
Newman & Newman 

 

26                                                                                           Multiple Linear Regression Viewpoints, 2012, Vol. 38(1) 

Multilevel Modeling: Clarifying Issues of Concern 
   David Newman             Isadore Newman 
       Florida Atlantic University              Florida International University 

When using Hierarchical Linear Modeling (HLM) to analyze complex nested data, it is important to 

consider issues that affect the interpretation of the HLM outcomes. Alternative methods of accounting for 

the variance within the nested structures need to be considered if they better fit the research question of 

interest. One alternative method to HLM is Multiple Linear Regression (MLR)-Ordinary Least Squares 

solutions with person vectors. This study compares a number of sets of data that reflect interaction 

questions as well as nested designs. More specifically, eight issues that need to be considered when using 

HLM are discussed. These issues are: 1) advantages of HLM; 2 & 3) person vectors as it relates to 

nesting; 4) centering; 5) picking the appropriate error terms for fixed, random, and mixed effects; 6) 

understanding interaction and how it is tested; 7) sample size related to first and second level models; and 

8) comparing similarities and differences between HLM and MLR with person vectors. 

 ierarchical Linear Modeling (HLM) is the general case of Multiple Linear Regression (MLR) and 

a preferred statistical method for analyzing complex, nested data structures. While very powerful, 

if one does not understand where its use is advantageous and how and why to make necessary 

decisions in building the HLM models, it is possible to write statistical models that do not reflect the 

research question(s) of interest; thus, committing what is known as a Type VI error (Newman, Fraas, 

Newman, & Brown, 2002). The purpose of this study is to facilitate a better understanding of multilevel 

modeling by discussing eight topics that require consideration when using HLM. These topics are: 1) 

advantages of HLM; 2 & 3) person vectors as it relates to nesting; 4) centering; 5) picking the appropriate 

error terms for fixed random and mixed effects; 6) understanding interaction and how it is tested; 7) 

sample size related to first and second level models; and 8) comparing similarities and differences 

between HLM and MLR with person vectors.  
 

Advantages of HLM within Subjects Nested Effects 
  The hierarchical linear family of models, which are frequently referred to as multilevel models, are 

most appropriately and effectively used when variables tend to be nested within other variables. For 

example, patients may be nested within hospital floors and floors may be nested within hospitals. A 

number of researchers (Field, 2009; Kreft, 1996; Morris, 1995; Mundform & Schultz, 2002; Raudenbush 

& Bryk, 2002; Tabachnick & Fidell, 2007) have indicated that HLM is superior to Ordinary Least 

Squares (OLS) - General Linear Model because HLM theoretically produces appropriate error terms that 

control for potential dependency due to nesting effects, while OLS does not. An additional argument 

favoring the use of HLM is that it is a generalization of OLS that better deals with continuous variables, 

which reflect randomized effect designs, and; therefore, HLM produces more accurate error terms and 

Type I error rates (Mundform & Schultz; Raudenbush, 2009; Raudenbush & Bryk). An aspect of the cited 

advantages for HLM is related to the situations in which the interclass correlations (ICC), which is the 

between group effect divided by the total effect, depart from zero. There has been some argument that the 

closer the correlation gets to 0, the less advantage there is to using HLM because there is a low level of 

organizational correlation. Lee (2000) suggested that if the ICC is less than 10% (i.e., r
2 

< .1 or r < .316) 

of the total variance, one can assume that there is no meaningful nesting effect. This rule of thumb is still 

a topic of debate.  

  In addition to the production of appropriate error terms, HLM is the one of the most flexible 

techniques in reflecting change over time for individual subjects (i.e., HLM also known as linear mixed 

modeling and growth modeling). Depending on the nature of the individual change function, parameter 

estimates are calculated for the intercept, slope and, if necessary, curvature to create the best predictive 

model fit for the data. Because HLM shows longitudinal changes as a function of time, the time variable 

can be centered at the baseline. Thus, in the examination of model growth parameters, the intercept will 

represent the level of outcome of the baseline assessments and the slope will indicate the rate at which the 

level is changing. Additionally, unlike the traditional repeated measures analysis of variance, HLM does 

not delete cases from the analysis because of missing time points. Also, HLM allows for flexibility in the 

distance between individual measurements (McCulloch & Searle, 2001; Singer & Willett, 2003).   

H 
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Person Vectors and Nesting. An alternative way to account 

for the variance of a nested structure in MLR is to use person 

vectors (McNeil, Newman, & Fraas, 2012; Williams, 1987). 

A person vector is simply a vector that consists of ones and 

zeros that identifies which scores on the criterion variable are 

associated with each person or organized structure such as a 

specific floor in a hospital. If we had a criterion variable that 

had three scores from Person 1 and three scores from Person 

2, it would look like the following example in Table 1. 

  As can be seen from the above matrix, the first three 

scores came from Person 1 and the second three scores came from Person 2. These vectors allow one to 

account for variance due to individual differences.   

An alternative technique using MLR and person vectors that is being used in educational and medical 

settings is repeated measures regression discontinuity analysis (RD). RD can test multiple time points 

against each other. For instance, if there were four time points that were being used to measure a person’s 

pain, it would be possible to test both slope and intercept differences between time 1 versus time 2, time 3 

versus time 4, time 1 versus time 3, and time 1 versus time 2. Using this technique, one can test the pre-

test and the post-test slope differences; independent of individual differences. One can also test for 

function differences with the pre-test and the post-test. The following figure, Figure 1, is an example of 

slope differences between pre-test and post-test. It is possible to test individual time point differences as 

well as testing slope difference. Another name for this type of analysis is an interrupted time series 

(Campbell & Stanley, 1963).  

  The following models allow us to test for slope and intercept differences, while controlling for 

individual differences, by testing Model 1 against Model 2, where: 
 

  S1 = the slope for line 1 in the above figure 

  S2 = the slope for line 2 in the above figure 
 

  U1 = 1 if the subject’s score on the criterion variable came from the pre-treatment or zero otherwise   
 

  U2 = 1 if the subject’s score on the criterion variable came from the post-treatment or zero otherwise   
 

   Model 1: Restricted (R
2
1): Y = acUc + acSc + Zb1(P1) +…Zbn(Pn) + E1 

 

   Model 2: Full (R
2
2):          Y= a01U1 + a1S1 + a02 U2 + a2S2 + Zb1(P1) +…Zbn(Pn) + E2 

 

 We can also test for intercept differences, while controlling for individual and slope differences, by 

testing Model 2 against Model 3 based upon the following restriction: a01 = a02   
 

   Model 3:  Y= a03U1 + a4S1 + a5S2 + Zb1(P1) +…Zbn(Pn) + E3 
 

  Looking at Figure 1, in a similar manner, we could test the restriction on the full model based upon: 

(t1 – t3) = (t4 – t6). Another hypothesis could be based upon testing t3 = t4, independent of individual 

differences, etc. Furthermore, there are several other issues that need to be understood and decided upon 

when using either HLM or MLR with person vectors. These issues directly impact the research question 

of interest and if they are not handled appropriately, one is likely to make a Type VI error or when the 

statistical model does not align with the research question 

(Newman et al., 2002; Tracz, Nelson, Newman, Beltran, 2005; 

Tracz, Newman, Nelson, Dellran, 2004).  
 

Centering. The first of the additional issues to be discussed is 

centering. Centering is simply subtracting the mean from each 

score so that the mean of the distribution becomes zero.  The 

choice to center is not a simple mathematical or statistical 

decision. It should be based upon the researcher’s question of 

interest and/or theoretical position. There are three major 

decisions one has to make about centering: 1) should one 

center?; 2) if centering, should grand mean centering be used?; 

and 3) should one use group mean centering?  Grand mean 
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Figure 1. Testing Intercept  
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centering is generally preferred over group mean centering (Burton, 1993; Hoffman & Gavin, 1998; 

Kreft, de Leeuw, & Aiken, 1995). Sarkisian (2007) takes the position that the original metric should never 

be used if the value of zero is not meaningful. Sarkisian further finds that there is a lack of precision in 

estimating the intercept in HLM when one does not center. According to Field (2009), centering is not an 

easy decision. It requires an understanding of the data and the analysis. Field also suggests centering may 

be a useful way to ameliorate the problem of multicollinearity between specific types of independent 

variables, especially when the independent variable does not have an interpretable zero value. Field also 

points out that it is important to note that when using the group mean centering approach, the group mean 

should be considered a second level variable whenever group effects are not of interest. This situation is 

frequently encountered when an independent variable, such as time, is of interest. 

  If the researcher is interested in the relative position of the subject, with regard to the treatment group 

mean, then group mean centering should be used. If, on the other hand, the researcher is interested in the 

absolute value of the independent variable (i.e., predictor variable), then grand mean centering should be 

used. When one does grand mean centering, the intercept becomes the adjusted grand mean. This 

adjustment obviously does not have any effect on the slopes. When group mean centering is used, the 

intercept is interpreted as the mean of each group. Group mean centering may change the meaning of the 

coefficient so that it becomes difficult to interpret because the mean values are subtracted from different 

sets of raw data. Some researchers will even center group mean binary variables; however, one needs to 

keep in mind that with group centered predictor variables, only person level effects are estimated. 

Choosing to center or not to center, and determining whether to use grand or group means, relates to Type 

VI Error because each decision will affect the statistical model that will differentially reflect the research 

question of interest.     
 

Error Terms, Research Design (Fixed Effects and Randomized Effects). One of the major issues related 

to HLM and OLS/MLR is that one has to determine if the design consists of fixed, mixed, or random 

effects. It is important to know the nature of these effects so the appropriate error terms can be selected. If 

the appropriate error term is not selected, the researcher cannot determine the correct error rates for the 

tests of statistical significance. Fixed effects occur when it is assumed that the variables of interest are not 

randomly selected and no generalizations are going to be made beyond the variables being tested.  For 

example, if there are three treatments that one is interested in testing to see if they have a differential 

effect, then only those specific three treatments would be tested. Thus, this variable is fixed. In a different 

example, imagine that a researcher is interested in the effects of a range of drug doses and randomly 

selects three doses to be representative of the entire range. Since the researcher wants to infer to the whole 

range of doses from which the samples are drawn, the three levels of the selected doses are considered to 

be random effects. In a mixed effects design, one must have at least two independent variables with one 

fixed and the other random (Kirk, 1968). 

  When building regression models, or hierarchical linear models, different error terms are used to test 

for significance depending upon whether the variables are fixed or random. This is important in model 

testing because fixed and random variables have different assumptions associated with them. In our 

opinion, one important issue here is conceptual and not statistical. As an example, assume one is 

interested in having drug dosage as a continuous variable and is interested in generalizing to the whole 

range of dosages (i.e., think of this as a variable on the X axis of a graph). In this scenario, dosage is a 

continuous variable. However, if in looking at drug dosage, the researcher was only interested in 

generalizing to small, medium, or large doses based upon some predetermined decision rule, and he or 

she was only interested in those three categories, then the variable dosage changed from a continuous, 

random variable to a categorical, fixed variable. Obviously, with the fixed variable, the researcher is 

specifically addressing whether there is a difference between the small, medium, and large dosage levels 

as operationally defined, and is not attempting to generalize to the range of doses. The robustness of 

violations to the underlying assumptions of the fixed and randomized models, as they relate to the 

accuracy of the tests of significance, is considerable. The fixed model, especially when the design is 

balanced, is more robust than the randomized model. 
 

Interaction. The test for interaction is the next important issue. The classical definition of interaction is 

the differential effect across an area of interest (i.e., non-equal slopes) over and above the main effect 



Multilevel Modeling 

Multiple Linear Regression Viewpoints, 2012, Vol. 38(1)                                                                                           29 

(i.e., controlling for the main effect) (McNeil et al., 2012). In HLM, interaction is frequently inferred by 

comparing the first level to the second level model. If the second level accounts for a significant 

proportion of variance, one is looking at a differential effect across the area of interest, but it is not over 

and above the main effects. In other words, only the multiplicative slope differences are being tested, but 

not the slope differences independent of the main effects. Comparing the first level to the second level 

HLM models is very similar to traditional, but since it does not include the main effects, the results could 

be different. It is important that researchers are aware of their research questions and how well-chosen 

models reflect their question of interest. 

  With regression, as suggested by McNeil et al. (2012), one can write three different types of 

interaction. These are: 1) interaction between categorical and categorical variables such as interaction 

between sex and treatment; 2) categorical and continuous interaction such as interaction between sex and 

IQ; and 3) continuous and continuous interaction such as interaction between IQ and Motivation. Each 

one of these will test the multiplicative effect over and above the additive effect. 

Categorical –Categorical Interaction (Treatment and Sex) 
 

   Model 4 Full:   Y = a0u + a1T1m + a2T1f + a3T2m + a4T2f + E4 
 

   Model 5 Restricted:  Y = a0u + a5T1 + a6T2 + a7M + a8F + E5 
 

where: T1 = a vector of 1s if you are in Treatment 1, zero otherwise 

   T2 = a vector of 1s if you are in Treatment 2, zero otherwise 

   M = a vector of 1s if you are Male, zero otherwise 

   F = a vector of 1s if you are Female, zero otherwise 
 

Testing the R
2
 obtained from Model 4 vs. Model 5, using the F-test in equation 1, is a test of Treatment by 

Sex interaction. 

              
             

           
           (1) 

where: R
2

f = the R
2
 obtained from the Full Regression model 

   R
2

r = the R
2
 obtained from the restricted Regression model 

   df1= the number of linearly independent vectors in the full model minus the number of  

     linearly independent vectors in the restricted model 

   df2= the total number of replicates (N) minus the number of linearly independent vectors  

     in the full model 
 

Categorical vs. Continuous Interaction (Sex and IQ) 
 

   Model 6 Full:  Y = a0u + a9M + a10F + a11M,IQ + a12F,IQ + E6 
 

   Model 7 Restricted: Y = a0u + a13M+ a14F2 + a15IQ  + E7 
 

where: M = a vector of 1s if you are Male, zero otherwise 

   F = a vector of 1s if you are Female, zero otherwise 

   M,IQ = a vector of 1s for Male IQs, zero otherwise 

   F,IQ = a vector of 1s for Female IQs, zero otherwise 
 

Testing the R
2
 obtained from Model 6 vs. Model 7, using the F-test in Equation 1, is a test of Sex by IQ 

interaction. 
 

Continuous vs. Continuous Interaction (IQ and Motivation) 
 

   Model 8 Full:  Y = a0u + a16IQ + a17Mot. + a18IQxMot + E8 
 

   Model 9 Restricted: Y = a0u + a19IQ+ a20Mot. + E9 
 

where: IQ = a vector of continuous IQ scores 

   Mot. = a vector of continuous Motivation scores 

   IQxMot. = a vector of IQ scores x Motivation scores 
 

Testing the R
2
 obtained from Model 8 vs. Model 9, using the F-test in Equation 1, is a test of the 

interaction between IQ and Motivation. 
 

  



Newman & Newman 

 

30                                                                                           Multiple Linear Regression Viewpoints, 2012, Vol. 38(1) 

Adequacy of Sample Size. The last issue addressed in this article is adequacy of the sample size. 

Adequate sample size, as discussed in Newman, Newman & Salzman (2010), clearly indicates the need to 

understand the importance of the underlying assumption of the N size needed for HLM when testing 

effects at different levels. For example, Kreft (1996) found that to have sufficient power, one needs at 

least 30 groups with 30 subjects per group, or 60 groups with 25 replicates per group, or 150 groups 

having 5 replicates per group. Kreft’s simulated data suggests that for statistical power, the number of 

groups is more important than the number of observations. Hox (1995) and Hox and Maas (2001) 

reported similar findings related to the adequacy of sample size. They found that samples < 20 were 

insufficient at the higher levels, and if these higher-level variables were crucial to the structural model, 

then the N should be > 100. Obviously, the adequacy of the N size effects the power of HLM to detect 

interaction. However, these findings are not consistent with the position taken by Raudenbush and Bryk 

(2002) who believe that a Bayesian estimation approach allows the researcher to use smaller sample sizes.   

  There are other concerns related to determining an adequate sample size. Most researchers who are 

concerned with the issue of sample size know the rule of thumb, which states that 10 to 20 subjects are 

needed per variable for MRL. However, the rule of thumb needs to be considered as it relates to the 

research question. For example, a different ratio of subjects to variables is needed if one is interested in 

estimating Type I or Type II Error or if one wants to estimate weight stability for prediction purposes 

from sample to sample or sample to population, or if the researcher is interested in the models 

replicability (i.e., somewhat similar to cross validation) (Newman, McNeil & Fraas, 2004). Also, when 

using HLM models, the ratio of the number of subjects to variables is more important for the higher-level 

variables when estimating power. Even though these three concepts, significance; stability of weights; 

and replicability are related, they are different and require different numbers of subjects to adequately 

estimate them (Newman et al., 2004). Thus, these issues need to be considered as they relate to the 

research question of interest. 
 

Comparison between Regression with Person Vectors and HLM Results 

  There are different computer packages for HLM on the market. For the purpose of this article, HLM 

7.0 was used to perform the comparisons. Two sets of HLM models were created to test the effect of 

treatment over time on pain. The first set of HLM models used a fixed interaction error term and the 

second set allowed the error term to vary. The model for the fixed interaction error term is presented 

below. As can be seen, the absence of r1i in the second line on the Level-2 model indicates that the error 

term is fixed and this becomes more apparent when looking at the mixed model. 
 

   Level-1 Model:   PAINti = π0i + π1i*(TIMEti) + eti  
 

   Level-2 Model:   π0i = β00 + β01*(TXi) + r0i 
 

        π1i = β10 + β11*(TXi)  
 

   Mixed Model:   PAINti = β00 + β01*TXi  
 

             + β10*TIMEti + β11*TXi*TIMEti  
 

             + r0i+ eti 
 

Table 2. Final Estimation of Fixed Effects 

 

 

Fixed Effect   Coefficient  SE  t-ratio  Approx. df  p-value 

For INTRCPT1, π0  

    INTRCPT2, β00  9.744 0.131 74.369 48 <0.001 

     TX, β01  -1.556 0.892 -1.746 48 0.087 

For TIME slope, π1  

    INTRCPT2, β10  -1.169 0.031 -37.166 248 <0.001 

     TX, β11  0.231 0.194 1.188 248 0.236 
 

  The final results, noted in Table 2, were obtained from the11th iteration. Iterations were stopped due 

to small changes in the likelihood function with σ
2
 = 0.84096 and τ INTRCPT1,π0  = 0.11029 and a 

reliability estimate of 0.440. The value of the log-likelihood function at iteration 11 = -4.170159E+002 as 

presented in the HLM 7.0 result tables. If one were to look at the results of the final fixed effects, both TX 
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(p = 0.087) and the effect of TX on the slope of time (TX * Time) (p = 0.236), it would appear that TX 

and the TX by Time interaction were not statistically significant.  

  Next, the model that allowed the error term to vary was computed. As can be seen, the r1i in the 

second line of the Level-2 Model indicates that the error term is no longer fixed. 
 

   Level-1 Model:   PAINti = π0i + π1i*(TIMEti) + eti  
 

   Level-2 Model:   π0i = β00 + β01*(TXi) + r0i 
 

        π1i = β10 + β11*(TXi) + r1i 
 

   Mixed Model:   PAINti = β00 + β01*TXi  
 

             + β10*TIMEti + β11*TXi*TIMEti  
 

             + r0i + r1i + eti 
 

Table 3. Final Estimation of Fixed Effects 

 Fixed Effect  Coefficient 
 Standard 

Error 
 t-ratio  Approx. df  p-value 

For INTRCPT1, π0  

    INTRCPT2, β00  9.74 0.158 61.676 48 <0.001 

     TX, β01  -1.55 1.089 -1.427 48 0.160 

For TIME slope, π1  

    INTRCPT2, β10  -1.168 0.035 -33.748 48 <0.001 

     TX, β11  0.230 0.221 1.042 48 0.303 
 

 The final results in Table 3 were obtained from the1024th iteration. Iterations were stopped due to 

small changes in the likelihood function. The reliability estimate for the intercept was 0.433 and for time 

it was 0.217. The value of the log-likelihood function at iteration 1024 = -4.140787E+002 as presented in 

the HLM 7.0 result tables. When looking at the results of the final fixed effects, both TX (p = 0.160) and 

the effect of TX on the slope of time (TX * Time) (p = 0.303), it would appear that TX and the TX by 

Time interaction were still not statistically significant.  

 These results differ from the findings when using MLR with person vectors. As can be seen 

by looking at the model summary and the coefficients table, even after controlling for individual 

difference, the Treatment by Time interaction was statistically significant with a p = 0.001. The 

R
2

change = 0.004 indicated a small interaction effect. In this example, one needs to keep in mind 

that even though there is a great difference in p values, the R
2

change is very small.  
  Because there was significant interaction, the data were graphed in Figure 2 to provide a clearer 

understanding of the Treatment by Time interaction. As one can see, pain decreased for both the 

Treatment and Control groups over time. However, the Treatment group had a significantly greater 

decrease in pain over time compared to the Control group.  
 

Table 4. Model Summary. 

R 

R 

Square 

Adjusted 

R 

Square 

Std. 

Error of 

Estimate 

Change Statistics 

R Square 

Change F Change df1 df2 

Sig. F 

Change 

0.956 0.914 0.896 0.714 0.914 51.7 51 248 0 

0.958 0.918 0.9 0.699 0.004 11.198 1 247 0.001 

a. Predictors: (Constant), Person_49, Time, Person_48, ...  Person_3, Person_2, Person_1, Person_13, Person_38, TX 

b. Predictors: (Constant), Person_49, Time, Person_48, ... Person_3, Person_2, Person_1, Person_13, Person_38, TX, 

TX_Time 
 

Conclusions 

  It is obvious that one should not use HLM or MLR without carefully considering what is being 

reflected by the statistical models, the underlining assumption, and the robustness to violations. The 

importance of centering is dependent on the question of interest and the type of data that exist. The 

interaction question is also critically important. Are the multiplicative differences in slope being tested or   
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are they testing the 

multiplicative over main 

effects (i.e., traditional 

interaction)? The main 

effects can potentially 

reduce the error term 

and; therefore, increase 

the likelihood of finding 

significant interactions. 

This is one of the 

potential reasons why 

there were differences in 

the example provided. 

The importance of the 

error term is not just a 

mathematical concern, 

but it is also a logical 

research concern that is 

related to the research 

question and to how the 

model is intended to be applied. Fixed 

effects models are more robust to violations 

of assumptions. If the research question of 

interest can logically and meaningfully be 

expressed as a fixed effect, the researcher 

may want to use the more robust fixed 

effects assumption. When considering the 

sample size required to answer the question 

of interest, one has to be mindful not only 

of the level of the analysis in HLM, but 

also if the researcher is asking questions 

about statistical significance, stability of 

the regression weights, or replicability. In 

addition to the major conceptual and 

logical issues that are discussed in this 

article, there are mathematical concerns related to the different algorithm used by the various HLM 

programs to obtain their solutions. Also, the results when comparing HLM to MLR show significant 

differences related to the multiplicative effects verses the traditional interaction. The last thought is that 

the results in this study support Bickel (2007) who suggests that HLM is a sophisticated way to handle 

nested data, but it is similar to MLR when one includes person vectors. If the appropriate model and the 

correct error term are used, one should be able to obtain similar results regardless of whether the 

researcher decides to use HLM or MLR with person vectors. If the researcher obtains different results, 

then he or she has to take a closer look at the statistical models because the models are reflecting different 

questions. 
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