
Multiple Regression with a National Dataset 

Multiple Linear Regression Viewpoints, 2013, Vol. 39(1)                                                                                           25 

Use of the Multiple Lens Approach to  

Multiple Regression Findings with a National Dataset 
          Laura L. Nathans           Kim Nimon      David A. Walker 
       University of North Texas     University of North Texas   Northern Illinois University 

This study builds upon the work of Nathans, Oswald, and Nimon (2012) to demonstrate how to apply 

variable importance metrics to an analysis of a national dataset. The paper (a) reviews the variable 

importance metrics; (b) details the strengths and weaknesses of national datasets as well as issues the 

analyst must confront when using them; (c) presents an integrated write-up of how to interpret variable 

importance metrics in analysis of fall of kindergarten math achievement from the Early Childhood 

Longitudinal Study – Kindergarten Cohort dataset; and (d) discusses how variable importance metrics 

inform the extant substantive literature on kindergarten math achievement. 

 ultiple regression (MR) is a commonly employed statistical technique in social science 

research. Its purpose is to determine the “predictive power” of individual, as well as sets of 

independent variables (IVs), in explaining variance in a single dependent variable (DV) 

(Pedhazur, 1997). Researchers commonly rely upon beta weights when assessing the contributions of 

specific IVs to variance in the DV (Nimon, Gavrilova, & Roberts, 2010). As Nathans, Oswald, and 

Nimon (2012) and Zumbo (2012) pointed out, sole reliance on beta weights in interpreting MR findings 

provides limited, and potentially inaccurate, information regarding IVs’ contributions to regression 

models. Shared variance between variables, a statistical phenomenon referred to as multicollinearity, may 

distort or minimize the contribution of an IV to an MR equation as reflected in beta weight values 

(Courville & Thompson, 2001; Nunnally & Bernstein, 1994). Accordingly, researchers need to rely on 

other measures of IVs’ contributions to MR models to “yield the richest and most complete picture 

regarding the relationships between independent variables and the dependent variable” (Nathans et al., p. 

2).   

 Nathans et al. (2012) highlighted several measures of variable importance in their guidebook. They 

noted that variable importance must be operationalized in terms of a specific measure of a variable’s 

contribution to a regression equation, rather than employed as a “blanket term” (p. 2) that has general 

applicability when interpreting regression findings. As such, a brief outline of variable importance metrics 

utilized in said guidebook will be applied to the example in the current study. 
 

Metrics for Variable Importance 

  Standardized Beta Weight. The first measure discussed is the standardized beta weight, which 

quantifies in standard deviation units, the expected change in the DV given a one standard deviation unit 

increase in the corresponding IV (Pedhazur, 1997). Beta weights are best used as a “beginning step” in 

the analysis of regression findings. However, because beta weights do not present a complete picture of 

how shared variance impacts a regression equation, integration of other variable importance measures in 

regression analyses is warranted. 
 

  Zero-Order Correlation. The second measure included in the guidebook is the zero-order 

correlation, which reflects the magnitude and direction of the bivariate relationship between the IV and 

the DV without controlling for other IV contributions to the regression equation. Squaring the zero-order 

correlation reflects the amount of variance shared between the IV and the DV. 
 

  Pratt Index. The third measure is Pratt’s (1987) product measure, which partitions the regression 

effect by multiplying the zero-order correlation and beta weight for each IV. By partitioning the 

regression effect, the sum of all product measure values, unlike beta weight values, is equivalent to the 

amount of variance explained by the regression equation. The product measure is the most easily 

computed method of partitioning regression equation variance in the presence of correlated predictors, 

although not necessarily the most accurate, particularly when the value of the zero-order correlation or 

beta weight is negative. 
 

  Structure Coefficient. The fourth measure is variable importance, or the structure coefficient, which 

reflects the bivariate correlation between each IV and the predicted (y-hat) value resulting from the MR 

model (Courville & Thompson, 2001). We concur with Courville and Thompson’s assertion that structure 
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coefficients should always be computed in addition to beta weights when predictors are correlated, as they 

help identify where shared variance is distributed when beta weights are computed. If an IV has a large 

squared structure coefficient and a small beta weight, this discrepancy informs the researcher that 

variance shared between this IV and another IV was assigned to another IV’s beta weight. 
 

  Commonality Analysis. The fifth measure presented is commonality analysis. Commonality analysis 

partitions the regression effect into variance that is (a) unique to each variable (i.e., unique effects) and (b) 

shared between all possible combinations of variables (i.e., common effects) (Rowell, 1996).  When 

reporting commonality analysis results, the researcher can sum the common effects for each variable and 

compare them with the unique effect in order to determine whether a variable contributes more to a 

regression equation through variance it shares with other IVs versus uniquely contributes to the regression 

equation. 
 

  Dominance Analysis. The sixth measure employed is dominance analysis, which entails comparison 

of unique variance contributions of all pairs of IVs to regression equations involving all possible subsets 

of IVs (Azen & Budescu, 2003). An IV is referred to as “dominating” another IV if the former IV shows a 

greater unique variance contribution than the latter IV when it is entered last into regression equations 

containing all possible subsets of predictors. There are three hierarchical levels of dominance analysis 

described in this paper: (a) complete dominance - the strongest level of dominance that is demonstrated 

when one IV shows a higher unique variance contribution than another IV across all possible subsets of 

IVs; (b) conditional dominance - a weaker level of dominance that is shown when one IV contributes 

more unique variance than another IV on average across all subset sizes; and (c) the weakest level of 

dominance, termed “general dominance,” which is represented when an IV contributes more unique 

variance to the regression effect than another IV on average across all IVs. It is important to note that 

dominance relationships can be established at weaker levels, if not higher levels, in the hierarchy of 

dominance relationships. 
 

  Relative Weight. The final measure integrated in this study is relative weights, which partition the 

regression effect through a computational method that creates IVs’ uncorrelated “counterparts” (Johnson, 

2000). Relative weights determine how much variance each IV contributes to the DV as a joint function 

of the relationships between (a) each IV and its uncorrelated counterpart and (b) the uncorrelated 

counterpart and the DV. Arguably, relative weights are the optimal method of partitioning regression 

equation variance, as they account for all explained variance while minimizing the impact of shared 

variance on the regression equation (Johnson & LeBreton, 2004). 

 Nathans et al. (2012) presented a guidebook of variable importance measures and applied them to a 

practical example. The current study extends upon this previous work by explicating how multiple 

measures of IVs’ contributions to an MR equation/effect can be employed in analysis of a national 

dataset—the Early Childhood Longitudinal Study - Kindergarten Cohort (ECLS-K). National datasets are 

increasingly available to researchers through such national organizations as the National Center for 

Education Statistics (NCES) and the National Science Foundation (Hahs-Vaughan, 2005). Knowledge of 

how to apply analyses of multiple measures of IV contributions to a regression equation will facilitate 

more statistically “savvy” and methodologically accurate analyses of national datasets. 
 

National Dataset Analyses 

  Strengths. Unfortunately, secondary data analysis, which includes analysis of national datasets, is an 

often untapped resource in the field of educational research. For example, Smith (2008) noted that less 

than half of papers published in British education journals employed analyses of secondary datasets. 

Because such datasets allow for reanalysis of existing datasets with new theoretical perspectives and/or 

more methodologically sophisticated analyses (Greenhoot & Dowsett, 2012; Smith), more frequent, in-

depth analyses of secondary datasets (i.e., national) are warranted in the educational research literature. 

Researchers can confirm pre-existing findings through replication (Duncan, 1991), refine hypotheses 

(Castle, 2003), or conduct exploratory work that tests new ideas, theories, and research designs with 

national datasets (Smith). By eliminating the often logistically cumbersome step of data collection, 

researchers are freed to devote added “time and energy” to employing more thorough and advanced 

theoretical frameworks and analytic techniques that shed new light on old research questions (Greenhoot 
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& Dowsett; Smith) such as predictors of early mathematics achievement (i.e., the analysis conducted 

here). National dataset analysis conserves resources and is cost-effective, and the analyst does not have to 

rely on other researchers to collect data (Castle; Hofferth, 2005).  Another advantage of such datasets is 

that they generally provide wide arrays of variables collected across large numbers of subjects (Greenhoot 

& Dowsett). As such, their samples are more representative and results have greater generalizability to 

broader populations, such as the U.S. as a whole, than studies that are primarily based on original data 

collection from circumscribed locations (Duncan; Greenhoot & Dowsett; Hofferth; Smith). Duncan 

pointed out that selection bias is largely eliminated in national datasets because of their broad, rather than 

purposive, sampling procedures. Additionally, data are typically collected with highly monitored, 

standardized surveys and assessments; thus, it is of the highest quality (Smith). Sophisticated statistical 

controls for multiple covariates can be employed with national datasets for infrequently sampled events 

such as poverty that would not be as likely to be reflected in smaller samples (Duncan). Overall, 

researchers can pose questions with national datasets that they frequently lack resources and subjects to 

otherwise explore (Greenhoot & Dowsett). 
 

  Weaknesses. Despite the many advantages of using national datasets, there are limitations and 

challenges inherent in the process. First, there is scant methodological literature addressing how to 

effectively analyze such datasets (Hahs-Vaughan, 2005), which the current study attempts to remedy. 

Second, because of the often large numbers of variables found in such datasets, the researcher must spend 

fairly extensive time familiarizing him/herself with the dataset prior to analysis (Castle, 2003; Greenhoot 

& Dowsett, 2012; Smith, 2008). Third, the data may have been collected with a different purpose or 

analytic approach from that used by the current data analyst (Castle). As Greenhoot and Dowsett pointed 

out, “the researcher has no control over who was sampled, what constructs were measured, or how they 

were measured” (p. 5) in secondary data analysis. The population and measures used in the dataset are 

typically based on others’ decisions regarding data collection; as such, the researcher cannot potentially 

use the most validated or extensive measures for a particular analysis (Castle). For example, in the 

analyses outlined in this study, a measure such as the Child Behavior Checklist (Achenbach & Rescorla, 

2001) would constitute a more in-depth measure of internalizing and externalizing behaviors than the 

Social Rating Scale used in the ECLS-K, which includes a limited four or five items reflecting these 

behavioral constructs. 

  There are several issues that must be addressed when analyzing national datasets.  First, the dataset 

chosen for analysis must be congruent with the research questions posed by the analyst (Hofferth, 2005). 

Second, a guiding theoretical or conceptual framework must be relied on to effectively sift through the 

“mounds” of data generally found in such datasets (Castle, 2003). Additionally, a frequent issue that the 

researcher must confront when analyzing national or secondary datasets is that the population from whom 

the data was collected must be generalized to the broader population the dataset represents (Hahs-

Vaughn, 2005). Hahs-Vaughan explicated in detail the process of weighting variables in order to 

generalize findings.  She noted that national datasets generally obtain subjects through cluster, stratified, 

or multistage rather than simple random sampling. Accordingly, data must be weighted in order to 

address issues of selection probabilities, non-response and non-coverage, and post-stratification and 

effectively generalize findings beyond the population included in the original sample. It is important that 

researchers familiarize themselves with the literature that has involved prior analysis of the same dataset 

in order to effectively build on existing research (Hofferth). Lastly, such datasets often contain significant 

amounts of missing data. It is recommended, and used in this study, that researchers employ multiple 

imputation procedures to estimate missing data prior to analyses (Greenhoot & Dowsett, 2012). 
 

  Complex Sampling. Another significant issue to consider when analyzing national datasets is the 

design effect for the study. Cluster sampling methods are the most prevalent form of data collection for 

national datasets (Garson, 2012). Clusters are made up of natural groupings of individuals (Crespi, 2012) 

and have thus been described as, “a convenient aggregation of observations” (Davern & Strief, 2013, pp. 

1-2). There are two types of cluster sampling: (a) a one-stage cluster sample in which clusters are selected 

and then individuals within clusters are sampled and (b) a multistage cluster sample in which certain 

locations, such as geographic areas, are selected and then clusters (e.g., households) within these areas are 

sampled. In the second stage of sampling, units (e.g., individuals within households) are sampled from 

which to collect data (Garson).   
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  Because individuals or units within clusters are generally more similar (or homogeneous) than 

individuals selected with simple random sampling methods from a population, the statistical assumption 

of independence of observations is violated when data are collected with cluster sampling methods 

(Garson, 2012; Osborne, 2011; Wears, 2002). Observations within clusters are correlated (Zelin & 

Stubbs, 2005) for several reasons, including (a) the fact that individuals may select the cluster to which 

they belong; (b) cluster-level variables simultaneously affect all members within a cluster; (c) individuals 

within a cluster interact with and influence each other; and (d) individuals within a cluster share similar 

demographic characteristics such as socioeconomic status (Johnson & Elliot, 1998; Wears). Greater 

internal homogeneity of clusters is related to greater variability between clusters than would be found if 

the population was sampled randomly (Thomas & Heck, 2001). Increased between-cluster variance 

results in less precise and efficient statistical measurements of the population (Zelin & Stubbs) because of 

increased standard errors of the estimate for statistics measured with cluster sampling (Crespi, 2012; 

Hocking & Carlin, 1999). As measurements are less precise, they also show (a) wider confidence 

intervals (Wears; Zelin & Stubbs), (b) less reliability (Zelin & Stubbs), and (c) increased p values 

(Wears). The statistical power for the sample is proportionately reduced with increasing internal 

homogeneity within clusters (Wears).   
 

  Design Effect. Kish (1965) developed the design effect to quantify the proportionate reduction in 

effective sample size obtained with cluster sampling. The design effect has been described as a 

“correction factor” for the increased between-cluster heterogeneity that results in increased overall sample 

variance relative to what would be obtained with simple random sampling (Standardized Monitoring and 

Assessment of Relief and Transitions (SMART), 2012). Zelin and Stubbs (2005) explicate that the design 

effect is a ratio that is computed by dividing the variance from the actual sample by the variance that 

would be obtained if the sample had been collected using simple random sampling. It is both a ratio of the 

true to theoretical variances for a particular sample and the actual to effective sample sizes for the 

collected sample. It has also been referred to as the “variance inflation factor” because it quantifies the 

increase in sample size needed for a design to have the same statistical power as a sample obtained 

randomly (Wears, 2002). For example, if the value of a design effect is 2, the sample size would need to 

be twice as large as that obtained through simple random sampling to obtain adequate statistical power 

(SMART). Unfortunately, most statistical packages do not account for design effects. Their analyses are 

based on the assumptions that data were collected using simple random sampling methods (Herring & 

Liu, 1998) and; therefore, that observations are independent of each other (Osborne, 2011). Ignoring the 

design effect underestimates standard errors, thereby rendering statistical tests inappropriately sensitive 

and inflating Type I errors (rejecting the null hypothesis when it is true) (Osborne; Thomas & Heck, 

2001). Most standard statistical packages, such as SPSS and SAS, do not account for design effects and 

thus fall prey to these statistical weaknesses (Herring & Liu).  

  The design effect (deff) can be computed with this formula: deff = 1 + ρ(n – 1), where ρ represents 

the intracluster correlation and n quantifies the number of clusters (Wears, 2002).  This formula 

demonstrates that design effects (a) increase with increased cluster size and (b) decrease with increasing 

values of the intracluster correlation (Davern & Strief, 2013). The intracluster correlation is a measure of 

both (a) the correlation between pairs of observations within a cluster (Crespi, 2012) and (b) the between-

cluster variance (Crespi; Zelin & Stubbs, 2005). Due to incorporation of the intracluster correlation, the 

design effect largely reflects between-cluster variability (Zelin & Stubbs). If the intracluster correlation is 

high, the variance within the clusters is smaller than the variance of a sample obtained through simple 

random sampling, which increases the design effect (Wears). Intracluster correlations are higher when 

cluster membership relates to the outcome variable or members of the cluster influence each other, 

increasing internal homogeneity and; thus, external heterogeneity of clusters (Wears). In contrast, Zelin 

and Stubbs explain that the more internally heterogeneous and externally homogeneous the composition 

of clusters is, the less the between-cluster variability impacts the sample and the closer the design effect is 

to 1. As the number of clusters is multiplied by the intracluster correlation when computing the design 

effect, increasing the number of clusters augments the required sample size. Small differences in 

intracluster correlation values can result in large differences in sample sizes required for adequate 

statistical power (Crespi). Importantly, intracluster correlations can vary between clusters (Crespi).   
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  Weighting. Use of sample weights also impacts design effects. Herring and Liu (1998) explicate that 

weights may increase or decrease the design effect depending on the correlation of the values of the 

weights with the standard deviations that are used in computations of descriptive statistics.  Thus, the 

researcher should be aware of the design effect and the weighting process that is involved in analysis of a 

national dataset. Neglecting to factor design effects into analyses of national datasets results in errors of 

inference and inaccurate parameter estimates (Osborne, 2011). 
 

Methods 

  Weighted Sample. The ECLS-K study involved data collection for 21,260 children throughout the 

United States. The purpose for data collection was to address questions regarding contributing factors to 

the developmental status of children in the United States at school entry and how it is affected by teacher, 

school, and parent characteristics (NCES, 1999). Child, teacher, and parent interviews were obtained. The 

first wave of data was collected in the fall of 1998 (i.e., the start of kindergarten year). Schools were 

sampled within geographic units and then students were sampled within schools. The ECLS-K data were 

weighted to adjust for differential selection probabilities at each sampling stage and for the effects of non-

response to ECLS-K questionnaires (NCES). The data for the sample analyzed for this example write-up 

were weighted using a weight that accounted for concurrent collection of child, parent, and teacher data 

yielding a weighted sample size of 3,842,961 subjects. Prior to weighting, missing data were addressed 

through multiple imputation procedures in LISREL. 
 

  Variables. An MR model with four independent variables was employed for this study. The 

dependent variable in the MR model was the child’s math score. In the fall of kindergarten, children were 

given a cognitive assessment that included both multiple choice and free response items. The items on the 

mathematics assessment measured mathematical abilities in the areas of conceptual knowledge, 

procedural knowledge, and problem solving (NCES, 1999). All four IVs were obtained from teacher and 

parent versions of the Social Rating Scale (SRS); a rating scale of kindergarteners’ social development. 

From the teacher version of the SRS, two IVs were used in the MR equation: (a) the Externalizing 

Behavior Problems Scale, which reflects acting out behaviors such as arguments, fights, and impulsivity 

and (b) the Internalizing Behavior Problems Scale, which reflects the presence of anxiety, loneliness, low 

self-esteem, and sadness. From the parent version of the SRS, two IVs were also entered into the MR 

equation: (a) the Approaches to Learning Scale, which rates the child’s ability to engage appropriately 

and consistently in classroom learning activities and (b) the Social Interaction Scale, which reflects pro-

social behaviors as well as the child’s ability to build relationships with peers and adults.   
 

Results and Discussion 

  Table 1 presents the predictor metrics for the MR model employed in this study. While the 

coefficients that involved bivariate correlations, (r, rs, rs
2
, CD:0 [i.e., r

2
]) identified the relative 

importance of predictors as Learning, Internal, Social, and External, the remaining coefficients, including 

the beta weights, suggested a relative predictor importance order of Learning, Internal, External, and 

Social. These findings first underscored the importance of using multiple variable importance metrics as, 

when viewed in concert, some yielded different rank orderings of IVs in terms of their contributions to the 

regression equation. Even within the metrics that yielded identical rank orderings (i.e., all three variance 

partitioning statistics), there were differences in magnitudes of IV variance contributions to the regression 

equation. For example, it is important to note that relative weights and general dominance weights were 

identical in value although they are based on different variance partitioning methods. However, Pratt’s 

(1987) product measure findings indicated that Social contributed almost half as much variance as 

External to the regression equation, while the other two variance partitioning methods suggested that it 

contributed nearly the same amount of variance as Social (i.e., .16 versus .13, respectively). Thus, results 

generally suggested that the researcher needed to conduct detailed comparisons across the relative 

importance metrics in order to more clearly understand the roles of shared variance and the variance 

assignment process when the regression equation was computed. 

 A first notable area of divergence between beta weight results and results from bivariate, correlational 

metrics was that beta weights suggested that Internal contributed substantially more to the regression 

equation than did External and Social. Additionally, the beta weight for Externalizing was almost double 

in magnitude when compared with the beta weight for Social.  However, zero-order correlations for   
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Table 1. Predictor Metrics for ECL Study 

Variable β r rs rs
2
 Unique Common CD:0 CD:1 CD:2 CD:3 GDW Pratt RLW 

Extern -.098 -.154 -.500 .250 .009 .015 .024 .017 .013 .009 .016 .015 .016 

Intern -.136 -.185 -.600 .360 .017 .017 .034 .026 .020 .017 .024 .025 .024 

Learn .193 .241 .782 .611 .029 .029 .058 .046 .036 .029 .042 .047 .042 

Social .052 .160 .519 .269 .002 .023 .026 .015 .008 .002 .013 .008 .013 

Total NA NA NA 1.49 .057 .084 .142 .104 .077 .057 .095 .095 .095 
Note.. Extern = Externalizing Behavior Problems  Intern =  Internalizing Behavior Problems Learn = 

Approaches to Learning Social = Social Interaction 
 

External and Social were (a) nearly identical in magnitude (-.15 and .16, respectively) and (b) were nearly 

as large as the zero-order correlation for Internal (-.185). Additionally, the structure coefficient findings 

paralleled these findings. Structure coefficients for External and Social were (a) nearly identical in 

magnitude (-.50 and .52, respectively) and (b) reflected that both of these variables shared approximately 

a fourth of their variance, and only 10% less variance than Internal, with the predicted y-hat scores for 

Math Achievement. The discrepancy between the beta weights and structure coefficient results suggested 

that multicollinearity was operating between these two variables and the two most significant IVs (i.e., 

Learning and Internal) with some shared variance from Externalizing and Social being assigned to 

Learning and Internal.   

 The researcher needed to consult commonality analysis to determine the patterns of shared versus 

unique variance in this equation. The columns Unique and Common in Table 1 demonstrate that External 

contributed nearly twice as much shared as unique variance to the regression equation, and Social 

contributed almost solely shared variance to the regression equation. These findings highlighted the above 

supposition that the researcher should not “rule out” these two variables as insignificant in the regression 

equation; rather, these two variables played a role through the variance they shared with Learning and 

Internal. 

  The researchers then needed to explore Table 2 to confirm that these two variables shared variance 

with Learning and Internal. Table 2 illustrated that External shared 8% of the variance in the regression 

effect with Internal and 4.3% of the variance in the regression effect with Learning in second-order 

commonalities. Social shared 1.7% of the variance in the regression effect with Internal and 17.3% of the 

variance with Learning in second-order commonalities.  Third-order commonalities indicated that 

External shared 1.9% of regression effect variance with that shared between Internal and Learning and 

Social shared 4.2% of the variance in the regression effect with that shared between Internal and 

Learning. Overall, commonality analysis findings supported the inclusion of all four variables in this 

equation due to the role of shared variance. However, it is important to note in Table 2 that the majority of 

the regression effect was explained by variance unique to Internal (18%), variance unique to Learning 

(31%), and variance that was common to Learning and Internal (17%); thus, supporting the larger role 

these two variables played in the regression equation.  

 The Dij values for general dominance (see Table 3) reflect the order of general dominance weights 

presented in Table 1 and indicate that Learning generally dominates Internal, which generally dominates 

External, which generally dominates Social. The Dij values for conditional dominance reflect the order of 

conditional dominance weights presented in Table 1 and indicate that Learning conditionally dominates 

Internal, which conditionally dominates External. Conditional dominance cannot be established between 

External and Social as the average incremental variance that the variables produce are not consistently 

higher or lower across regression models of different sizes (i.e., .026 > .024, .015 < .017, .008 < .013, 

.009 > .002). The Dij values for complete dominance indicate that Learning completely dominates all 

remaining predictors and that Internal completely dominates External.  

  Complete dominance could not be established between External and Social because in the case of the 

predictor set containing only Internal, the incremental variance provided by Social (.018) was greater than 

the incremental variance provide by External (.016) (see Table 2).  These findings highlighted the 

divergence between relative importance metrics in providing rank orderings of IVs.  
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 Table 3. Dij Values for ECL Study 

Xi Xj Complete Conditional General 

Extern Intern 0 0 0 

Extern Learn 0 0 0 

Extern Social .5 .5 1 

Intern Learn 0 0 0 

Intern Social .5 1 1 

Learn Social 1 1 1 

Note. Dij = 1 denotes that Xi dominates Xj. Dij = 0 denotes that Xj 

dominates 

 Xi. Dij = .5 dominance cannot be established (cf. Azen & Buscescu, 2003).  

Extern = Externalizing Behavior Problems  Intern =  Internalizing Behavior  

Problems. Learn = Approaches to Learning. Social = Social Interaction 

 

 

Table 2. APS Related Metrics for ECL Study 

Variable Set Commonality  % Total R
2
 Extern.Inc Intern.Inc Learn.Inc Social.Inc 

Extern .009 .093 .024 NA .023 .05 .024 

Intern .017 .180 .034 .013 NA .05 .018 

Learn .029 .309 .058 .016 .026 NA .003 

Social .002 .023 .026 .022 .027 .036 NA 

Extern,Intern .008 .080 .047 NA NA .046 .019 

Extern,Learn .004 .043 .074 NA .019 NA .004 

Intern,Learn .001 .006 .084 .008 NA NA .002 

Extern,Social .000 -.004 .048 NA .018 .03 NA 

Intern,Social .002 .017 .053 .013 NA .033 NA 

Learn,Social .016 .173 .061 .016 .025 NA NA 

Extern,Intern,Learn .002 .019 .093 NA NA NA .002 

Extern,Intern,Social .000 .000 .066 NA NA .029 NA 

Extern,Learn,Social .000 .003 .078 NA .017 NA NA 

Intern,Learn,Social .004 .042 .086 .009 NA NA NA 

Extern,Intern,Learn,Social .001 .016 .095 NA NA NA NA 

Total .095 1.000 NA NA NA NA NA 

Note. Extern = Externalizing Behavior Problems  Intern =  Internalizing Behavior Problems Learn = 

Approaches to Learning Social = Social Interaction 
 

Conclusions 

  Our study has illustrated the importance of analyzing MR results with large scale national datasets 

with the “multiple lens” approach. Thus, we hope this study serves as a model that will encourage 

researchers to analyze MR findings with national datasets in more depth, which will shed light on 

research questions that have generalizability intent to broader samples (i.e., such as the U.S. population in 

the ECLS-K). Researchers and practitioners will; thus, be better informed when generating 

recommendations for intervention and practice that may benefit large segments of populations tapped by 

national dataset samples.   

  Substantively, our findings support research that highlights the importance of learning-related social 

skills (McClelland, Morrison, & Holmes, 2000; Yen, Konold, & McDermott, 2004) and internalizing 

behaviors (Dobbs, Doctoroff, Fisher, & Arnold, 2006; Normandeau & Guay, 1998) in predicting early 

childhood math achievement. They add to the current body of literature on kindergarten math 

achievement by demonstrating that externalizing behaviors and social skills do not contribute unique 

variance to prediction of math achievement when accounting for learning-related social skills and 

internalizing behaviors. 

These findings contrast 

literature suggesting the 

unique importance of both 

externalizing behaviors 

(Pagani, Fitzpatrick, 

Archambault, & Janosz, 

2010) and general social 

skills (Agostin & Bain, 

1997; Downer & Pianta, 

2006) to early childhood 

math achievement. 

Previous research has 

generally studied these 

variables in isolation rather 
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than in concert; thus, our study is the first to shed light through use of multiple MR “lenses” on patterns 

of unique and shared variance between these variables in predicting math achievement in kindergarten. 

  Without using the multiple lens approach to this national dataset, the practical importance of these 

findings would not have been discovered. Specifically, we would not have been able to determine how 

External and Social work in concert with Learning and Internal in impacting math achievement in the fall 

of kindergarten without comparison of beta weights with structure coefficients followed by commonality 

analysis. Because of its substantially smaller beta weight, we may have “ruled out” Social as playing a 

role in early kindergarten math achievement, despite its role in sharing variance with other variables in 

the equation. We also would not have understood that External does not necessarily play a larger role than 

Social in this regression by relying on beta weights alone, rather than dominance analysis and relative 

weights as well. 
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