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Stepwise regression methods are widely recognized as undesirable for explanatory purposes. As 

exploratory methods, however, they may provide efficient means for researchers to examine multiple 

models for further investigation. This study used Monte Carlo methods to examine the use of forward and 

backward regression without stopping criteria (i.e., with customized stepping criteria) in order to create 

all possible stepwise models (i.e., from one predictor to the fully specified model). Using these stepwise 

methods without stopping criteria often produced the same models as best-subset regression when there 

was little multicollinearity. Agreement was still good, but it declined, as multicollinearity became 

stronger. These results may help us understand the value of stepwise methods for exploratory model 

building and comparison. These results also suggest the need to examine models using multiple variable 

selection methods, because when they do not agree, they each may expose different aspects of the 

complicated theoretical relationships among predictors. 

 ariable selection generally refers to systematic techniques for selecting a subset of predictor 

variables, from among a specified set of predictors, that adequately explains or predicts the given 

criterion variable (Weisberg, 1985). Generally, the most important tool in selecting a subset of 

variables for a multiple linear regression model is careful logical analysis based on the analyst's 

knowledge of theory and research in the area of study (Gordon, 1968). One might call this the art of 

science, for not all researchers see the same relationships, same order of variable importance, and same 

models – perhaps based on different levels of theoretical expertise, experience, and creativity. Weisberg 

noted, however, that often a point is reached at which it becomes necessary to use data to determine a best 

subset of predictors. Afifi and Clark (1990) similarly suggested that the researcher may have prior 

justification for some but not all of the variables studied. Further, variable selection methods are often 

performed when a large number of candidate variables are under consideration, with theoretical rationale, 

but a priori knowledge does not provide clear understanding of their relevance (Flack & Chang, 1987; 

Huberty, 1989). For example, Weisberg noted that a smaller set of selected variables that provide nearly 

the same information as the original full set of variables can help focus future research in the area and 

simplify analysis.  

  Variable selection constitutes a strategy by which a subset of “better” variables is chosen from among 

a “larger constellation of predictors” (Thompson, 1995, p. 525). Breiman (1995) suggested that these 

subsets are useful for two primary reasons: variance reduction and simplicity (i.e., parsimony). More 

regression coefficients increase the overall variance and therefore the prediction errors. Huberty (1989) 

and Thompson, like Breiman, noted that while stepwise analyses may be used to assess relative 

importance of the predictor variables, the more accepted reason is to select a more parsimonious set of 

predictor variables for a final model. Weisberg (1985) also indicated that deletion of predictors from a 

prediction model can improve it and reduce apparent multicollinearity. Two more common approaches 

have evolved by which such subsets can be obtained in regression: stepwise methods and best-subsets.  
 

Stepwise Regression Methods 

 Three commonly used variable selection methods in regression are forward selection, backward 

elimination, and stepwise regression, which are often collectively called stepwise methods (Keith, 2006). 

Stepwise methods process each regression model step-by-step by either adding or deleting one variable at 

a time based on stepping criteria (often p to enter, or PIN, and/or p to remove, or POUT). Details about 

stepwise methods can be found in most regression textbooks. We will focus on forward and backward 

stepwise methods in this paper. 

  Briefly, the forward selection process starts with no predictors in the model. In a common approach to 

forward regression, the first predictor chosen for entry into the model is the one with the largest simple 

correlation with the outcome variable if is considered to be statistically significant (i.e., PIN, or p-in, α = 

.05). Later, each predictor added into the model has the highest part correlation (Stevens, 1999) or partial 

correlation (Meyers, Gamst, & Guarino, 2013) that is considered statistically significant (i.e., the 
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predictor contributing the largest statistically significant increase to R
2
). By default, the procedure 

terminates when no predictor adds a statistically significant contribution to explained variation of the 

outcome variable (or all predictors have been entered). It should be noted that while many statistics 

programs use this R2 improvement (or partial F significance) approach, some programs process stepwise 

models based on other criteria, such as Akaike's Information Criterion (AIC). That is, some programs will 

continue to add predictors as long as the AIC, which is a function of prediction error, continues to 

decrease. Also, a tolerance inhibiting rule is often used to prevent the entry of highly correlated predictors 

into the regression model. 

  In the backward elimination procedure, the process starts with simultaneous entry of the full model 

(i.e., all predictors specified for the regression analysis). Next, each predictor deleted from the model has 

the smallest, non-significant part or partial correlation (i.e., POUT α = .10), and therefore contributes the 

smallest amount to R
2
. This predictor's removal will reduce R

2
 the least from the larger, previous model. 

The default procedure terminates when all remaining predictors would produce a statistically significant 

reduction in R
2
 and therefore none is removed (or all predictors have already been removed).    

 

Best-Subsets Regression 

 Whereas in stepwise methods successive models are limited by variables already in the model from 

previous steps of the analysis, all-subsets regression provides analysis of certain statistical criteria (e.g., 

AIC, Adjusted R
2
, Mallow’s Cp) computed for every possible model of every size (Weisberg, 1985). 

Then, in the best-subsets approach, for each model of a given size the best-subset model of predictors is 

chosen based on the chosen statistical criterion. The number of total models of all sizes is 2
k
-1 (where k is 

the number of predictors), while the number of best-subset models is equal to the number of predictors. 

For example, for five predictors there will be 31 possible regression models for all subsets, but only five 

best-subset models based on some criterion such as the highest adjusted R
2
 or lowest AIC: one best one-

predictor model, one best two-predictor model, one best three-predictor model, one best four-predictor 

model, and the one full, five-predictor model. Because best-subsets approaches are computer intensive, 

because all possible regressions must be created, it is not always feasible to use the method, especially as 

k increases. 
 

Concerns about Variable Selection Methods 

  Most scholars express concern over the use of data-based variable selection methods generally, and 

stepwise methods specifically (e.g., Harrell, 2015; Keith, 2006). We will not reiterate all the arguments 

against these methods in this paper, but we will highlight some more common concerns. Many concerns 

are related to using these methods in explanatory research. 

  The most critical objection to variable selection methods is that, even when used for prediction, they 

may often fail to select the optimal subset of predictors, particularly when multicollinearity is present 

(Fox, 1991). Variable selection methods also cannot guarantee that the best variable set for any given size 

will be selected (Hocking, 1976; Thompson, 1995). Indeed, it should be noted that because of 

relationships among the variables, different variable selection approaches cannot always be expected to 

produce the same subset models at each step. Further, Hocking noted that excellent models may be 

missed when using stepwise methods because of the restriction of adding only a single variable at each 

step. Thompson described this concern as “a linear series of conditional decisions not unlike the choices 

one makes in working through a maze. An early mistake in the sequence will corrupt the remaining 

choices” (p. 532). Huberty (1989) noted that multicollinearity may result in a particular combination of 

variables chosen for the final model in one sample, but may result in a different combination in another 

very similar sample. Such mistakes in the sequence and relationships among predictors are often due to 

sample-specific variation, which is one of the reasons stepwise results often do not generalize.  

  Derksen and Keselman (1992) determined that sample size impacts the number of authentic variables 

included in the final models. Additionally, the F statistic used for testing the significance of the steps in 

stepwise analyses is biased (Wilkinson, 1979) and may result in a greater likelihood of spurious statistical 

significance and inflated Type I error (Thompson, 1995). This is related to the fact that multiple 

hypothesis testing may result in inflated Type I error (Cohen, 1994; Krueger, 2001; Trafimow & Marks, 

2015). Further, Fox (1991) indicated that reduced models produced through stepwise analyses are 

respecified models that may not address the research questions originally posed in a given study. Finally, 
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Wilkinson reported that “researchers encouraged by a significant multiple correlation from a stepwise 

analysis are often surprised to find how much it shrinks under cross-validation” (p. 168). 

  All-subsets regression and best-subsets regression have become more popular as computing power 

has made it more practical to examine all possible models. However, Berk (1978) reported that “…in the 

sample, the all-subsets procedure always produces that best set for each subset size. However, this need 

not be the case in the population” (p. 3). Indeed, a number of the same concerns over stepwise methods 

apply also to best-subsets regression. 
 

Potential Usefulness of Variable Selection Methods 

Most of the concerns raised by scholars about stepwise methods are based on concerns over its use in 

explanatory research. For example, Derksen and Keselman (1992) wrote, “stepwise methods were not 

designed to find ‘best’ models or to indicate the relative importance of variables” (p. 268). Further, many 

of the concerns are related to allowing a stopping rule, rather than theory, to choose which variables are 

included in the final recommended model. That is, many concerns are related to stopping the stepwise 

process based on statistical significance or some other statistical stopping criterion (e.g., PIN α = .05 or 

POUT α = .10, AIC increasing). 
 

Some Recommendations for Thoughtful Use of Stepwise Methods 

Some scholars have recommended processes for using stepwise methods in a reasonable manner. For 

example, Wilkinson (1979) indicated that cross-validation should be performed in lieu of statistical 

significance testing for stepwise models. That is, the results of stepwise analyses must be cross-validated 

in a new sample and only conclusions that can be drawn from both samples should be made. Huberty 

(1989) also recommended that results of stepwise regression should only be considered valid when results 

can be shown to replicate in another sample. 

  Other scholars acknowledge that variable selection methods may be useful to help develop better 

prediction models or to manage multicollinearity (e.g., Herzberg, 1969). Fox (1991) also noted that 

stepwise regression techniques seem well-suited for prediction problems, so long as reasonable data 

generalizability conditions are met. That is, even badly biased coefficients may produce good estimates of 

the criterion variables. Similarly, Roecker (1991) indicated that predictive accuracy and model parsimony 

are reasonable motivations for stepwise analyses. Copas (1983) reminded us that a good prediction 

equation may include predictors that are not individually statistically significant and exclude others that 

are significant. Consequently, Copas argued that several subsets should be examined prior to any 

determination of the best model.  

  It is hard to understand why the recommendation from Copas (1983) would not also make sense for 

any exploratory research. That is, the best model from a theoretical perspective may include predictors 

that are not statistically significant after controlling the other predictors, but do contribute to a statistically 

significant – and more importantly, a theoretically significant – model. In particular, such results due to 

unusual or unexpected correlation patterns among the predictors (e.g., suppressor relationships) may be 

theoretically valuable for either prediction or explanation. To this end, some scholars recommend all 

possible regressions, so all possible models for a given set of predictors can be compared. As predictors 

increase, however, this becomes more difficult and the attractiveness of other best-subsets approaches 

increases. 

  Flack and Chang (1987) noted that the best set of predictors should be theory-driven: “strictly 

speaking, variables should not be selected solely on the basis of statistical data analysis” (p. 84). Huberty 

(1989) argued that large predictor pools be reduced and that theory and prior experience should provide 

guidance for initially screening out many of the variables during the study design process. Wilkinson 

(1979) suggested that stepwise analyses can be almost as effective as biased estimation techniques (e.g., 

ridge regression) in minimizing both prediction errors and coefficient errors when the predictors are 

highly correlated. 

  Thompson (1995) has suggested guidelines for safer use of stepwise analysis. In particular, less 

sampling error tends to be present in data (a) based on larger samples, (b) with fewer predictors, and (c) 

larger effect sizes. Thompson suggested that stepwise analyses with more orthogonal predictors may 

distort the analysis less and therefore may be “somewhat less sinful” (p. 533). Cohen and Cohen (1983) 

suggested that for stepwise regression to be useful, the analyses should (a) be used primarily for 

predictive purposes and only secondarily for explanation, (b) be based on very large samples, and (c) be 



Ruengvirayudh & Brooks. 

 

4                                                                                                        General Linear Model Journal, 2016, Vol. 42(1) 

cross-validated. Berk (1978) reported that stepwise algorithms provide better estimates of population 

parameters than does all-subsets regression (see also Olejnik, Mills, & Keselman, 2000). Similarly, 

Derksen and Keselman (1992) explained that most problems affecting results of stepwise analyses are due 

to multicollinearity, smaller sample sizes, and larger numbers of predictor variables in the analysis. They 

argued that compensating for these factors may provide more acceptable stepwise results. 
 

Purpose of the Study 

  We agree that stepwise methods used for explanatory purposes may be problematic for reasons 

addressed above. We argue, however, that using stepwise variable selection methods thoughtfully for 

exploratory model building and model comparison can be an efficient and useful methodology. Like all-

subsets and best-subsets regression, stepwise regression techniques can allow researchers to compare 

multiple models. Therefore, we recommend using stepwise methods with no stopping criteria (or more 

precisely, customized stepping criteria) such that the maximum possible subset models are created (i.e., 

from one predictor to the fully specified model). Such an approach may trace back to Jennrich (1977), 

who described stepwise regression as a technique that, in the process of computing an ordinary least 

squares regression on p predictors, “obtains, at essentially no additional expense, p intermediate 

regressions which may provide useful insight about functional relations between Y and selected subsets of 

the total set of predictors” (p. 58). Such an approach considers it inappropriate to stop, or short-circuit, the 

process based on some algorithmic decision rule. 

  We could find no extant research that investigated the use of customized PIN and POUT stepping 

criteria to force the creation of the maximum number of models in stepwise methods. The primary goal is 

to use these methods to help build more regression models for comparison. If using forward and 

backward procedures without stopping criteria can result in producing the same models as best subset 

models for any given number of predictors, this may make the stepwise methods more acceptable for use 

from an exploratory perspective in multiple linear regression analyses. The “create-all-models” stepwise 

approach taken here, using either AIC or customized PIN/POUT criteria, does not rely on statistical 

significance in the decision processes used within stepwise regression, which addresses one concern 

raised by many scholars about stepwise methods. It should be noted, however, that this approach does not 

address all the concerns raised by scholars about the use of stepwise methods.  

  The create-all-models stepwise strategy does, however, allow researchers to visualize the dynamic 

and "interactive" process of entering all predictors into the model. That is, researchers using this approach 

can see the changes in the sign and magnitude of regression coefficients as new variables are entered into 

(or removed from) the model, which may illustrate complex relationships among predictors. Simply 

seeing static results of the final models, even best-subsets models, makes it more difficult (if not 

impossible) to see such changes and relationships. 

  Although the maximum number of stepwise models will be created when no stopping criterion is 

used, we could find no research that compared how well these stepwise models of various sizes agreed 

with the corresponding best-subset models of those sizes. For these reasons, this study investigated how 

frequently models created by forward selection and backward elimination methods without stopping 

criteria matched the best-subsets models for a given model size (i.e., number of predictors) when using an 

all-possible (i.e., exhaustive) regressions strategy. It should be noted that we did not study how frequently 

either approach identified the correct model. Monte Carlo research has shown that neither stepwise 

selection nor all possible regressions may find the correct subset of predictors, depending on the level of 

multicollinearity in the data (e.g., Olejnik et al., 2000). But even if we cannot be sure which models are 

correct, the illumination provided by the various models may provide useful information about these 

complicated relationships among predictors and, indeed, all variables being studied. 
 

Methods and Data Source 

  We used the AIC criterion rather than the partial correlation criterion described above. In typical, 

default forward regression with AIC used as a stopping criterion, predictors are added so that AIC will be 

reduced the most at each step. Then when no predictors will reduce AIC at a given step, the procedure 

stops. Similarly, with backward regression, the process stops when the minimum AIC has been reached 

while removing predictors (that is, the procedure stops before removing a predictor that increases AIC). 

However, we used the AIC criterion with no stopping criterion for predictor selection in both the forward 
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and backward stepwise regression methods. That is, in forward regression, predictors were added at each 

step that reduced AIC the most or, when no predictors would reduce AIC, that increased AIC the least. In 

this way, models of all possible sizes were created and the final model was always the full model, not a 

reduced model. For example, with five predictors, we would create a one-predictor model, a two-predictor 

model, and so forth, up to the maximum five-predictor model. In backward regression, predictors were 

removed that, while included in the model before removal, increased AIC the most or decreased it the 

least, ending with a single predictor as the final model. In all possible regressions, the best subset of each 

possible size was determined by the smallest AIC.  

  In programs such as SPSS, which use partial correlation (or R
2
 change) as the statistical criterion, this 

process is functionally equivalent to using a PIN α = .999 (with POUT α = 1.000) in the forward selection 

procedure. This customized PIN stepping criterion results in most, if not all, predictors adding a 

statistically significant (i.e., p < .999) amount of explained variation to R
2
. Therefore, all predictors are 

usually eventually entered into the forward selection process – such that the final model will often include 

all predictors specified for the analysis. In the backward elimination procedure in SPSS, the POUT 

α = .002 (with PIN α = .001) is used as the customized POUT stepping criterion for predictors to be 

removed from the model. Consequently, all predictors are usually removed from the model because they 

do not always explain a statistically significant (i.e., p < .002) change in explained variation in the 

outcome. However, because of the limitations of these statistical significance tests (e.g., there is no 

guarantee that all models from 1 to k predictors will be created), using AIC as the criterion enabled us to 

guarantee that models of all possible sizes were created through the forward and backward processes. 

Yamashita, Yamashita, and Kamimura (2007) have shown "that the stepwise AIC method and the 

stepwise methods using Partial F, Partial Correlation, and Semi-Partial Correlation lead to the same 

method as Partial F" (p. 2403).  

  We used Monte Carlo simulation methods to investigate the research problem. A computer program 

was written in the statistical programming language, R, and used the leaps package for stepwise analyses. 

The core of the program was tested and the output was verified in multiple ways. For example, single 

datasets were examined to verify that the accuracy of results as compared to hand calculations and to 

results from other programs and procedures. Also, we examined small numbers of replications (e.g., 10 

and 100) to verify that the cumulative results across samples were being stored correctly by the program. 

For both single sample and small replication results, all variables were examined to ensure correct or 

reasonable results were obtained. Sensitivity testing was performed to ensure that the program and 

function logic worked correctly for all conditions that were varied. Stress testing was also performed to 

verify that strange values did not cause unexpected problems (e.g., division by zero). For example, 

correlation matrices used to generate data were verified to be legitimate (e.g., positive definite). Data 

generation techniques were verified to ensure they produced reasonable samples for the population values 

set.  

  Multivariate normal data were generated for 10,000 samples for each condition described below. In 

particular, five predictor variables (k) were used, with varying levels of explained variation (R
2
), varying 

multicollinearity (i.e., none and moderate, based on variance inflation factor, or VIF), and small (i.e., 

n = 50) and large (i.e., n = 250) sample sizes loosely based on examination of cross-validation methods 

such as Park and Dudycha (1974) and Brooks and Barcikowski (2012). For each sample, the best subsets 

for five predictors were obtained using the forward selection, backward elimination, and exhaustive (all 

possible) regressions approaches.  

  The forward and backward models were compared to the best subsets from exhaustive regressions. 

That is, in each sample, the one predictor models from forward and backward were compared to the one 

predictor model identified as the best (lowest AIC) single predictor model from the exhaustive approach. 

Similarly, the two-predictor models from forward and backward regression were compared to the best 

two-predictor model from all possible regressions, and so forth, up to the five-predictor models created 

from all three regression approaches. Information was collected from each sample about the agreement of 

the three methods. That is, data were stored about whether the three approaches matched (i.e., produced 

five models with the same predictors). We also collected data about how frequently forward models 

matched backward, forward matched exhaustive, and backward matched exhaustive. 

  For example, Table 1 shows example results where the three methods do not agree within a single 

sample. It is evident from the table that the data from this particular sample produced different results for   
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Table 1. An Example of Which Predictors are Included in Best-Subset Results from  

Best-Subset Exhaustive Regressions, Forward Regression, and Backward Regression 

Number of 

Predictors in 

Model 

Predictor Variable in the Model 

X1 X2 X3 X4 X5 

1     E, B, F 

2   B E, F E, B, F 

3  E, B, F E, B F E, B, F 

4 E, B E, B, F E, B, F F E, B, F 

5 E, B, F E, B, F E, B, F E, B, F E, B, F 

Note. E indicates that a given predictor was in the model of that size for best-subset exhaustive regression, 

F represents forward section, and B represents backward elimination. 
 

all three regression approaches. That is, all three methods of course produced the same five-predictor 

model, and also produced the same one-predictor model (X5 alone). However, the best subset from 

exhaustive regressions for two predictors was X4 and X5, which matched forward but not backward, 

which identified X3 and X5 as the best two-predictor model. Both backward and exhaustive regressions 

resulted in the same four-predictor model, but forward differed. Finally, the best-subset results show that 

one predictor (X4) was added or removed in ways that would not be permitted by forward or backward 

regression. 

  We varied the correlation coefficients between the predictors and the dependent variable (the 

correlation pattern) from .0 to .8 with a .2 increment to cover a wide range of possible predictor 

correlation values with the outcome. This resulted in 47 total correlation matrices for each 

multicollinearity condition. Of course, certain patterns of these correlation coefficients were not possible 

(e.g., uncorrelated predictors with correlations with the outcome of 0, .2, .4, .6, and .8 would result in 

R
2
 > 1.0 and would not be legitimate). We used a maximum R

2
 of .90 as our ceiling. For example, with no 

multicollinearity the R
2
 is simply the sum of the squared predictor correlations with the outcome (e.g., 

uncorrelated predictors with 0, .2, .4, .6, and .6 correlations with the outcome would result in R
2
 = .92 and 

therefore that pattern would not be included). We also included four patterns having just a .1 increment, 

from (0, 0, 0, .1, .2) to (.1, .2, .3, .4, .5), to explore a set of smaller predictor correlations with the 

dependent variable and very small overall R
2
 values with multiple predictors. 

  We varied the patterns of correlations among predictors from no multicollinearity (i.e., all 

correlations among predictors equal 0, called M0 here) to moderate multicollinearity (based on VIF). The 

M1 multicollinearity pattern represented a situation where all predictors are correlated at r = .2 (where all 

VIF = 1.1 for each predictor) and M2 represented all predictors correlated at r = .4 (where all VIF = 1.4). 

Table 2 shows the multicollinearity patterns for M3 and M4, which were not consistent across all 

predictors like M1 and M2. It should be noted that as multicollinearity increased, it became increasingly 

difficult to identify correlation matrices that were positive definite for all 51 sets of predictor-outcome 

correlation patterns (e.g., we were not able to set all predictor correlations at r = .6). Therefore, several 

higher multicollinearity conditions were attempted until two could be identified that successfully 

produced positive definite matrices in combination with all 51 predictor-outcome correlation patterns. 

This resulted in only two particular patterns of higher multicollinearity used in the study. Further, it is 

important to note that the levels of multicollinearity represented by these matrices would be considered 

relatively mild (e.g., no VIF higher than 5.0). 

Results 

  The results show that, in general, stepwise methods (i.e., forward and backward) match the exhaustive 

(i.e., all possible) regressions quite well when there is no multicollinearity. That is, the forward, 

backward, and exhaustive methods generally produced the same one-predictor, two-predictor, three-

predictor, four-predictor, and five-predictor best-subset models when there was little or no 

multicollinearity (M0 and M1). There are progressively more model mismatches as multicollinearity 

increased to M2, which had relatively low multicollinearity, and to M3 and M4, which had moderate but 

more complicated multicollinearity (e.g., largest VIF was 4.6). 
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Table 2. Multicollinearity Conditions and Associated Variance Inflation Factors (VIF) Values for the M3 

and M4 Correlation Matrices Used in Simulated Samples 

Multicollinearity 

Condition 

 Correlations among Predictors  

Predictors X2 X3 X4 X5 VIF 

M3 X1 .8 .6 .4 .2 3.0 

 X2  .6 .4 .2 3.0 

 X3   .4 .2 1.7 

 X4    .2 1.3 

M4 X1 .8 .8 .4 .2 3.5 

 X2  .8 .4 .2 3.5 

 X3   .6 .2 4.6 

 X4    .2 1.6 

Note. For both M3 and M4, the VIF for X5 is 1.1. 
 

  Table 3, which shows only those predictor-outcome correlation patterns for which the three variable 

selection methods did not agree in at least 95% of the samples, shows that when there is no 

multicollinearity, six patterns of predictor-outcome correlations resulted in model agreement in fewer 

than 90% of the samples for n = 50. That is, when there was no multicollinearity, 45 of the 51 (88.2%) 

correlation-pattern conditions resulted in agreement across all three regression approaches (F=B=E) in 

over 90% of the samples. For example, Table 3 shows that for the predictor-outcome correlation pattern 

(.1, .2, .3, .4, .5), all three methods (i.e., forward, backward, and exhaustive) produced exactly the same 

five subset models for the associated number of predictors in a total of 9,474 (94.7%) samples when 

n = 50 (the "All" column, also called F=B=E below). Forward and backward produced the same five 

subset models in 9,479 of the 10,000 samples (F=B), forward and exhaustive produced the same subset 

models in 9,475 samples (F=E), and backward and exhaustive produced the same five subset models in 

9,613 samples (B=E). Further, the lowest level of agreement was 70% in just one condition, while all 

others were above 82% agreement. The increase in sample size from 50 to 250 improved the number of 

matches in all conditions except one: the (.4, .4, .4, .4, .4) condition, which decreased from F=B=E in 

7,071 samples when n = 50 to 7,035 samples when n = 250. With n = 250, 44 of the 51 (86.3%) 

conditions resulted in over 95% agreement of the regression variable selection approaches. 

 We provide Table 3 as an example of the results we examined. However, for the other 

multicollinearity conditions, we will summarize the results a little differently because the disagreement 

increased as multicollinearity increased. Otherwise, the tables associated with M2, M3, and M4 would be 

too long and detailed to be useful summaries. Further, we will only report the agreement among all three 

methods (F=B=E) because we found that the associations among F=B, F=E, B=E, and F=B=E agreement 

levels over the 51 correlation-pattern conditions were extremely high for all multicollinearity conditions. 

For example, for the 51 correlation patterns in the n = 50 sample size conditions, the correlation between 

the F=B and F=B=E was r > .999. That is, the numbers of samples with method agreement for F=B and 

the number of samples with method agreement such that F=B=E showed strong correlation across the 51 

predictor-outcome conditions. Even as multicollinearity increased, the lowest such correlation for any pair 

of method-agreement frequencies was r = .952. These strong correlations suggested that in conditions 

where any two of the regression methods (i.e., either F=B, F=E, or B=E) have high levels of agreement, 

all three methods tend to have high levels of subset-model agreement. 

  Further analysis confirmed that, beyond large correlations, actual agreement among the three methods 

was generally high, regardless of the size of the correlation. For example, in the (.1, .2, .3, .4, .5) 

correlation-pattern condition (see Table 3), the 9,613 samples where B=E were the same 9,474 samples 

where F=B=E, but with only 139 additional samples that matched between backward and exhaustive but 

not forward. But in only one sample did forward and backward match where they did not also match 

exhaustive. Under the M4 multicollinearity condition, one example predictor-outcome correlation pattern 

resulted in F=B=E agreement in 6,413 samples, but F=E agreement in 7,083 samples. Results showed that 

of the 3,587 samples that lacked complete agreement (i.e., not F=B=E, which was 10,000-6,413=3,587), 

over 75% of those samples actually showed complete disagreement (i.e., F≠B, F≠E, and B≠E in 2,693 of   
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Table 3. The Number of Matches Out of 10,000 Where Agreement Was Lower Than 95% Among 

Methods for No Multicollinearity (M0) Sorted By n = 50 When All Three Methods Match 

 Sample Size Condition 

Correlation Pattern  n = 50  n = 250 

r12 r13 r14 r15 r16 F=B F=E B=E All F=B F=E B=E All 

0.4 0.4 0.4 0.4 0.4 7236 7368 7460 7071 7172 7335 7429 7035 

0.2 0.4 0.4 0.4 0.4 8288 8255 8591 8223 8681 8649 8935 8649 

0.2 0.4 0.4 0.4 0.6 8602 8564 8751 8564 9227 9226 9229 9226 

0.0 0.4 0.4 0.4 0.4 8619 8576 8885 8575 8684 8661 8942 8661 

0.0 0.4 0.4 0.4 0.6 8824 8793 8963 8793 9190 9188 9192 9188 

0.2 0.2 0.4 0.4 0.4 8983 8975 9217 8958 9622 9622 9740 9622 

0.2 0.2 0.2 0.2 0.8 9154 9133 9133 9133 9204 9186 9186 9186 

0.2 0.2 0.2 0.4 0.4 9255 9253 9377 9241 9837 9838 9848 9837 

0.2 0.2 0.2 0.2 0.2 9290 9345 9418 9277 9295 9361 9395 9279 

0.2 0.2 0.2 0.2 0.4 9313 9326 9407 9299 9675 9672 9676 9671 

0.0 0.2 0.4 0.4 0.4 9317 9307 9494 9302 9611 9611 9747 9611 

0.2 0.2 0.4 0.4 0.6 9447 9436 9540 9436 9995 9995 9998 9995 

0.0 0.2 0.2 0.2 0.2 9445 9462 9556 9437 9726 9724 9800 9723 

0.2 0.2 0.2 0.2 0.6 9469 9460 9475 9459 9551 9540 9540 9540 

0.1 0.2 0.3 0.4 0.5 9479 9475 9613 9474 9985 9985 9995 9985 

Note. F=B indicates the number of samples in which the forward selection method and the backward 

elimination method agreed for all five models created (F=E for forward and exhaustive, B=E for 

backward and exhaustive, and All for agreement all three methods). The column label r12 indicates the 

correlation between the outcome (variable 1) and the first predictor (variable 2). Similarly, r16 represents 

the correlation between the outcome and the fifth predictor (variable 6). 
 

the 3,587 samples, but exactly two of the three variable selection method comparisons agreed in 894 

samples). This level of complete-disagreement-if-any-disagreement was maintained across most of the 

conditions examined, and was generally over 80%, or even 90%. Therefore, in addition to levels of 

agreement being high for all method comparisons (i.e., when any agreed all tended to agree), the level of 

disagreement of any two methods was generally associated with complete disagreement among all 

comparisons. 

  Table 4, below, shows all predictor-outcome correlation patterns and the number of samples in which 

all three variable selection methods agreed (i.e., F=B=E). From Table 4, we can see that the results for 

multicollinearity pattern M1, where all predictor correlations are r = .2, show 48 of 51 (94.1%) predictor-

outcome correlation patterns, when n = 50, that result in the number of matches (i.e., level of agreement) 

over 90%, and 27 (52.9%) conditions with F=B=E agreement over 95%. The increase in sample size from 

50 to 250 increased the number of method matches in all the M1 correlation pattern conditions. For 

n = 250, 46 of the 51 (90.2%) correlation conditions resulted in at least 95% agreement. Like the M0 and 

M1 conditions, M2 agreement levels were generally above 80%, with only one correlation pattern below 

70% agreement and three below 80%. There were fewer predictor-outcome correlation conditions, 

however, where agreement exceeded 90% (38 or 74.5%) or 95% agreement (14 or 27.5%) in the 51 M2 

n = 50 conditions. A similar pattern held for n = 250, where 44 (86.3%) conditions were over 90% and 34 

(66.7%) conditions were over 95%. 

  When the multicollinearity is higher and more complicated, even fewer correlation patterns resulted 

in agreement over 90%. Table 4 shows that with n = 50 only 11 (21.6%) patterns resulted in the number 

of matches over 90% for M3 and only 4 (7.8%) for M4. Additionally, for M3 there are 41 (80.4%) 

conditions with levels of agreement over 70% in either the n = 50 or n = 250 condition, or both, and 36 

(70.6%) conditions with levels of agreement over 80%. For M4, only 32 (62.7%) of the correlation 

patterns resulted in levels of agreement greater than 70% and only 18 (35.3%) above 80% agreement 

(indeed, nine of the correlation patterns resulted in agreement less than 60%).  
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Table 4. The Number of Matches for Each Predictor-Outcome Correlation Pattern for the F=B=E Results 

Where All Three Variable Selection Methods Produced the Same Five Subset Models 

r12 r13 r14 r15 r16 n=50 n=250 n=50 n=250 n=50 n=250 n=50 n=250 n=50 n=250

0 0 0 0 0.2 9590 9952 9418 9883 9199 9880 8236 9045 7676 8573

0 0 0 0.2 0.2 9591 9968 9373 9861 9137 9418 8336 9307 7506 8274

0 0 0.2 0.2 0.2 9591 9908 9318 9662 9030 9099 7925 7013 5853 3434

0 0.2 0.2 0.2 0.2 9437 9723 9272 9572 9121 9220 6422 3555 5990 4124

0.2 0.2 0.2 0.2 0.2 9277 9279 9381 9730 9282 9776 8440 9210 7830 8566

0 0 0 0 0.4 9753 9964 9625 9931 9604 9883 8811 9317 8239 8972

0 0 0 0.2 0.4 9734 9986 9533 9813 9322 9554 8746 9669 7987 8199

0 0 0.2 0.2 0.4 9689 9990 9447 9702 9235 9606 8261 8093 6036 5962

0 0.2 0.2 0.2 0.4 9537 9884 9444 9701 9289 9904 6639 5039 6034 5919

0.2 0.2 0.2 0.2 0.4 9299 9671 9574 9906 9469 9899 8748 9543 8153 9042

0 0 0 0.4 0.4 9870 9989 9574 9961 8710 9129 8873 9756 8104 8967

0 0 0.2 0.4 0.4 9738 9997 9463 9902 8817 9584 8457 9433 6713 8577

0 0.2 0.2 0.4 0.4 9540 9985 9422 9936 9174 9873 6810 8015 6304 7827

0.2 0.2 0.2 0.4 0.4 9241 9837 9566 9971 9487 9968 8883 9608 8508 9882

0 0 0.4 0.4 0.4 9595 9615 9069 9598 7986 7946 6224 4297 3147 2596

0 0.2 0.4 0.4 0.4 9302 9611 9178 9709 8706 8796 6514 5095 3715 3089

0.2 0.2 0.4 0.4 0.4 8958 9622 9391 9786 9279 9783 8608 9405 6518 5653

0 0.4 0.4 0.4 0.4 8575 8661 8607 8817 8076 7797 3021 2136 3551 3482

0.2 0.4 0.4 0.4 0.4 8223 8649 9066 9299 9150 9371 6413 4402 6481 6058

0.4 0.4 0.4 0.4 0.4 7071 7035 8622 8664 9183 9320 8422 8362 7906 7459

0 0 0 0 0.6 9798 9964 9719 9903 9592 9648 9085 9589 8668 9082

0 0 0 0.2 0.6 9839 9991 9663 9668 9544 9759 9069 9300 8160 6317

0 0 0.2 0.2 0.6 9827 9997 9623 9651 9682 9986 8830 8629 7501 8080

0 0.2 0.2 0.2 0.6 9752 9878 9688 9794 9767 9971 7766 7420 7711 8320

0.2 0.2 0.2 0.2 0.6 9459 9540 9731 9941 9644 9906 8977 9421 8520 9015

0 0 0 0.4 0.6 9955 9996 9614 9906 8459 8362 9281 9731 8473 9816

0 0 0.2 0.4 0.6 9924 10000 9668 9965 9107 9080 9022 9506 7146 8422

0 0.2 0.2 0.4 0.6 9832 10000 9746 9991 9626 10000 7802 8764 7090 8480

0.2 0.2 0.2 0.4 0.6 9571 9855 9825 9981 9583 9941 9209 9638 9292 9963

0 0 0.4 0.4 0.6 9790 9997 9105 9567 8435 8318 6395 4746 2946 2037

0 0.2 0.4 0.4 0.6 9624 9995 9421 9855 9214 9854 7106 5642 3855 2661

0.2 0.2 0.4 0.4 0.6 9436 9995 9706 9997 9460 9575 8947 9765 6517 5184

0 0.4 0.4 0.4 0.6 8793 9188 8829 8970 8909 9570 2603 1642 3127 2147

0.2 0.4 0.4 0.4 0.6 8564 9226 9385 9830 9349 9460 6608 4406 6530 5931

0 0 0 0.6 0.6 9946 9997 9754 9839 7767 9136 9293 9455 8726 9405

0 0 0.2 0.6 0.6 9968 10000 9905 9997 8803 9849 9499 9938 9660 10000

0 0.2 0.2 0.6 0.6 9958 10000 9948 10000 9528 9978 9836 10000 9521 9992

0.2 0.2 0.2 0.6 0.6 9641 9660 9922 9976 9816 9940 9699 9901 9905 10000

0 0 0.4 0.6 0.6 9749 9996 9307 9399 8398 9827 7238 7978 800 9

0 0 0 0 0.8 9834 9959 9649 9666 8284 8287 9247 9566 8895 8564

0 0 0 0.2 0.8 9886 9990 9555 9593 9376 9394 9075 8988 7470 4423

0 0 0.2 0.2 0.8 9917 10000 9654 9820 9982 10000 8834 8916 8190 8498

0 0.2 0.2 0.2 0.8 9679 9780 9736 9969 9910 9987 8546 9688 8743 9834

0.2 0.2 0.2 0.2 0.8 9133 9186 9736 9936 9718 9855 8961 9269 8434 8839

0 0 0 0.4 0.8 9932 9989 9160 9579 6892 6483 8879 9303 8012 9382

0 0 0.2 0.4 0.8 9996 10000 9588 9923 9490 9927 8994 9418 7019 8091

0 0.2 0.2 0.4 0.8 9957 10000 9845 10000 9901 10000 8408 9294 7394 9133

0.1 0.2 0.3 0.4 0.5 9474 9985 9563 9974 9370 9893 8420 9354 6551 4983

0 0.1 0.2 0.3 0.4 9615 9986 9484 9927 9201 9861 8113 8863 6216 3505

0 0 0.1 0.2 0.3 9646 9983 9442 9899 9131 9679 8370 9217 7346 7368

0 0 0 0.1 0.2 9602 9958 9349 9852 9226 9728 8298 9110 7452 8234

M4

Multicollinearity Condition

Correlation Pattern M0 M1 M2 M3

Note. With frequencies above 95% marked in bold italics and those above 90% in italics. 
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Conclusions 

  To summarize, using the customized stepping criteria, in order to create all possible stepwise models, 

generally resulted in the same stepwise models as the best-subset approach to variable selection when 

multicollinearity is not present or is relatively low. It is important to note that our results do not support 

the use of stepwise methods with default stepping and stopping criteria because we did not study that. Our 

results simply suggest that stepwise methods without stopping criteria generally produce the same subset 

models as best-subsets regression except for conditions with unusual correlation and multicollinearity 

patterns. This may be useful to researchers who use SPSS, for example, which does not provide a native 

all-possible regressions or best-subsets regression procedure.  

  However, the methods begin to produce different sets of subset models as correlation among the 

predictors increases (honestly, it may not be appropriate to use the term multicollinearity in this study 

because none of the VIF values were over 5.0). Table 5 summarizes the number of the 51 predictor-

outcome correlation patterns where all three regression approaches matched (i.e., F=B=E or All) across 

all multicollinearity patterns. Clearly, as multicollinearity increases, the levels of agreement across the 

variable selection methods decrease. This finding argues strongly for the need to examine results from 

multiple variable selection methods, especially when performing exploratory analyses. Each approach 

may bring focus to a different aspect of the complicated and idiosyncratic patterns of correlations in the 

data.  

  None of the predictor-outcome correlation patterns consistently produced the highest levels of 

agreement across all multicollinearity conditions, but 13 conditions resulted in most agreement regardless 

of sample sizes across most of the multicollinearity conditions. Results shown in Table 6 show the 

patterns with agreement over 90% across the most multicollinearity and sample size conditions. 

Interestingly, while some of these patterns resulted in the highest agreement only for the low 

multicollinearity conditions (e.g., the pattern 0, 0, 0, .2, .6), some produced high agreement even for high 

multicollinearity or across varied multicollinearity conditions (e.g., the pattern 0, .2, .2, .6, .6). Table 6 

shows that the highest levels of agreement tend to occur when the predictor-outcome correlations 

combine .2 correlations with larger correlations.  

Seven conditions, shown in Table 7, showed the least agreement across the variable selection methods for 

the conditions studied (i.e., lower than 80% agreement across the most predictor-outcome conditions). 

Table 7 shows that the predictor-outcome correlations that are largely in the .4 range resulted in the 

lowest agreement across methods. 

  Another interesting finding is that as multicollinearity increases and gets a bit more complicated, the 

forward selection and backward elimination methods tended to agree most frequently (e.g., for at least 30 

predictor-outcome correlation patterns in M4) while with no or low multicollinearity, backward and 

exhaustive best-subsets agreed most frequently (e.g., 40 patterns for n = 50 and 26 for n = 250 under M0).  

Table 8 shows the gradual shift in these trends. 

  Generally an increase in sample size helps the three methods agree on which predictors are in each of 

the five models. Under M0 and M1 multicollinearity conditions, increased sample size improved 

agreement across variable selection methods. Even as predictor correlations increased further, however, 

increased sample size generally increased agreement levels. For example, 27.5% of the models agreed 

across all three methods for M2 when n = 50, but 66.7% of the models agreed for n = 250 (see Table 5). 

Based on the complete results from which Table 3 is a subset, Table 8 shows that as sample size increased 

to n = 250, all three variable selection methods tended to agree more frequently across the 51 predictor-

outcome correlation patterns. For example, in M4, F=B decreased from 35 conditions with better 

agreement at n = 50 to 30 conditions at n = 250, but because F=B when F=B=E there was actually a net 

increase of conditions where F=B from 35 to 45 (so overall, F=B had higher agreement across more 

conditions with larger sample size). 

  We found, however, that there were specific conditions for which an increase in sample size did not 

always improve the number of matches, especially when multicollinearity is more worrisome. When all 

predictor correlations increased to r = .4 (the M2 condition), six predictor-outcome correlation patterns 

resulted in lower agreement for larger sample sizes (some of these can be seen in Table 7). There were 16   
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Table 5. The Percentage of Correlation Patterns (51 in Total) When All Three Regression Approaches 

Match Under Different Threshold Levels of Agreement in All Multicollinearity Patterns 

Level 

of 

Agreement 

Multicollinearity Patterns 

M0 M1 M2 M3 M4 

n=50 n=250 n=50 n=250 n=50 n=250 n=50 n=250 n=50 n=250 

> 70% 100.0 100.0 100.0 100.0 98.0 98.0 80.4 80.4 62.7 62.7 

> 80% 98.0 98.0 100.0 100.0 94.1 94.1 70.6 74.5 35.3 56.9 

> 90% 88.2 94.1 94.1 94.1 74.5 86.3 21.6 58.8 7.8 25.5 

> 95% 70.6 86.3 52.9 90.2 27.5 66.7 3.9 27.5 5.9 13.7 

Average 95.2 97.5 94.8 97.6 91.5 94.7 81.0 81.7 70.2 70.7 

Note. Average represents the average number of samples (out of 10,000) in which the three variable 

selection methods agreed across the 51 predictor-outcome correlation conditions. 
 

Table 6. The Predictor-Outcome Conditions that Resulted in the Highest Levels of Agreement for the 

Variable Selection Methods for the Most Sample Size and Multicollinearity Conditions with Non-Zero 

Multicollinearity 

Correlation Pattern 

Multicollinearity and Sample Size Condition 

M1 M2 M3 M4 

r12 r13 r14 r15 r16 n=50 n=250 n=50 n=250 n=50 n=250 n=50 n=250 

0.2 0.2 0.2 0.2 0.4 9574 9906 9469 9899 8748 9543 8153 9042 

0.2 0.2 0.2 0.4 0.4 9566 9971 9487 9968 8883 9608 8508 9882 

0.0 0.0 0.0 0.0 0.6 9719 9903 9592 9648 9085 9589 8668 9082 

0.0 0.0 0.0 0.2 0.6 9663 9668 9544 9759 9069 9300 8160 6317 

0.2 0.2 0.2 0.2 0.6 9731 9941 9644 9906 8977 9421 8520 9015 

0.0 0.0 0.2 0.4 0.6 9668 9965 9107 9080 9022 9506 7146 8422 

0.2 0.2 0.2 0.4 0.6 9825 9981 9583 9941 9209 9638 9292 9963 

0.0 0.0 0.0 0.6 0.6 9754 9839 7767 9136 9293 9455 8726 9405 

0.0 0.0 0.2 0.6 0.6 9905 9997 8803 9849 9499 9938 9660 10000 

0.0 0.2 0.2 0.6 0.6 9948 10000 9528 9978 9836 10000 9521 9992 

0.2 0.2 0.2 0.6 0.6 9922 9976 9816 9940 9699 9901 9905 10000 

0.0 0.2 0.2 0.2 0.8 9736 9969 9910 9987 8546 9688 8743 9834 

0.0 0.2 0.2 0.4 0.8 9845 10000 9901 10000 8408 9294 7394 9133 

Note. The column label r12 indicates the correlation between the outcome (variable 1) and the first 

predictor (variable 2). This follows similarly for the other column labels through r16, which represents the 

correlation between the outcome and the fifth predictor (variable 6). 
 

of the M3 correlation conditions, however, that had lower agreement for the larger sample size, and of 

those, eight had agreement levels with relatively large differences for larger n (over 1000 samples with 

less agreement as compared to smaller n). Also in the M4 condition, 8 of the 22 predictor-outcome 

correlation conditions with lower agreement at n = 250 were relatively large differences. Because the 

patterns of predictor correlations differed across these multicollinearity conditions, there was no 

consistency for which predictor-outcome correlation patterns resulted in the decreases. 

Another interesting result is that as multicollinearity increases, the change in variable selection method 

agreement was more varied in how it improves and worsens the agreement levels. That is, for M0 and 

M1, the additional number of samples that showed agreement due to sample size was rarely above 500 

samples. For M2 the change in the number of samples with agreement across conditions varied from 

roughly -400 to +1400 as sample size changed from n = 50 to n = 250. For M3 and M4, however, the 

change in agreement varied from decreases of roughly 3,000 samples to increases over 1,500 when 

sample size changed from n = 50 to n = 250. It appears that more complicated patterns of correlations 

among predictors, in combination with the given predictor-outcome correlation patterns, had complicated 

impacts on the ability of the variable selection methods to produce the same subset models (due probably 

to smaller standard errors as sample size increased).  
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Table 7. The Predictor-Outcome Conditions that Resulted in the Lowest Levels of Agreement for the 

Variable Selection Methods for the Most Sample Size and Multicollinearity Conditions with Non-Zero 

Multicollinearity 

Correlation Pattern 

Multicollinearity and Sample Size Condition 

M1 M2 M3 M4 

r12 r13 r14 r15 r16 n=50 n=250 n=50 n=250 n=50 n=250 n=50 n=250 

0 0 0.4 0.4 0.4 9069 9598 7986 7946 6224 4297 3147 2596 

0 0.2 0.4 0.4 0.4 9178 9709 8706 8796 6514 5095 3715 3089 

0 0.4 0.4 0.4 0.4 8607 8817 8076 7797 3021 2136 3551 3482 

0.2 0.4 0.4 0.4 0.4 9066 9299 9150 9371 6413 4402 6481 6058 

0.4 0.4 0.4 0.4 0.4 8622 8664 9183 9320 8422 8362 7906 7459 

0 0 0.4 0.4 0.6 9105 9567 8435 8318 6395 4746 2946 2037 

0 0.4 0.4 0.4 0.6 8829 8970 8909 9570 2603 1642 3127 2147 

Note. The column label r12 indicates the correlation between the outcome (variable 1) and the first 

predictor (variable 2). This follows similarly for the other column labels through r16, which represents the 

correlation between the outcome and the fifth predictor (variable 6). 

 

Table 8. The Number of Predictor-Outcome Correlation Patterns (51 in Total) for Which Agreement 

Among Variable Selection Methods was Highest 

 

Method 

Agreement 

Multicollinearity Patterns 

M0 M1 M2 M3 M4 

n=50 n=250 n=50 n=250 n=50 n=250 n=50 n=250 n=50 n=250 

F=B 7 3 15 16 24 20 24 28 35 30 

F=E 0 0 2 2 8 4 19 9 9 4 

B=E 40 26 33 16 14 7 8 5 7 2 

F=B=E 4 22 1 17 5 20 0 9 0 15 

Note. F=B represents when Forward equaled Backward the most, F=E for when Forward was the same as 

Exhaustive most frequently, and B=E represents when Backward matched Exhaustive most often. F=B=E 

indicates when all were equal with the same frequency for that predictor-outcome correlation pattern. 
 

Discussion 

  Our results suggest that researchers might be relatively confident using stepwise methods with 

customized stepping criteria (i.e., no stopping criteria) when they do not have access to all-possible 

regressions procedures to obtain best-subsets models and they have relatively low multicollinearity. With 

lower multicollinearity, the three variable selection approaches tended to produce the same models at all 

possible numbers of predictors at a relatively high rate. That is, all three approaches (forward, backward, 

exhaustive) frequently produced the same one-predictor, two-predictor, three-predictor, four-predictor, 

and five-predictor models in the 10,000 samples that were tested for each condition. When 

multicollinearity is higher and the pattern of correlations is more complicated, however, there is less 

model agreement among forward, backward, and exhaustive best-subset methods. This result brings 

further concern to the use of any of the three approaches alone to identify best-subset models, even when 

using customized stepping criteria that result in all stepwise models being built. Perhaps a better way to 

think about it is that these results strongly suggest the need to run all approaches to build all possible 

competing models, because they disagree so frequently when multicollinearity becomes stronger. Each 

method may bring to light different dynamics of the relationships among the variables in models, 

especially the relationships among the predictors, which may be theoretically interesting. 

  Certainly, our study is limited by the multivariate normal data, number of predictors, and types of 

multicollinearity patterns we included. We used only five predictors in these simulations. However, we 

varied the correlations of the predictors with the dependent variables broadly. There is little reason to 

believe that additional predictors will result in better agreement across the methods, particularly as 

multicollinearity increases and becomes more complicated. Indeed, some informal Monte Carlo analyses 

were run with 1,000 replications, nine predictors, n = 50, and predictor-outcome correlations created in a 
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similar way to this study. Only 5 of 83 predictor-outcome correlation patterns showed F=B=E method 

agreement for more than 90% of the samples in the no multicollinearity condition. On average, the 

variable selection methods agreed in 76.8% of the M0 samples for nine predictors, as compared to 95.2% 

with five predictors (see Table 5). 

  Further, the lack of agreement across methods even with the relatively low multicollinearity studied 

here (i.e., no VIF over 5) suggests that researchers must exercise extreme caution when building models 

with more severe multicollinearity. Further, it was also clear that larger sample size was not always a cure 

for the multicollinearity problem. Indeed, larger samples sometimes made the variable selection 

approaches agree at a lower rate, depending on the idiosyncrasies of the correlations. While we only 

reported results for n = 50 and n = 250, we also ran simulations with n = 100, n = 150, and n = 200. Given 

what we learned from the n = 50 and n = 250 conditions, the results from the other sample size conditions 

tended to be as expected in a relatively linear fashion across the multicollinearity conditions. 

It is important to note again that we did not investigate whether these approaches are able to identify the 

correct population model. Agreement among the methods does not guarantee that the correct regression 

model has been identified, but disagreement among these notoriously imperfect methods certainly does 

not provide a researcher much confidence in any model chosen. Previous research has suggested that none 

of the three approaches with default criteria (i.e., forward, backward, exhaustive) is able to identify the 

correct model consistently. Perhaps the best course of action is to recognize the exploratory nature of 

these methods and simply conclude that a number of models may be worth exploring in future research 

based on the researcher's best understanding of the variables being studied. Running more possible 

models for comparison, using the create-all-models stepwise methods presented here, allows researchers 

to compare empirical evidence for more candidate models. Researchers can then artistically bring their 

content and theoretical knowledge to bear on decisions regarding the usefulness of the various candidate 

models. 

  Sometimes we want or think that statistical methods will just give us the answer. Rarely is it that 

easy, especially in exploratory research. The best alternative may sometimes be to obtain exploratory 

information from multiple statistical methods to make theoretically reasonable decisions about 

relationships based on empirical data obtained from samples. For example, rather than argue over whether 

stepwise methods or best-subsets produce better results or whether they produce unworthy results, we can 

recognize that they all analyze the correlations among variables (and perhaps more importantly, partial 

correlations) and may produce different useful and interesting results. Therefore, we can run multiple 

methods to examine and compare more complete exploratory results. That is, perhaps running all three 

types of variable selection techniques will help us discover and make sense of more complicated 

relationships among the predictors in relation to the outcomes that interest us. 

Most of the predictor-outcome correlations patterns across all levels of multicollinearity showed 

agreement levels greater than 70%, but perhaps it may be just as interesting theoretically when the three 

variable selection methods do not agree on the same models (certainly less confirmatory, but perhaps 

more interesting from an exploratory perspective). For example, the dynamic nature of stepwise 

approaches may help researchers understand the complicated relationships among predictors more 

completely – rather than simply throwing away a nonsignificant predictor. That is, it could be the 

multicollinearity itself that it theoretically interesting. Notably, here, either forward or backward (or both) 

always produced the same best-subsets models as exhaustive under the conditions we studied (see Table 

8), even under higher multicollinearity. If future research supports this finding with more predictors and 

more multicollinearity, it may be sufficient to run just forward and backward methods without also 

running best-subsets in order to obtain attractive models for comparison. That is, either forward or 

backward or both always provided the same set of models as best-subsets regression in this study. Finally, 

with variable selection methods just like all statistical methods, researchers using regression must 

remember the importance of testing assumptions, checking for influential cases, using sufficient sample 

size, and cross-validating results. 
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