GRE-V, MAT, and AR partialled out. This is a bipartial correlation. Excluding
the plots again, results look like this:

Flace at below one variable of interest and a P below each variable to be partialled from it:

GPA GRE-O GRE-V MAT AR
t P P
Flace a u below the other variable of interest and a P below each variable to be partialled from it:
GPA GRE-Q GRE-V MAT AR
u P P p

Bipartial r= .367, [-.015, .656], t{25) = 1.975, p = .059.

Variance
original Partialled % of Original
t 2367.820 1837.454 77.60%
u 360 154 42.81%

Thus, given an a of .05, this bipartial correlation of .367 is not significant. From the CI, note just how close
to exclusion of zero (-.015), thus significance, this correlation was; Cls are important for students to
consider. Also note that nearly 80% of the variability of GRE-Q has been removed. Because there are
multiple predictors in these models, an additional table is automatically triggered (as it was, but not shown,
in the aforementioned semipartial model) — VIFs associated with each of these models. If no regression
equation has more than one variable, this table is not produced. It is below with no VIF problems for either
model.
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Table 1. Leverage and Influence Statistics for the t model.

Influence
Leverage Studentized Residuals
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Note: “Large” values are generated in Lavender and Red, respectively.
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Table 2. Leverage and Influence Statistics for the u model

Influence
Leverage Studentized Residuals

PRESS or "Deleted” "Wt Diogonal Maholnobis0” Cook's D Intemal  Eitemal DFFTS  COVRATIO ~ Welsch D
(sed  Crtrion~ Prediced  Residual  PRESSPredicted  Resitual 263 probfy2fp)ent 4l 1 155 DT ||shk/n) [CRA3k |]53k
Maximum: 407 b0 7% Ji M 6,108 Q00 18 LeM om0 13N EALS)
Minimum: 274 - 169 -37 076 1.1 ) (1 S TN | A I 6.8
Meam 3303 il 335 -l 13 JEI L 1 1 | L A ] -2
0 M 6 il 457 3 13 R0 S K1 A 1 R 1| A 2663
Medin: 3.2 J68 34 0 A0 168 W & a0 W 1N kil
1320 250 6 2369 2 076 1.1 RO . N 1 SN A B3
7 4m 353 168 31 k) A0 pAL 1 (N 1 AN piil
E1] 1% 0 1767 1 1% 167 1 S N 1/ BN 115
4 160 1346 - b an -1 09 1 1 7 1 1 N . N ¥ 1117
31 3 Al 3.0 A% Y 14 15 1 S A L N A 26
b 400 3360 80 328 Ji 0 1577 L 1 m aEl s 18
1430 4,09 il 4,005 0 130 13 K1 A N |/ . ) 1591
i 3132 15 34 -3l L6 178 Y| R R 1 B BN ¢ B N SAL!
5 1600 3349 Dl 3341 (5 M EAI 1) N N | SN VA M
0410 1589 il 0 A Bl LAV M e Lmoo e 4% LB 150
o 2m 10 30 EALL -4 1% 164 RS (/A N I - B A V)| 154
250 At Bt 169 208 0 19% Q0 4 & m 1E 18 856
IR 1346 -346 10 -0 09 1 K1) A £ B I A 138
300 3% -3 3300 -3 ] 108 1R | R K1) RN 1/ . ¥ -3.6%
I3 40m -1 7% -J76 )] 438 (1 SO N - B 6004
I 30 254 6 2369 2 07 1.2 1T . N I A N B3
74 35 163 ERIE 7 A0 pA M 4 & m w1 Rl
15300 1.7% U 1707 2 10 2897 M5 3 m % 1 L1%
1260 144 -Uh 1n -1 NI:t 1 L 7 S 1 N B & 1107
0 30 3 Al 3004 A% Y 14 15 (- 1 A N A 260
4400 3360 0 3128 Ji 0 157 L e Mmoo Gl R 18
2 40 4,049 il 4005 2 130 33 Q0 k6 M W a1 1391
420 3152 15 34 -1 18 118 I N R 1 R - RN B N V) 314
A 360 339 D1 3341 (5 M EAI a1 w1 18 M
541 1589 Al i A7 M LAV M e Lmoo e A% LB 150
%20 3050 330 3100 -A00 10 2638 LN [/ N | N | I . I A | 134
7 290 i Bt 169 208 0 1555 MM & m 1® 1% 8%
&0 144 -4 18 -3 NI:t 1 1 1 1 N I A 158
5300 BRI -3 330 -3 ] .L08 K1 K1 N 1/ . ¥ -3.6%
0330 40m -1 4% -J%6 i) 438 A (1 N T N - I -6.004

Note: “Large” values are generated in Lavender and Red, respectively.
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Table 3. DFBETAS for t model.
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Table 4. DFBETAS for u model.

DFBETAS — DFBETAS —
Case # | | Constant | GRE-V | MAT Case # | | Constant | GRE-V | MAT AR
1 0.1511] -0.1149| -0.0121 1 0.0439| -0.0120| 0.0414| -0.1056
2 0.1037| -0.0911| -0.0335 2 -0.0897| 0.0681| 0.0075| 0.0459
3 -0.0809| 0.1066| -0.0275 3 0.0843| -0.0894| 0.0769| -0.1148
4 -0.0066| 0.0006| 0.0058 4 -0.1560| 0.0199| 0.1312| -0.0218
5 -0.0194| 0.2023| -0.1887 5 0.0314| -0.3281| 0.3028| -0.0281
6 0.2495| -0.2095| -0.0050 6 0.1951| -0.2406| -0.1856| 0.4286
7 -0.1633| 0.1785| 0.0160 7 8.1769| 0.1751]| -0.0157| 0.0747
8 -0.0196| 0.3390| -0.3325 8 -0.0055| 0.2755| -0.4120| 0.2499
9 0.0440| 0.0171] -0.0416 9 0.0091| -0.0082| -0.0248| 0.0452
10 0.2376| -0.2236| -0.0612 10 -0.2682| 0.2876| 0.1567| -0.2280
11 -0.2467| -0.0455| 0.2775 11 -0.2097| 0.0048| 0.2769| -0.1721
12 -0.0292| 0.0042| 0.0241 12 0.1182| -0.0058| -0.0701] -0.0480
13 -0.1533| 0.0150| 0.1333 13 -0.2210| 0.0281| 0.1858| -0.0308
14 0.0433] -0.1259| 0.0666 14 0.1663| -0.4963| 0.0532] 0.3529
15 -0.1187| -0.0407| 0.1751 15 0.5974| 0.3127]| -0.6439| -0.4437
16 0.1535| -0.1167| -0.0123 16 0.0439| -0.0120| 0.0414| -0.1056
17 0.1037| -0.0911| -0.0335 17 -0.0897| 0.0681| 0.0075| 0.0459
18 -0.0809| 0.1066| -0.0275 18 0.0843| -0.0894| 0.0769| -0.1148
19 -0.0066| 0.0006| 0.0058 19 -0.1560| 0.0199| 0.1312| -0.0218
20 -0.0194| 0.2023| -0.1887 20 0.0314| -0.3281| 0.3028| -0.0281
21 0.2495| -0.2095| -0.0050 21 0.1951| -0.2406| -0.1856| 0.4286
22 -0.1633| 0.1785| 0.0160 22 -0.1769| 0.1751| -0.0157| 0.0747
23 -0.0196| 0.3390| -0.3325 23 -0.0055| 0.2755| -0.4120| 0.2499
24 0.0440| 0.0171]| -0.0416 24 0.0091| -0.0082| -0.0248| 0.0452
25 0.2376| -0.2236| -0.0612 25 -0.2682| 0.2876| 0.1567| -0.2280
26 -0.2467| -0.0455| 0.2775 26 -0.2097| 0.0048| 0.2769| -0.1721
27 -0.0292| 0.0042| 0.0241 27 0.1182] -0.0058| -0.0701| -0.0480
28 -0.1533| 0.0150| 0.1333 28 -0.2210| 0.0281| 0.1858| -0.0308
29 0.0433| -0.1259| 0.0666 29 0.1663| -0.4963| 0.0532] 0.3529
30 -0.1187] -0.0407] 0.1751 30 0.5974] 0.3127] -0.6439| -0.4437

Table 5. Residual vs Predictor — t model: GRE-V=predictor.
Residuals vs. X (Zscores)

-0.5

z‘l.l"ariﬂlf:nle Selected
0 05

r= L000
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Tables 1 & 2 show the leverage and influence VIFs for Models with # predictors > 1

statistics, and Tables 3 & 4 show the DIFFS, tand u criterion

respectively for the t and u models. Entries are

automatically highlighted in Red, if above a Predictors GRE-Q GPA
suggested criterion from the literature. Tables 5-9 GRE-V 1.221 1.294
contain the residual with individual predictor plots MAT 1.221 1.492
for each predictor for the t and u models, showing ar 1.462

no signs of patterns by individual predictor.
Table 6. Residual vs Predictor — t model: MAT=predictor.

Residuals vs. X (Zscores)

Chart Area
— 21n.lfariﬂl::ule Selected
15 -1 05 0 0.5 1 15 2 25
3
. 25
2
(] .
1.2
® . 05 I‘\JE
§ 0
: . 05
. - ol e |
: : !
15
r= L000
Table 7. Residual vs Predictor — u model: GRE-V=predictor.
Residuals vs. X (Zscores)
21l.l"ariﬂI::nIE Selected
-15 -1 0.5 0 0.5 1 15 2
2
L] -
1.2
L 1 1
* o 3
b
. 05 NE
L L ] L] 1
L]
15
. 2
25
r= L0000

Note: Red signifies data point deemed influential by DFBETAS (Table 4) for GRE-V.
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Table 8. Residual vs Predictor — u model: MAT=predictor.

Residuals vs. X (Zscores)

Chartj] z‘l.l'ariﬂl::ule Selected
-15 -1 -0.5 0 05 1 15 2 25
2
L ] _
1.3
] L . 0.5
* o 5
z
™ o5
L - 1
[ ]
15
[ ] 2
-25
r= 000

Note: Red signifies data point deemed influential by DFBETAS (Table 4) for MAT.
Table 9. Residual vs Predictor — u model: AR=predictor.

Residuals vs. X (Zscores)

Chart Area 7
Variable Selected
-15 -1 -05 o 05 1 15 2
2
L ] -
1.3
] L 1
L ]
L [ ] L] & 05
° 0 3
=
. S
™ o L 1
L ]
15
L ] 2
-25
r= 000

Note: Red signifies data point deemed influential by DFBETAS (Table 4) for AR.

Significance
Attendance to least squares model assumptions is our responsibility, regardless of how those models
are used. One might even argue that, as partialling depends only on residuals, which is what those
assumptions regard, that our responsibility is even more so. Thus, such examination is considered

mandatory. As commercial programs do not automatically provide such, a program to allow easy generation
of that information is offered to all who would like it.
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The Partialling program provides a flexible integrated treatment of partialling, and a comprehensive
set of diagnostic statistics and plots, at least some of which one should consider. If you care to take a look,
a guaranteed secure, anonymized, “voiceless” video demonstration of the analysis of these data with this
software is here (make your browser full screen for the best view).
https://johnnysolarseed.com/Responsible_Partialling_Demo/Responsible_Partialling_Demo.mp4
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