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This paper analyzes two methods for testing moderation effects in regression models that contain a 

continuous dependent variable, a continuous independent variable, and a dichotomized grouped 

moderator; a test of the interaction term in the full regression model and a test of the difference between 

the simple slopes. Typically, researchers test the significance of the interaction term. Based on 

mathematical equations and empirical examples, we argue that the test for the difference between the 

simple slopes should be utilized when researchers are interested in testing for moderation effects. By 

decomposing the test statistics for these two methods, we demonstrate that the test for the difference 

between the simple slopes has increased power and less Type II error, while retaining equivalent Type I 

error rates. 

 oderated relationships in social science research exist when the relationship between two 

variables, X and Y, varies depending on the value of a third variable Z. This study examines a 

specific type of moderated relationship with a continuous dependent variable (Y), a continuous 

independent variable (X), and an independent dichotomous categorical variable (Z). Given these 

variables, a moderated relationship exists if the relationship between X and Y is different for both levels 

of Z. This can be estimated with an interaction term using the following regression equation (Aiken & 

West, 1991; Jaccard & Turrisi, 2003). 
 

          Y = b1X + b2Z + b3XZ + b0 ;         (1) 

where:    Y = continuous dependent variable, 

    X = continuous independent variable, 

    Z = dichotomous independent variable,  

    XZ is the interaction term calculated as X multiplied by Z, 

    b0 is the intercept, 

    b1 is the effect of X on Y, 

    b2 is the effect of Z on Y, and 

    b3 is the effect of XZ on Y. 
 

 To understand how the interaction term XZ tests for a moderated relationship, consider Equation 1. 

With  two values of Z, we can use dummy coding such that Group 1 is 0 (Z = 0) and Group 2 is 1 (Z = 1). 

By substituting 0 for Z for Group 1, Equation 1 becomes:  
 

         Y = b1X + b2(0) + b3X(0) + b0        (2a) 
 

By removing the 0 terms, this can be further reduced to  
 

         Y = b1X + b0            (2b) 
 

Next, we will substitute 1 for Z for Group 2; therefore, Equation 1 becomes 
 

         Y = b1X + b2(1) + b3X(1) + b0        (3a) 

After grouping terms, this is represented as 
 

         Y = (b1 + b3)X + (b2 + b0)         (3b) 
 

 Within Equations 2b and 3b, the slopes of X for Groups 1 and 2 are b1 and (b1 + b3), respectively. The 

difference in the two slopes is (b1 + b3) - b1 = b3; the coefficient of the interaction term XZ in Equation 1. 

Therefore, if the results of the regression model in Equation 1 indicate that the interaction term, b3, is 

significant, then the slopes of X for Groups 1 and 2 (Z) are statistically different from each other, 

indicating a statistically significant moderated relationship between X and Y. 

  Once a significant moderated relationship has been identified, a researcher can examine the strength of 

relationships between X and Y within the individual groups of Z. To accomplish this, data are separated by 

group and then individual regression equations are estimated with X regressed on Y. These are termed the 
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 Table 1. Equivalent Estimates Between Simple Slopes  

               Models and the Interaction Model 

Interaction Model  
Equivalent Simple Slopes 

Models 

Term Estimate  Estimate 

Intercept b0  b0,Z=0 

X b1  b1,Z=0 

Z b2  (b0,Z=1 – b0,Z=0) 

XZ b3  (b1,Z=1 – b1,Z=0) 

 

 

 

 

simple slopes. In our example with two levels of Z, the simple slopes require two regression models, one 

for each group, and are estimated with the following: 
 

      For Group 1:   Y = b1,Z=0 X + b0,Z=0           (4) 
 

     For Group 2:   Y = b1,Z=1 X + b0,Z=1           (5) 
 

  These two models will estimate 

strength of the individual betas for X as 

well as the overall fit of the models for 

each group. Analysis of simple slopes 

provides additional information not 

produced within the full interaction 

term model (Equation 1). While the 

simple slopes models provide the 

researcher with additional information, 

the estimates of the betas in the simple 

slopes models are equivalent to the 

estimates of the betas in the full interaction term model as outlined in Table 1. The simple slopes 

models do not automatically test the significance of the difference in the simple slopes (b1,Z=1 – 

b1,Z=0; simple slopes difference). The full interaction model will provide this test in the estimate, 

b3, which is justification to researchers as to why an interaction model must establish significance 

before examining the simple slopes. 
  Within this study; however, we present the method for testing the significance of the difference in the 

simple slopes. Further, we argue that the test of significance for the difference in the simple slopes is more 

powerful than the test of significance for the interaction term, b3 (Equation 1). Based on this logic, if 

researchers are interested exclusively in testing the moderated relationship, then we recommend testing the 

difference in the simple slopes in lieu of testing the significance of the interaction term, b3 (Equation 1). 

  In this study, two empirical examples will be presented to demonstrate the differences between the 

two approaches and to highlight the practical implications of these differences. Within these examples, 

the differences between the two methods will be analyzed mathematically. The differences between these 

two methods can be found by decomposing how standard error is computed for each method. Based on 

our findings, we argue that (1) the use of the simple slopes models alone provides more information to the 

researcher than testing the interaction term first; (2) testing for the difference in the simple slopes has 

more statistical power than the test for the interaction term by reducing the threat of Type II error; and (3) 

testing the significance of the difference in simple slopes does not increase Type I error. 
 

Testing for Significance of the Difference in Simple Slopes 

To test whether the individual slopes of the simple slopes models are different, a t-value for the difference 

in the two slopes can be computed using the following equation:  
 

              
     

        
                (6) 

 

The difference in the two slopes from Equations 2b and 3b is: 
 

          bdiff = b1 – b2             (7) 
 

The pooled standard error from Equations 2b and 3b is: 
 

                   √
     

       
 

       
             (8) 

 

Substituting bdiff and SEpooled in Equation 4 results in the following t-test: 

              
      

√
     

       
 

       

               (9)  
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Table 2. Full Regression and Simple Slopes Models of Academic Self-Efficacy (ASE), Ethnicity, and 

Academic Achievement. 

Full Regression Model (n = 209)  Simple Slopes Models 

 
b SE t p   b SE t p 

Intercept 2.957 .069 42.590 .000   African-American Students (n = 105) 

ASE .031 .006 4.956 .000  Intercept 2.859 .067 42.930 .000 

Ethnicity -.098 .098 -.998 .320  ASE .018 .00669 2.687 .008 

Ethnicity x 

ASE 
-.013 .00932 -1.403 .162 

 
Caucasian Students (n = 104) 

 
  Intercept 2.957 .072 41.113 .000 

   ASE .031 .00649 4.784 .000 

   Simple Slopes Difference 

    -.013 .00659 -1.973 .0498 
 

Once one has computed the t-value for the difference of the simple slopes, then it is straightforward to 

determine the p-value for the test statistic with degrees of freedom (n1 + n2 – 2).  
 

Empirical Examples Comparing the Differences in Simple Slopes and the Interaction Term  

  Example 1. The first example was taken from Robinson and Schumacker (2009). This study 

examined the effects of centering on multicollinearity for interaction terms in regression models 

(Equation 1) with a continuous dependent variable (Y), one continuous independent variable (X), and one 

dichotomous independent variable (Z). The data from this study examined the relationship between 

ethnicity and academic self-efficacy (ASE) on academic achievement. Estimates from the full regression 

model examining the main effects and interaction between ethnicity and ASE (XZ) on academic 

achievement are presented in Table 2. Although ASE is significantly related to academic achievement (p 

< .001), ethnicity was not related to academic achievement (p = .320) and the interaction term (ethnicity x 

motivation) indicated that the relationship between motivation and academic achievement did not vary by 

ethnicity (p = .162). 

  The estimated simple slopes models (Equations 4 and 5) examining the relationship between 

motivation and academic achievement based on ethnicity are also presented in Table 2. The two models 

indicate that ASE is significantly related to academic achievement for both African-American (p = .008) 

and Caucasian (p < .001) students. To test for differences between the two groups in their relationship 

between ASE and academic achievement, a test for the differences between the simple slopes was 

estimated. First, the difference in the betas was calculated, bdiff = bAfrican-American – bCaucasian = .018 – .031 = -

.013 (Equation 7). Next, the pooled standard error was calculated, SEpooled = √
     

       
 

       
 = 

√
                       

           
 = .00659 (Equation 8). Third, the bdiff and SEpooled were used to compute the t-test, 

    
     

        
 = 

     

      
 = -1.973 (Equation 9). Finally, the t-distribution was used to determine the p-value 

for the test, t (207) = -1.973, p = .0498. This secondary analysis indicated a statistically significant 

difference in the simple slopes for African-American and Caucasian students, or that ethnicity was a 

statistically significant moderator of ASE and academic achievement. 

 What is interesting is that the analysis of the interaction term and the test for the differences in the 

simple slopes would indicate two different interpretations of the same dataset; the interaction term was 

not significant, yet significant differences in the simple slopes were found. If a researcher used the 

interaction term XZ (Equation 1) as a test of moderation, then the researcher would infer that ethnicity did 

not moderate the relationship between ASE and academic achievement. However, if the researcher used 

the difference in simple slopes, then the researcher would infer that ethnicity did moderate the 

relationship between ASE and academic achievement. If the researcher followed the practice of testing 

the interaction term first, then the simple slopes would not have been estimated. In this example, the 
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choice of analytic approach is the difference between reporting a significant moderation relationship and 

reporting a non-significant moderation relationship.  
 

  Example 2. The second example is a dataset (home7dat.txt) taken from Aiken’s Multiple Regression 

Course at Arizona State University (http://www.public.asu.edu/~atlsa/PSY531/). This dataset was chosen 

because in Aiken’s course, it is used to teach about testing interactions between a dichotomous categorical 

variable and a continuous variable. These data are used to examine whether grouping individuals by high 

risk or low risk of breast cancer (group) moderated the relationship between risk of breast cancer (risk) 

and intention to obtain screening (intention), which used Model 1 to estimate this effect.  

  The full model estimates are presented in Table 3. Results indicated that group (p < .001) and risk (p 

< .001) were significantly related to intention, and that the interaction between risk and group was 

significantly related to intention (p < .001). 

  The estimated simple slopes models (Equations 4 and 5) examining the relationship between risk and 

intention based on high and low risk groups are also presented in Table 3. Individually, the two models 

indicate that risk was significantly related to intention for both high (p < .001) and low (p < .001) risk 

groups, albeit in different directions. To test whether the relationship between risk and intention was 

different for the two risk groups, a test for difference in simple slopes was calculated; bdiff = bLow Risk – 

bHigh Risk = .908 – (-.951) = -1.859, SEpooled = .155, t = 1.859 / .155 = -11.991. This analysis indicated a 

significant difference in the slopes of the high and low risk groups, t (184) = -11.991, p < .001, or that 

group significantly moderated the relationship between risk and intention. 

 Unlike Example 1, both analyses of Example 2 led the researcher to make the same inferences about 

the moderated relationship between risk and intention. There is; however, a difference in the resulting t-

statistics for the two hypothesis tests; -8.55 for the test of the interaction term (Equation 1) and -11.991 

for the difference between the simple slopes (Equation 7). Although there is no difference in 

interpretation in this example, the test of difference in  simple slopes again demonstrates greater power as 

compared to the test of the interaction term. 
 

Standard Error Differences between the Difference in Simple Slopes and the Interaction Term 

  The two empirical examples demonstrated differences between the test for the difference in simple 

slopes and the test for the interaction term in identifying moderation effects. Further examination of the 

test values used for significance testing indicates differences in the standard errors (SEs) of the two 

approaches (see Table 4). The beta of the interaction term and the difference between the simple slopes 

are mathematically identical and; therefore, also identical in the Robinson and Schumacker (2009) dataset 

(-.013) and the Aiken (http://www.public.asu.edu/~atlsa/PSY531/) dataset (1.859). However, there are 

differences in the SEs. Specifically, the SEs for the difference in simple slopes are consistently smaller 

than the SEs for the interaction term; 28.6% less in the Aiken dataset and 29.3% less in the Robinson and 

Schumacker dataset. The result of a smaller SE in the denominator when computing t is a greater t-

statistic. 
 
 

Table 3. Full Regression and Simple Slopes Models of Risk, Risk Grouping,  

and Intention to Get Cancer Screening 

Full Regression Model (n = 186)  Simple Slopes Models 

 
b SE t p   b SE T p 

Intercept 7.127 .224 31.774 .000   Low Risk Group (n = 95) 

Group -2.317 .329 -7.044 .000  Intercept 7.127 .213 33.485 .000 

Risk .908 .149 6.103 .000  Risk .908 .141 6.432 .000 

Group x Risk -1.860 .217 -8.555 .000  High Risk Group (n = 91) 

 
  Intercept 4.810 .253 19.014 .000 

   Risk -.951 .167 -5.712 .000 

   Simple Slopes Difference 

    1.859 .155 11.994 .000 

  

http://www.public.asu.edu/~atlsa/PSY531/
http://www.public.asu.edu/~atlsa/PSY531/
http://www.public.asu.edu/~atlsa/PSY531/
http://www.public.asu.edu/~atlsa/PSY531/
http://www.public.asu.edu/~atlsa/PSY531/
http://www.public.asu.edu/~atlsa/PSY531/
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Table 5. MSE for Full Model, Simple Slopes Models, and Weighted Average  

               of Simple Slopes Models 

Aiken Dataset  Robinson and Schumacker Dataset 

 
MSE   MSE 

Interaction Term 2.591  Interaction Term .498 

Simple Slopes Average 2.593  Simple Slopes Average .498 

Low Risk 2.333  Caucasians .534 

High Risk 2.864  African-Americans .462 

 

 

Table 4. Comparison of Values Used to Test for Significance of Interaction Term  

               and Difference in Simple Slopes 

 Aiken Dataset  Robinson and Schumacker Dataset 

 b SE   p  b SE   p 

Interaction Term -1.859 .217 -8.555 .000  -.013 .00932 -1.403 .162 

Simple Slopes 

Difference 
-1.859 .155 -11.991 .000  -.013 .00659 -1.973 .0498 

SE Difference  .062 (28.6%)    .00273 (29.3%)  
 

  In an attempt to understand why these differences occurred, we decomposed the SE of the interaction 

term. The following formula for the SE of the interaction term can also be used to compute the SEs for 

the two simple slopes. The SEs of the simple slopes are then pooled when calculating the t-test for 

difference in simple slopes (Equation 7). By decomposing the SE, differences between the two hypothesis 

tests can be identified. The SE for the significance test of the interaction term in Equation 1 is computed 

using the following. 

               √
   

       
           (10) 

Mean squared error (MSE) is computed using the following.  

               
 

 
 ∑   ̂      

  
           (11) 

Sum of squares (SS) is computed using the following.  

             ∑       
 ∑    

 
           (12) 

Tolerance is computed using the following. 

                         
             (13) 

 

Comparison of the Mean Squared Error for the  

Difference in Simple Slopes and the Interaction Term 

  Mean squared error (MSE) is the residual error not explained by the regression model. It is measured 

as the sum of the squared difference between the estimated and the true score of Y. Since the estimate of 

the beta of the interaction term (Equation 1) is equivalent to the difference in the betas of the simple slope 

models (Equations 4 and 5), the relationship between the interaction term and the dependent variable is 

identical to the combined relationship of the betas in the simple slopes models and the dependent variable. 

Therefore, the residual error, MSE (Equation 11), for these two approaches should also be equivalent. 

Indeed, the weighted average of the MSEs for the simple slopes models (Equations 4 and 5) are 

equivalent to the MSE 

of the full model 

(Equation 1) (see Table 

5). Because the MSEs 

are equivalent, we 

further examined 

Equation 12 and as to 

whether the source of 

differences in the SEs 

was in the sum of 

squares.  
 

Comparison of the Sum of Squares for the Difference in Simple Slopes and the Interaction Term 

  The sum of squares (SS) is a measure of dispersion. The lower the SS, the more homogeneous the 

dataset and the larger the SS, the more heterogeneous the dataset. Table 6 presents the computation of the 

SS (Equation 12) used in the estimation of the SE in both the simple slopes models (Equations 4 and 5) 

and the full model with the interaction term (Equation 1) for Aiken’s 

(http://www.public.asu.edu/~atlsa/PSY531/) dataset. Looking at the results, the sum of X
2
 (Step 1) and the 

http://www.public.asu.edu/~atlsa/PSY531/
http://www.public.asu.edu/~atlsa/PSY531/
http://www.public.asu.edu/~atlsa/PSY531/
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square of the sum of X (Step 2) are identical to the simple slopes for the high risk group and the risk x 

group interaction term. This is true due to the dummy coding of the group variable, 0 (low risk) and 1 

(high risk). When group is multiplied by risk, all that remains are the values when group equals 1 (high 

risk); all low risk X values are equal to 0. However, a difference does occur when dividing the square of 

the sum of X by n (Step 3). The model including the interaction term (Equation 1) contains the full sample 

(n = 186), whereas the simple slopes model for high risk group only contains those within the high risk 

group (n = 91). This produces the smaller term for the full model with the interaction term (Equation 1) 

than the simple slope model for the group where Z=1 (high risk group; Equation 5) in Step 3 (51.916 

versus 106.684). The smaller term in Step 3 produces a larger SS for the interaction term in Step 4 when 

subtracted from the sum of X
2
 from Step 2 (SS = 158.001) as compared to the SS (Step 4) of the high risk 

group, Z = 1 (SS = 103.232). An identical result is found in the Robinson and Schumacker (2009) dataset. 

The SS (Step 4) for the interaction term in the full model is larger (SS = 10378.251) than the SS of the 

simple slope model for African-Americans, Z = 1 (SS = 10332.569).  

 This empirical analysis highlights that the SS used for the interaction model will always be greater 

than the SS used for the simple slope for the grouping variable, Z, dummy coded as 1 (high risk group for 

Aiken (http://www.public.asu.edu/~atlsa/PSY531/); African-American for Robinson & Shumacker, 

2009). This is true because the sum of Xs for the interaction term in Steps 1 and 2 will always be identical 

to the sum of Xs in Steps 1 and 2 for the simple slopes model. However, the SS for the interaction term is 

a function of the full sample whereas the dummy coded grouping models will only include subset of the 

full sample. The SS for the interaction term model will always include a larger n as a divisor; therefore, 

the interaction SS will always be larger than either of the simple slopes’ SS in Step 4. 

  Although the SS for the interaction term will always be larger than the SS for the simple slope for the 

grouping variable, Z = 1, the same cannot be said for the SS for the grouping variable, Z, dummy coded 

as 0. In the Aiken (http://www.public.asu.edu/~atlsa/PSY531/) dataset, the SS for the simple slope of the 

low risk group (SS = 117.044) was less than the SS of the for the interaction term (SS = 158.001). 

However, in the Robinson and Schumacker (2009) dataset, the SS for the simple slope of Caucasian 

student group (SS = 12649.818) was greater than the SS of the interaction term (SS = 10378.251). 

  The analyses of the SSs do not conclusively identify the source of the lower SEs for the difference in 

simple slopes compared to the interaction term. Therefore, tolerance was examined as this is the last term 

in Equation 10 and must account for the differences in the test values for the two procedures.  

 

Comparison of the Tolerance for the Difference in Simple Slopes and the Interaction Term 

  Tolerance (TOL) is the proportion of variance for an independent variable that is not accounted for by 

other independent variables in a regression model. TOL is measured as one minus the squared multiple 

correlation of the target variable regressed on all other independent variables. The range of TOL is 0 to 1, 

with smaller values indicating a larger concern for multicollinearity.   

 

Table 6. Decomposition of Sums of Squares for Simple Slopes and Interaction Models 

 Aiken Dataset  Robinson and Schumacker Dataset 

Components for 

Sum of Squares 

Simple Slopes 

Models 
 Full Model 

 
Simple Slopes Models  Full Model 

Risk 
 

 

Risk x Group 

Interaction 

 ASE 
 

 

ASE x 

Ethnicity 

Interaction Low High Caucasian 
African-

American 

n 95 91  186  104 105  209 

Step 1: ∑    218.172 209.917  209.917  12742.070 10424.372  10434.372 

Step 2:  ∑     9607.16 9708.277  9708.277  9594.203 9639.312  9639.312 

Step 3: 
 ∑   

 
  101.128 106.684  51.916  92.252 91.803  46.121 

Step 4: ∑   
 ∑    

 
  117.044 103.232  158.001  12649.818 10332.569  10378.251 

  

http://www.public.asu.edu/~atlsa/PSY531/
http://www.public.asu.edu/~atlsa/PSY531/
http://www.public.asu.edu/~atlsa/PSY531/
http://www.public.asu.edu/~atlsa/PSY531/
http://www.public.asu.edu/~atlsa/PSY531/
http://www.public.asu.edu/~atlsa/PSY531/
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Table 7. Effect of the Tolerance on the Standard Error 

 Aiken Dataset  Robinson and Schumacker Dataset 

 
Simple Slopes Models  Full  Model  Simple Slopes Models  Full Model 

 

Risk 

 
Risk x Group 

Interaction 
 

ASE 
 

 

ASE x Ethnicity 

Interaction Low High Caucasians 
African-

Americans 

n 95 91  186  104 105  209 

       
  -- --  .649  -- --  .447 

    
  0 0  --  0 0  -- 

TOL 1 1  .351  1 1  .553 

MSE 2.333 2.864  2.591  .534 .462  .498 

SS 117.044 103.232  158.001  12649.818 10332.569  10378.251 

SS*TOL 117.044 103.232  55.458  12649.818 10332.569  5687.282 

    √
   

       
  .141 .167  .216  .00649 .00669  .00932 

SEpooled .155    .00659   

Note: ASE = Academic Self-Efficacy; TOL = Tolerance; MSE = Mean Squared Error;  

SS = Sum of Squares; SE = Standard Error 
 

The TOL values for the two simple slopes terms (Equations 4 and 5) and the interaction term (Equation1) 

for the two example datasets are presented in Table 7. For the Aiken 

(http://www.public.asu.edu/~atlsa/PSY531/) dataset, the TOL = .351 for the interaction term XZ 

(Equation 1). TOL = 1 for the simple slopes (Equations 4 and 5). In the Robinson and Schumacker (2009) 

dataset, the TOL = .553 for the interaction term and TOL = 1 for the simple slopes. 
 

  While the TOL of the interaction term (XZ) is equal to           
 , the TOL of the simple slopes 

models is always equal to 1. The presence of tolerance in the test statistic for the interaction model within 

the full regression model (Equation 1) is to statistically control for multicollinearity between the 

variables. However, the manual process of grouping the values of X by Z within the simple slopes models 

(Equations 4 and 5) eliminates any potential multicollinearity because there are no other terms within the 

regression models for the X terms with whom to correlate. Since there are no other terms in the simple 

slopes model, the squared multiple correlation of X with no other independent variables,     
 , is 0, and 

the TOL(X) = 1 – 0 = 1. To understand the impact of the TOL on the SE, we revisit the calculations for 

the two hypothesis tests. 
 

Revisiting the Standard Error Differences between  

the Difference in Simple Slopes and the Interaction Term 

  Table 7 contains the three components of the SE that were previously discussed in this study: MSE, 

SS, and TOL. Let us begin our discussion with the Aiken (http://www.public.asu.edu/~atlsa/PSY531/) 

dataset. In the denominator of the SE term (Equation 10), the TOL of the interaction term is multiplied by 

the SS. For this example, SS x TOL resulted in the value 54.826. When compared to the denominator of 

the SEs for the simple slopes models (117.044 and 103.232), the denominator of the SE for the interaction 

term is smaller. A smaller SE denominator for the interaction term results in a larger SE for the 

interaction term. The SE for the interaction term was equal to SE = .216, while the SEpooled used to test for 

the difference in simples slopes was equal to SEpooled = .155. An identical comparison can be made for the 

Robinson and Schumacker (2009) dataset. The denominator of the SE for the interaction term is smaller 

http://www.public.asu.edu/~atlsa/PSY531/
http://www.public.asu.edu/~atlsa/PSY531/
http://www.public.asu.edu/~atlsa/PSY531/
http://www.public.asu.edu/~atlsa/PSY531/
http://www.public.asu.edu/~atlsa/PSY531/
http://www.public.asu.edu/~atlsa/PSY531/
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(5687.282) than either of the denominators for the simple slopes models (12649.818 and 10332.569, 

respectively). The resulting SE for the interaction term (SE = .00932) is larger than the SEpooled used to 

test for the difference in simple slopes (SEpooled = .00659).      

  We argue that the multicollinearity present within the interaction model (Equation 1) reduces the 

power to detect statistical significance in the interaction term. As an example, within the Aiken 

(http://www.public.asu.edu/~atlsa/PSY531/) dataset, the tolerance must increase by 194.6% – from .351 

to .683 – in order for the SE of the interaction term to equal the SEpooled of the simple slopes. Stated 

another way, the        
  must decrease from .649 to .317. This decrease is problematic on at least two 

accounts. First, reducing the relationship between the interaction term XZ and X and Z appears to defeat 

the purpose of testing for a moderating effect (also note that centering the independent variables will not 

reduce this relationship). Second, this reduction in the relationship does not seem feasible as one would 

generally expect         
  to be high whether the interaction term is significant or not, as XZ is a composite 

of its two variables X and Z. 

  The denominators of the SE terms in the Robinson and Schumacker (2009) dataset were also 

compared (Table 7), with similar results detected. In order for the SE of the interaction term to equal the 

SEpooled of the simple slopes, the tolerance of the interaction term must increase 199.8%, from .553 to 

1.105; or the        
  must decrease from .452 to -.105. There are similar proportional increases in 

tolerance that are required (194.6% versus 199.8%). However, the results from the Robinson and 

Shumacker dataset are more problematic, as it is not mathematically possible for        
  to be less than 

zero and the tolerance has an upper limit of one. This demonstrates an instance where the test for the 

interaction term will always be less powerful than the test for the simple slopes difference, as it is 

impossible for the        
  to be less than zero; therefore, the test statistic for the interaction term must be 

smaller than the test statistic for the difference in simple slopes. 
 

Implications 

  Based on the equations and examples presented above, we argue that researchers investigating 

moderator variables should begin with an examination of the simple slopes rather than relying on a 

significant interaction term. In both examples, the test for the difference in simple slopes was more 

powerful than the test of the interaction terms. Even when the interaction term was significant (as in 

Aiken’s dataset), the test for the difference in simple slopes demonstrated more power (it had a larger t-

value). Further, testing the significance of the difference in simple slopes involves only one hypothesis 

test (although we need to estimate 2 models, Equations 4 and 5). This is identical to the test for the 

interaction term, where one hypothesis test (estimation of a single model, Equation 1) is performed. 

Therefore, testing for the difference in simple slopes does not increase the Type I error, as this is based on 

the number of hypothesis tests performed. Perhaps the only downside to this approach is that the 

researcher will need to manually compute the t-value for the difference in simple slopes, as this is not 

automatically calculated in SPSS or SAS. 
 

Discussion 

  While pondering the implications of these results, one question that was considered was why, 

historically, the interaction term has been preferred to the difference in simple slopes? This question is 

important for two reasons. First, the formulas presented in this study are not new, yet we were unable to 

find any previous literature that compared (either conceptually or empirically) the difference of simple 

slopes and the interaction term in a multiple regression context. Second, little research can be found that 

discusses the mathematics behind the test for the difference in simple slopes. Few textbooks devote time 

to discussing methods for testing differences between separate regression equation coefficients (note: our 

equations were verified using Kleinbaum and Kupper’s, 1978 textbook, which is several decades old).   

  Parsimony may be one potential reason that the two approaches have not been directly compared. 

Prior to computers, test statistics were computed by hand. Hierarchically adding an interaction term after 

computing the additive model requires one additional set of computations. Only if the researcher finds a 

significant interaction term would they then consider computing the two additional simple slopes models. 

However, testing for the difference in simple slopes requires computing two simple slopes models prior to 

detecting a significant difference between them. It is not difficult to imagine the frustration a researcher 

would experience when their time spent calculating these models did not result in a significant difference. 

http://www.public.asu.edu/~atlsa/PSY531/
http://www.public.asu.edu/~atlsa/PSY531/
http://www.public.asu.edu/~atlsa/PSY531/
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Today, there would be no such concern provided the ease of computation that statistical packages allow 

(although the frustration of failing to reject the null still remains).  

  Another reason these two approaches may not have been directly compared is that the two approaches 

ask different research questions. The interaction term tests whether the composite of XZ accounts for a 

significant amount of variance in Y beyond the additive effects of X and Z. The differences in the simple 

slopes tests whether there is a different relationship between X and Y for each group Z. Although the two 

approaches represent different research questions, both approaches attempt to statistically answer whether 

there is a significant moderating relationship among the variables. Conceptually, we believe that the 

difference in simple slopes is a more direct test of moderation. Empirically, the test for the difference in 

the simple slopes has more power, which reduces the potential for Type II Error and simultaneously does 

not increase Type I Error.  
 

Future Research 

  Based on our empirical findings, we believe that there needs to be a review of published and 

unpublished studies to inform the severity of Type II Error in testing the interaction term prior to 

estimating the simple slopes. Significant effects may have been missed in previous studies (e.g., this 

result would have occurred in the Robinson and Schumacker, 2009 dataset). Second, simulation studies 

will be required in order to determine if there is a single “critical point” (if it exists) for TOL such that the 

SEs of the interaction term and difference in the simple slopes are equivalent. Additionally, simulation 

studies will help to determine whether sample sizes, unbalanced designs, and/or variance within the 

moderator groups affect the “critical point” of TOL. Finally, this paper examined one specific type of 

moderated relationship, that which has a single continuous dependent variable, a single continuous 

independent variable, and a single dichotomous categorical independent variable. Additional calculations 

are needed in order to determine if our findings can be replicated to other types of moderated 

relationships (e.g., a categorical independent variable with more than two levels), or if these finding are 

specific to this type of relationship.    
 

Conclusion 
  The current study critically analyzed the differences and similarities between two hypothesis tests: the 

test for the difference in simple slopes and the test for the interaction term. Our results indicate that 

empirically, in the test for the difference in simple slopes, the denominator of the SE will be larger, the 

standard error will be smaller, and the resulting test statistic will be larger. As a result, the test for the 

difference in simple slopes will have more power (decrease Type II error), yet retain an equivalent level 

of Type I error. The test for the difference in simple slopes also makes more conceptual sense, as it is a 

direct test for the moderating effect of the grouping variable Z. Overall, we recommend the use of the test 

for the difference in simple slopes directly when researchers are interested in testing the moderating 

relationship of a dichotomous grouping variable, Z, on the relationship between two continuous variables, 

X and Y. 
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