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This study investigated the performance (i.e., consistency and correctness) of parallel analysis (PA) 

compared to other criteria for selecting the number of dimensions (i.e., components or factors) to extract, 

which is a step prior to exploratory factor analysis (EFA). Common criteria included PA using 

original/unreduced correlation matrices with 1s on the diagonal (PACOR); PA using reduced correlation 

matrices with squared multiple correlations on the diagonal (PASMC); minimum average partial (MAP); and 

Kaiser’s eigenvalue-greater-than-one rule or average root (K1). Not-So-Common criteria included indicator 

function (IND), imbedded error (IE), modified average roots (MARs), and broken stick (BS). These same 

criteria were studied from existing real test data (Experiment I) and generated data (Experiment II) to 

expand the generalizability of the results to real-world data and to explore more conditions with more 

variables, respectively. Ultimately, we provide guidelines on employing these criteria to yield the best 

results under studied conditions. 

 actor analysis, specifically EFA and principal component analysis (PCA), is a process of data 

reduction aimed to reduce a large number of variables/items into a small number of dimensions 

(typically called components or factors) to make the data more manageable or interpretable, while 

maintaining as much information in the data as possible (Meyers, Gamst, & Guarino, 2013; Warner, 2013). 

EFA processes require applied researchers to specify the number of dimensions (if not using the K1 rule by 

default in SPSS, for example) to extract so that the EFA process can be completed. Selecting the correct 

number of dimensions is crucial to the validity of the results and decisions made.  

There are many criteria used to determine the number of dimensions to feed into factor analysis. Probably, 

the most popular criterion is K1 rule. The logic of the K1 rule is that any retained dimensions should explain 

more variance than the average standardized variable, which is 1.0 (Jackson, 1991; Kaiser, 1960; Loehlin, 

2011; Warne & Larsen, 2014). However, many researchers have criticized the cut-off value of 1.0 as being 

arbitrary and too inflexible. Consequently, K1 is not typically recommended (Jackson, 1991; van der Eijk 

& Rose, 2015).  

  Several studies investigated multiple numbers attempting to identify the appropriate cut-off value. 

Jolliffe (1972) recommended a modified cut-off value, or modified average root, of 70%. In the pilot testing 

process of this present study (Experiment I), using 70% of the average root as recommended yielded too 

many components. Therefore, other modified cut-off values (i.e., 1.20 and 1.40 in Experiment I and more 

cut-off values in Experiment II) were also investigated to compare with the average root and 70% of the 

average root. The cut-off value of 1.4 was studied for unidimensionality by Smith and Miao (1994). From 

their simulations, they found that the eigenvalue of the second component (the first component is pertinent 

to Rasch dimension), which is the largest component at the noise level, was never higher than 1.40. 

Therefore, they recommended that 1.4 be used as a cut-off value to determine whether a second factor exists 

(Smith & Miao, 1994). Chou and Wang (2010) studied a cut-off value of 1.5 from PCA on standardized 

residuals is performed to check for determining unidimensionality in item response theory (IRT), especially 

in Rasch models. Ultimately, however, Chou and Wang recommended against such a rule. As multiple 

modified cut-off values were used in this current study, this criterion is called modified average roots and 

abbreviated as MARs. 

  Versions of Horn's (1965) parallel analysis have been studied by many researchers and have been found 

to be useful in many conditions (e.g., Buja & Eyuboglu, 1992; Hubbard & Allen, 1987; Humphreys & 

Ilgen, 1969). PA could be viewed as an adaptation (sample-based) of the K1 rule (population-based) 

modified by taking sampling variability into account in order to improve the performance of the K1 rule 

(Timmerman & Lorenzo-Seva, 2011; Zwick & Velicer, 1986). PA is based on the comparison of 

eigenvalues of actual data to those of randomly generated data. A dimension is retained if the observed 

eigenvalue is greater than the random eigenvalue in the same ordinal position (Timmerman & Lorenzo-

Seva, 2011; Zwick & Velicer, 1986). Because PCA uses original/unreduced correlation matrices (COR) 
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but EFA uses reduced correlation matrices (SMC), scholars debate on which type of input correlation 

matrices should be used for PA when used with EFA (e.g., Hill & Ray, 2014). For the number of randomly 

generated data sets, Horn suggested 50 data sets due to the limitations of computational power at that time 

(Glorfeld, 1995). After that, many scholars used at least 100 random data sets (e.g., Garrido, Abad, & 

Ponsoda, 2013; Green, Levy, Thompson, Lu, & Lo, 2012). Only a few scholars used a higher number than 

100 (e.g., 1,000 in Debelak & Tran, 2013; 1,000 in Weng & Cheng, 2005; and 5,000 in Glorfeld, 1995). 

For threshold, Horn suggested the mean or the average of eigenvalues of random data although it tends to 

yield too many dimensions (Buja & Eyuboglu, 1992; Glorfeld, 1995). Some scholars used 50th percentile 

(i.e., median) that is usually slightly different from the mean (Debelak & Tran, 2013). To avoid 

overfactoring, a more stringent threshold (e.g., 95th, 99th percentile) is typically recommended to yield more 

accurate results (Buja & Eyuboglu, 1992; Cota, Longman, Holden, Fekken, & Xinaris 1993; Glorfeld, 

1995). 

 Multiple average partial is based on the use of successive partial correlation matrices (Velicer, 1976). 

MAP starts from a complete PCA, then the first component is partialed out of the correlations among 

variables, and the average squared partial correlation is computed. This process is conducted for all possible 

partial correlation matrices and then the estimated number of components equals the step number yielding 

the smallest average squared partial correlation coefficient (O’Connor, 2000). 

The imbedded error is the error that remains in the reproduced data matrix in exploratory factor analysis 

(Malinowski, 1977b). The number of dimensions is equal to the ordinal position of the variable that yields 

the minimum IE value (Jackson, 1991). 

The indicator function is a function of the ordinal position of the variable, total number of variables, 

eigenvalues, and sample sizes, which are the same variables used in IE but calculated differently 

(Malinowski, 1977a). The number of dimensions is equal to the ordinal position of the variable that yields 

the minimum IND value (Jackson, 1991). Malinowski (1977a) recommended IND over IE, especially as 

sample sizes increase. 

  BS is one variant of PA as a “quick-and-dirty version of Horn’s technique” (Jackson, 1991, p. 47). The 

name broken stick comes from the analogy of a stick that is broken at random into p segments (like, perhaps, 

a scree plot). Then, “the expected length of the kth longest segment” is calculated by a formula (Jolliffe, 

1986) and a dimension will be retained if its proportion explained is larger than the computed chance value 

corresponding to each variable. 

 

Methods and Data Source 

  This study used two sources of data: existing real test data (in Experiment I) and generated data (in 

Experiment II). In Experiment I, we used existing real test data (i.e., applied Monte Carlo study), which is 

advantageous in that the results are more applicable to real-world data, and practitioners can make use of 

provided guidelines in their applied research. In Experiment II, which was the extension of Experiment I, 

using generated data (i.e., true Monte Carlo study) is advantageous in that more variables could be varied, 

thus resulting in more studied conditions. 

 

Experiment I: Methods and Data Source 

  In Experiment I, existing real test data were two (i.e., Mathematics as well as Career and Technology) 

out of eight subjects of the Ordinary National Educational Test (O-NET) data. The data were national 

examination scores of twelfth-grade students from Thailand in 2013, with permission granted from the 

National Institute of Educational Testing Service (Public Organization), Thailand or NIETS and IRB 

approval (Ruengvirayudh, 2018). Based on preliminary analyses of item analysis, exploratory factor 

analysis, and confirmatory factor analysis, those two subjects (i.e., Math and Tech) were manipulated into 

six factor structures based on the number of items (i.e., Math9, Math21, Math40, Tech15, Tech23, and 

Tech40; the number following the name of the subject refers to the number of items in that subject), the 

number of factors (i.e., one, two, and completely unknown), and the loading strength (i.e., moderately 

strong, acceptable, and as it was for 40 items), respectively (see Table 1). 

  Test items used in the study were binary (i.e., scored either right or wrong), so this study used only 

binary items. The data (approximately 400,000 cases) were treated as the population level because a Monte 

Carlo simulation process needs a population to repeatedly sample from. The R scripts in the R program 

were written to repeatedly sample from the data. Sample sizes were 100, 200, 300, 400, 500, 600, 700, 800,   
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Table 1. Summary of Factor Loading Criteria for Six Reduced Factor Structures 

 Math Tech 

 Math9 Math21 Math40 Tech15 Tech23 Tech40 

Factor 

structure 
One-factor One-factor 

Completely 

unknown 

Two-factor 

(10 and 5 

items) 

Two-factor 

(12 and 11 

items) 

Completely 

unknown 

Loading 

strength 

Moderately 

strong 
Acceptable - 

Moderately 

strong 
Acceptable - 

Loading 

criteria 
≥ .40 ≥ .30 As it was 

1L ≥ .40 & 

2L < .20 

1L ≥ .40  

& 2L < .30 

1L ≥ .30  

& 2L < .20 

As it was 

Note. For the loading criteria, all loadings were at least .40 in Math9 and at least .30 in Math21. 

In Tech15, moderately strong loading strength refers to loading of .40 or higher in the first factor 

and loading less than .20 in the second factor. In Tech23, acceptable loading strength refers to 

loading of .40 or higher in the first factor and loading less than .30 in the second factor, or 

loading of .30 or higher in the first factor and loading less than .20 in the second factor. Math40 

and Tech40 were a 40-item factor structure with loadings from the original data. 
 

900, and 1,000 to investigate the results with a wider range and larger sample sizes. The increment of 100 

was used to clearly see the change and diminishing returns in the results as a trend. The number of 

replications was 1,500 in the final study. 

 A computer program was written in R, the statistical programming language. The core of the program 

was tested and the output was verified to the extent possible. For PA and MAP, we tested and used the R 

Psych package functions. We programmed and tested K1, IND, IE, BS, and MARs by ourselves. Sample 

size and factor structure elaborated above were varied for all criteria. For PA, three more variables were 

varied: threshold (mean, 75th, 90th, and 95th percentiles); type of input correlation matrices 

(original/unreduced correlation matrices with 1s on the diagonal or COR and reduced correlation matrices 

with squared multiple correlations on the diagonal or SMC); and number of randomly generated data sets 

(100, 300, 500, 700, 900, and 1000). Based on the literature review, the number of randomly generated data 

sets has not been found studied. For MARs, the cut-off values included 0.7, 1 (i.e., K1), 1.2, and 1.4. The 

only dependent variable of this study was the number of dimensions (i.e., components or factors). 

 

Results of Experiment I 

  The data analysis included the mean of 1,500 samples as well as comparison statistics for precision 

(Standard Error (SE), Root Mean Squared Error (RMSE), Mean Absolute Value (MAE), and Relative 

Efficiency (RE)) and accuracy (percentage of correctness and bias). The data were analyzed step by step to 

select a few methods yielding the most precise results. Tables 2 and 3 show the mean and SE of the number 

of dimensions resulting from the methods in the final phase across 10 sample sizes from the Math9 data. 

The other factor structures were analyzed in the same manner.   

 As the true number of dimensions is unknown due to the use of existing real test data, SE, the average 

distance of a set of data from its mean, is the best statistic for Experiment I to inform the consistency or 

precision of the studied criteria because it is the only statistic that is not calculated based on the number of 

dimensions in the population level. Thus, SEs were more focused than the other statistics to compare the 

consistency of these methods. 

  In the complete results, there were three groups of the criteria having more than one method: PACOR, 

PASMC, and K1 and MARs. The best methods (with the lowest SE meaning that method produced the most 

precise results) of each group were: PACOR95, PASMC95, and MAR1.4. These criteria were chosen for further 

analysis below. Overall, PACOR performed better than PASMC. Interestingly and unexpectedly, the 

differences in SE when varying the number of randomly generated data sets were minimal. Similar trends 

were found in the results from both PACOR and PASMC although SE from PACOR was consistently lower than   



Parallel Analysis 

General Linear Model Journal, 2022, Vol. 46(1)                                                                                                         23 

Table 2. Mean of the Number of Dimensions Resulting from Final Methods across 10 Sample Sizes  

    from the Math9 Data 

Criteria n 

No. Methods 100 200 300 400 500 600 700 800 900 1000 

1 PACORMU 1.421 1.161 1.070 1.051 1.021 1.019 1.011 1.013 1.002 1.003 

2 PACOR75 1.279 1.106 1.039 1.028 1.014 1.009 1.007 1.009 1.001 1.002 

3 PACOR90 1.185 1.067 1.023 1.014 1.009 1.004 1.005 1.004 1.001 1.001 

4 PACOR95 1.144 1.051 1.016 1.010 1.007 1.003 1.003 1.003 1.001 1.001 

5 PACOR100  1.136 1.055 1.026 1.011 1.006 1.004 1.003 1.001 1.002 1.001 

6 PACOR300 1.125 1.052 1.023 1.010 1.007 1.003 1.002 1.001 1.002 1.001 

7 PACOR500 1.125 1.053 1.024 1.011 1.005 1.003 1.003 1.001 1.002 1.001 

8 PACOR700 1.127 1.051 1.025 1.011 1.005 1.003 1.003 1.001 1.002 1.001 

9 PACOR900 1.125 1.049 1.025 1.011 1.005 1.003 1.003 1.001 1.002 1.001 

10 PACOR1000 1.125 1.049 1.025 1.011 1.005 1.003 1.003 1.001 1.001 1.001 

11 PASMCMU 3.039 2.541 2.337 2.202 2.122 2.065 2.113 2.049 2.037 2.061 

12 PASMC75 2.401 2.055 1.986 1.853 1.824 1.801 1.851 1.805 1.837 1.836 

13 PASMC90 1.955 1.707 1.683 1.603 1.575 1.603 1.647 1.620 1.646 1.641 

14 PASMC95 1.762 1.544 1.527 1.482 1.476 1.507 1.538 1.519 1.544 1.552 

15 PASMC100 1.673 1.545 1.487 1.467 1.491 1.523 1.490 1.517 1.557 1.586 

16 PASMC300 1.636 1.521 1.487 1.460 1.481 1.515 1.471 1.508 1.551 1.575 

17 PASMC500 1.652 1.516 1.483 1.451 1.473 1.516 1.478 1.509 1.548 1.571 

18 PASMC700 1.640 1.521 1.479 1.451 1.479 1.513 1.471 1.498 1.550 1.573 

19 PASMC900 1.640 1.515 1.479 1.454 1.467 1.514 1.471 1.501 1.547 1.569 

20 PASMC1000 1.637 1.520 1.479 1.450 1.470 1.508 1.476 1.507 1.547 1.572 

21 MAP 1.007 1.001 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

22 BS 0.601 0.630 0.609 0.621 0.637 0.660 0.660 0.663 0.691 0.687 

23 MAR0.7 5.194 5.517 5.707 5.841 5.921 5.966 6.063 6.129 6.143 6.195 

24 Average Root 

(K1) 2.785 2.247 1.945 1.725 1.531 1.453 1.361 1.273 1.219 1.191 

25 MAR1.2 1.729 1.189 1.041 1.013 1.003 1.001 1.000 1.001 1.000 1.000 

26 MAR1.4 1.157 1.005 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

27 IE 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

28 IND 1.095 1.002 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Note. Only the 95th percentile was used as a threshold when varying the number of randomly generated 

data sets in PACOR and PASMC. 

 

Figure 1. SE of PACOR and PASMC by the Number of Randomly Generated Data Sets from the Math9 Data 
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SE from PASMC in the Math9, Tech15, Math21, and Tech23 data sets. It should be noted, also, that PACOR 

was consistently more accurate than PASMC when comparing the number of dimensions to the researcher-

determined correct number of components (see Table 2). Those minimal differences were slightly larger in 

PASMC than in PACOR. Therefore, the results showed that varying the number of randomly generated data 

sets did not have an impact on SE (see Figure 1). 

For IE, the results showed that the mean of the number of dimensions is 1.000 across all 10 sample sizes 

from 100 to 1,000 in all six factor structures in the final study. As a consequence, IE results would not be 

focused. However, the results of IE did vary when sample sizes were smaller (i.e., 50 and 75) in a pilot 

study. Furthermore, K1 and BS also performed poorly. That is, K1 overfactored, and BS required larger 

sample sizes although it required low sample sizes (n = 100) in a few conditions (i.e., many items in the 

data). 

  To compare the consistency of the effective methods, line graphs in Figures 2a, 2b, 2c, 2d, 2e, and 2f 

display the SEs of the number of dimensions resulting from the six best methods (i.e., PACOR95, PASMC95, 

MAP, BS, MAR1.4, and IND) across 10 sample sizes in all six factor structures (i.e., Math9, Tech15, 

Math21, Tech23, Math40, and Tech40). 

 

Discussion of Experiment I 

  The performance of the six best methods were analyzed based on combinations of the mean, SE, RMSE, 

MAE, RE, percentage of correctness, and bias. The overall results showed that the criteria (including 

methods) performing the best to worst were: MAP, IND, PACOR95, MAR1.4, BS, and IE. MAP performed 

well when there was only one to two dimensions, even when sample sizes were small (n ≤ 300). MAP 

performed poorly when there were unequal numbers of items in each dimension. PACOR95 with 100 

randomly generated data sets performed the best in most conditions. Using 100 or 1,000 randomly generated 

data sets yielded trivially different results. Thus, using 100 randomly generated data sets is recommended 

with PACOR95. PACOR95 performed poorly when there were many items in the data. Instead, MAR1.4, which 

performed much better than K1, is recommended for use in these conditions where MAP or PA performed 

poorly. Furthermore, MAP and PA usually yield the same results based on the results of simulations studies. 

When inaccurate results occurred, MAP tended to underfactor, whereas PA tended to overfactor. Therefore, 

researchers are recommended to run MAP and PA together to compare the results (O’Connor, 2000; Zwick 

& Velicer, 1986). When there were many items in the data, IND and BS performed well depending on the 

sample size. BS is recommended when only 100 cases are available. When at least 200 cases are available, 

IND is recommended. For these reasons, we recommended using a combination of these criteria based on 

conditions of the data available to applied researchers. Finally, IE is not recommended.  

  Also, larger sample sizes tremendously improved the performance of these criteria across all factor 

structures. In general, sample sizes of 200, 300, and 400 were recommended to be absolute minimum, 

acceptable, and desirable sample sizes to yield consistent results. For the impact of factor structures, 

unequal numbers of items in each dimension and a large number of items in the data showed a negative 

impact on the precision of the factor extraction results. 

 

Experiment II 

  Experiment I using existing real test data (i.e., applied Monte Carlo study) was a doctoral dissertation 

(Ruengvirayudh, 2018). Even though the results are more applicable to real-world data, fewer variables 

could be varied and with limitations. Experiment II, used generated data (i.e., true Monte Carlo study where 

true population values are known), which makes it a true experiment study. That is, more variables could 

be varied to explore more studied conditions. We use both types of data, real and generated, to investigate 

dimensionality criteria because each type of data has its own limitations. Therefore, using both data would 

offset weaknesses of each.  

Methods and Data Source of Experiment II 

  In Experiment II, we created a program in R to generate data for a variety of conditions. We 

systematically varied sample size from 100 to 600 with the increment of 100 (i.e., 100, 200, 300, 400, 500, 

and 600) and the number of variables from 6 to 36 with the increment of 6 (i.e., 6, 12, 18, 24, 30, and 36). 

We also varied the number of underlying dimensions or factors in the population data together with the 

number of variables in these patterns: (a) for 6 variables: 1, 2, and 3 dimensions (i.e., we generated data   
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Figure 2. SEs from All Six Factor Structures 
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that had 1, 2, and 3 underlying dimensions); (b) for 12, 24, and 36 variables: 1, 2, 3, 4, and 6 dimensions; 

and (c) for 18 and 30 variables: 1, 2, 3, and 6 dimensions. In Experiment I, the number of variables and the 

number of underlying dimensions could not be varied. 

  We varied the size of the correlations among factors in the population data and grouped them into three 

conditions: orthogonal (uncorrelated factors), relatively orthogonal (small correlation among factors), and 

oblique (relatively strong correlation among factors). This variable could not be varied in Experiment I. For 

MARs in Experiment II, we varied cut-off values from 1.1 to 1.6 with the increment of 0.1 (i.e., 1.1, 1.2, 

1.3, 1.4, 1.5, and 1.6). 

  Examples of population correlation matrices and their associated population factor loadings were 

provided in Tables 4 to 6. In these examples, the orthogonal condition had a correlation between factors of 

r < .001. The relatively orthogonal condition had a correlation between factors of r = .288, and the oblique 

condition had a correlation between factors of r = .473. Therefore, there were 6 sample sizes, 26 

combinations of variables and dimensions, and 3 factor correlations, which resulted in a total of 468 studied 

conditions. 

  We generated normally distributed, correlated data to represent a population of 200,000 cases for each 

studied condition (a combination of sample size, number of variables, number of dimensions, and 

correlation among factors). We generated data using a population correlation matrix that satisfied the 

correlations required for each condition. Then, we randomly selected 2,000 samples from each condition’s 

population data. For each sample, we used the criteria for determining the number of dimensions described  
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Table 3. SE of the Number of Dimensions Resulting from Final Methods across 10 Sample Sizes  

    from the Math9 Data 

Criteria n 

No. Methods 100 200 300 400 500 600 700 800 900 1000 

1 PACORMU 0.659 0.395 0.260 0.224 0.147 0.135 0.103 0.120 0.045 0.058 

2 PACOR75 0.537 0.325 0.193 0.165 0.118 0.096 0.081 0.093 0.037 0.045 

3 PACOR90 0.437 0.259 0.151 0.118 0.093 0.063 0.068 0.063 0.037 0.037 

4 PACOR95 0.384 0.227 0.126 0.100 0.081 0.052 0.052 0.058 0.037 0.037 

5 PACOR100  0.380 0.232 0.163 0.106 0.077 0.063 0.052 0.026 0.045 0.026 

6 PACOR300 0.364 0.222 0.155 0.100 0.085 0.052 0.045 0.026 0.045 0.026 

7 PACOR500 0.364 0.223 0.157 0.106 0.073 0.052 0.052 0.026 0.045 0.026 

8 PACOR700 0.363 0.219 0.159 0.106 0.073 0.052 0.052 0.026 0.045 0.026 

9 PACOR900 0.360 0.215 0.161 0.106 0.073 0.052 0.052 0.026 0.045 0.026 

10 PACOR1000 0.366 0.217 0.159 0.106 0.073 0.052 0.052 0.026 0.037 0.026 

11 PASMCMU 1.555 1.231 1.003 0.946 0.901 0.815 0.796 0.737 0.736 0.718 

12 PASMC75 1.236 1.014 0.872 0.827 0.797 0.735 0.738 0.685 0.695 0.683 

13 PASMC90 0.983 0.833 0.760 0.701 0.691 0.657 0.675 0.655 0.644 0.641 

14 PASMC95 0.900 0.725 0.676 0.638 0.634 0.607 0.635 0.625 0.611 0.611 

15 PASMC100 0.842 0.704 0.651 0.623 0.626 0.619 0.617 0.609 0.607 0.603 

16 PASMC300 0.807 0.695 0.648 0.614 0.616 0.610 0.606 0.605 0.604 0.596 

17 PASMC500 0.838 0.682 0.655 0.609 0.613 0.619 0.617 0.603 0.608 0.599 

18 PASMC700 0.824 0.684 0.652 0.614 0.612 0.616 0.609 0.599 0.608 0.597 

19 PASMC900 0.819 0.688 0.648 0.612 0.609 0.615 0.608 0.601 0.606 0.600 

20 PASMC1000 0.822 0.682 0.651 0.606 0.612 0.612 0.615 0.601 0.603 0.601 

21 MAP 0.081 0.026 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

22 BS 0.490 0.483 0.488 0.485 0.481 0.474 0.474 0.473 0.462 0.464 

23 MAR0.7 0.780 0.779 0.773 0.756 0.761 0.769 0.769 0.738 0.719 0.745 

24 Average Root 

(K1) 0.697 0.645 0.579 0.554 0.534 0.514 0.486 0.455 0.421 0.393 

25 MAR1.2 0.573 0.395 0.199 0.112 0.058 0.037 0.000 0.026 0.000 0.000 

26 MAR1.4 0.364 0.073 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

27 IE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

28 IND 0.313 0.045 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Note. Only the 95th percentile was used as a threshold when varying the number of randomly generated 

data sets in PACOR and PASMC.                     
 

above. For some criteria, multiple options were explored (e.g., PA with the mean, 75th, 90th, and 95th 

percentiles and thresholds as well as several MAR calculations).  

  In Experiment II we knew the population characteristics; therefore, we were able to calculate a variety 

of common Monte Carlo statistics, including bias, RMSE, and correctness. We tested the R code at the 

individual sample level, across multiple samples, and for piloted conditions. For PA and MAP, we tested 

and used the R Psych package functions. We programmed and tested K1, IND, IE, BS, and MARs by 

ourselves. In Experiment II, we focused on the correctness results. The results below focused only on the 

single most correct version of each criterion from their families (e.g., only PACOR95 and PASMC95). We found 

no discernible benefit to PA with 900 randomly generated data sets, so the results were for PA methods 

with only 100 randomly generated data sets (see Ruengvirayudh, 2018). 
 

Results of Experiment II 

  The overall results for the correctness criterion we used in this study were shown in Table 7. 

Specifically, it shows the proportion of all 468 studied conditions where the criteria reached 90% 

correctness. That is, how well the criteria identified the correct number of dimensions at least 1,800 out of 

2,000 samples across each condition. Table 7 shows that PACOR95 was 90% correct across the most total 

conditions. This table also shows that PACOR95 was most frequently 90% correct for both the orthogonal and 

relatively orthogonal conditions, but was third to MAP and MAR1.6 for the oblique conditions. K1, IE, and 

BS performed poorly in most conditions, so they were not considered further.  
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Table 4. Example Orthogonal and Relatively Orthogonal Population Correlation Matrices for 12 

Variables (or Items) with 2 Dimensions 

 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 

V1 --- .16 .22 .18 .34 .34 .06 .06 .05 .05 .09 .02 

V2 .20 --- .28 .35 .23 .19 .10 .08 .04 .02 .07 .08 

V3 .20 .20 --- .30 .22 .34 .08 .10 .10 .06 .09 .08 

V4 .20 .20 .20 --- .26 .34 .05 .08 .03 .08 .02 .04 

V5 .20 .20 .20 .20 --- .27 .04 .06 .04 .06 .02 .07 

V6 .20 .20 .20 .20 .20 --- .01 .05 .08 .04 .10 .07 

V7 .00 .00 .00 .00 .00 .00 --- .33 .26 .32 .35 .21 

V8 .00 .00 .00 .00 .00 .00 .20 --- .19 .27 .21 .26 

V9 .00 .00 .00 .00 .00 .00 .20 .20 --- .36 .33 .24 

V10 .00 .00 .00 .00 .00 .00 .20 .20 .20 --- .35 .17 

V11 .00 .00 .00 .00 .00 .00 .20 .20 .20 .20 --- .24 

V12 .00 .00 .00 .00 .00 .00 .20 .20 .20 .20 .20 --- 

Note. Orthogonal values in lower triangular half; relatively orthogonal values in upper triangular 

highlighted half; correlation between relatively orthogonal factors is r = .288; correlation between 

orthogonal factors is r < .001. 
 

Table 5. Example Oblique and Relatively Orthogonal Population Correlation Matrices for 12 Variables 

(or Items) with 2 Dimensions 

 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 

V1 --- .16 .22 .18 .34 .34 .06 .06 .05 .05 .09 .02 

V2 .25 --- .28 .35 .23 .19 .10 .08 .04 .02 .07 .08 

V3 .29 .32 --- .30 .22 .34 .08 .10 .10 .06 .09 .08 

V4 .26 .35 .32 --- .26 .34 .05 .08 .03 .08 .02 .04 

V5 .34 .29 .28 .31 --- .27 .04 .06 .04 .06 .02 .07 

V6 .34 .27 .34 .34 .31 --- .01 .05 .08 .04 .10 .07 

V7 .11 .20 .16 .10 .09 .01 --- .33 .26 .32 .35 .21 

V8 .12 .15 .20 .16 .13 .10 .34 --- .19 .27 .21 .26 

V9 .09 .07 .20 .06 .08 .15 .31 .27 --- .36 .33 .24 

V10 .10 .03 .12 .16 .12 .09 .34 .31 .34 --- .35 .17 

V11 .19 .14 .17 .04 .05 .19 .35 .28 .34 .35 --- .24 

V12 .04 .16 .16 .08 .14 .14 .28 .30 .30 .26 .30 --- 

Note. Oblique values in lower triangular half; relatively orthogonal values in upper triangular highlighted 

half; half; correlation between relatively orthogonal factors is r = .288; correlation between oblique 

factors is r = .473. 
 

Table 6. Example Factor Loadings for Correlation Matrices with 12 Variables and 2 Dimensions 

 Orthogonal Relatively Orthogonal Oblique 

Item Factor 1 Factor 2 Factor 1 Factor 2 Factor 1 Factor 2 

1 .45  .47  .60  

2 .45  .45  .51 .06 

3 .45  .52  .57  

4 .45  .57  .59  

5 .45  .50  .59  

6 .45  .59  .49  

7  .45  .59  .53 

8  .45  .46  .52 

9  .45  .52 .10 .52 

10  .45  .58  .59 

11  .45  .59  .56 

12  .45  .40  .60 

Note. The factor loadings in the table are after a Promax Rotation.  
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  Because it was apparent that the overall results might not hold across all conditions consistently, we 

created Figure 3 to show the average number of correct samples for each sample size for each factor 

correlation condition. Several criteria did not work well when N ≤ 200, even if they worked well with larger 

sample sizes. The same criteria identified in the overall results (Table 7) could be seen generally to have 

the most correctness across sample sizes. One curious finding was that PASMC95 generally became less 

correct as the sample sizes increased, except for the orthogonal conditions. 

  The criteria broken down across the number of variables were shown in Figure 4. Because we 

determined that smaller sample sizes produced less than desirable results, these figures show the averages 

only when N ≥ 300. Again, we could see the relative consistency of the correctness results for PACOR95 

that it did not perform quite as well when the number of variables increased. Alternatively, MAP, 

MAR1.6, and IND generally improved their correctness as the number of variables increased. However, 

these criteria had lower than desirable correctness when the number of variables was only 6 or 12.   

  Because it became obvious that there were interactions among the conditions, we created Figures 5 to 

7 to show examples of the results for the better criteria broken down by both sample sizes and number of 

variables. One of the results that became particularly clear was that most of the criteria failed as the structure 

became more diffuse (i.e., fewer variables per dimension, such as Figure 5e) as compared to more 

concentrated structures (i.e., more variables per dimension, such as Figure 5a), especially when sample 

sizes were smaller. 

 Finally, we explored the accuracy of combinations of criteria in terms of proportion of correctness 

across the relatively orthogonal conditions. Tables 8 and 9 show the results when combining criteria and 

only when N ≥ 200. Table 10 shows that PACOR95 & MAP & MAR1.6 produced 95% correctness (i.e., they 

agreed on the correct number of dimensions in at least 95% of those agreed-upon samples if they agreed at 

all) in 73 of 86 conditions (85%) when N ≥ 300. Note that there were 18 conditions with more diffuse 

structures where PACOR95 & MAP & MAR1.6 never agreed. When excluding these three most diffuse 

conditions where no criteria worked consistently well (e.g., 3 or fewer variables per dimension), agreement 

on the combined criteria reached 95% correctness for 97% of the 84 conditions. 

 

Discussion of Experiment II 

 Despite the popularity of confirmatory factor analysis (CFA), there are still many circumstances when 

applied researchers will want to perform EFA or PCA as data reduction techniques. Therefore, determining 

the correct number of factors to extract in such analyses will continue to be a critical matter. Generally 

speaking, and across many of the conditions studied, PA using the 95th percentile (PACOR95) was most 

frequently correct, followed by MAP, MAR1.6, and IND. However, we found that using agreement among 

a combination of criteria could produce results that challenged any individual criterion. In particular, our 

recommendation is that applied researchers use a combination of PACOR95 & MAP & MAR1.6, with N ≥ 300. 

When the combination does not agree, then use one of the better individual criteria. However, when the 

structure is diffuse (e.g., only two or three items per factor), then applied researchers need much larger 

sample sizes or may not find a strong solution at all. 

 

Conclusions and Scholarly Significance 

  Determining the correct number of dimensions in the data is crucial to validity in many fields, such as 

checking dimensionality in item response theory (IRT), identifying the number of sub-categories in an 

exam, end-of-semester evaluation form, survey data, and so on. Choosing criteria to determine the number 

of dimensions correctly and consistently is a critical step prior to performing exploratory factor analysis 

(EFA). Based on our results from existing real test data in Experiment I and generated data in Experiment 

II, we found new specific and general findings for common and not-so-common criteria. 

  Our results also suggest several other new, specific findings. First, all criteria suffer as the number of 

dimensions among the variables increased (e.g., two or three variables per dimension, such as 12 total items 

with 4 or 6 dimensions), especially with smaller numbers of variables and small sample sizes (e.g., 6 items 

with 3 dimensions). Therefore, we recommend that researchers use extreme caution when performing EFA 

or PCA with a relatively small number of variables or items. However, it should be noted that, based on the 

real data we used in Experiment I, we used loadings that most would consider moderate. If loadings are 

much stronger than we used, then perhaps these criteria will perform better with a large number of 

dimensions relative to the number of items.  
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Table 7. Proportion of 120 Sample Size, Number of Variables, and Number of Dimensions Conditions, 

where N ≥ 200 and Variable-to-Dimension Ratio ≥ 3, and where Criteria Reached 90% Correctness (out 

of 2,000 Samples for Each Condition) Sorted by Total Percentage Correct. 

 
Orthogonal 

Relatively 

Orthogonal 
Oblique Total 

Parallel Analysis (PACOR95) .958 .625 .600 .728 

Modified Average Root (MAR1.6) .742 .633 .717 .697 

Minimum Average Partial .583 .650 .633 .622 

Indicator Function .733 .525 .442 .567 

Parallel Analysis (PASMC95) .833 .058 .158 .350 

Broken Stick .208 .333 .333 .291 

Imbedded Error .250 .250 .250 .250 

Kaiser's Criterion .092 .058 .117 .089 

 

Figure 3. Average Correctness of Criteria across Sample Sizes for All Conditions 

(a) Orthogonal  Conditions 

 

(b) Relatively Orthogonal Conditions 

 

(c) Oblique Conditions 

 
 

Figure 4. Average Correctness of Criteria across Number of Variables in Analysis for N≥300 Conditions 

(a) Orthogonal  Conditions 

 

(b) Relatively Orthogonal Conditions 

 

(c) Oblique  Conditions 

 

 

 Second, PACOR95 outperformed PASMC95 in terms of correctness in almost all conditions, arguing in 

favor of using the original (unreduced) correlation matrices with 1s diagonal even for PA used with EFA. 

That is, we recommend using the original correlation matrix for PA for both PCA and EFA (i.e., we do not 

recommend using the reduced correlation matrix with SMCs on the diagonal for PA used with EFA). 

Further, PACOR95 performed the best in most conditions, followed by MAP, MAR1.6, and IND. MAP 

performed quite well across many conditions, and outperformed PACOR95 when there were fewer dimensions 

in the data, even when sample sizes were small (N ≤ 300). Using 100 or 1,000 randomly generated data sets 

in PA yielded trivially different results. Thus, using 100 randomly generated data sets is recommended with 

PACOR95.  
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  Third, we recommended that applied researchers use a combination of PACOR95 & MAP & MAR1.6 or 

just PACOR95 & MAP, with N ≥ 300 whenever possible. When these methods agreed, there was a high level 

of correctness for the resulting choice of number of dimensions. When the combination does not agree, then 

use one of the better individual criteria (usually PACOR95, but perhaps MAP if conditions are right). We also 

recommend exploring dimensionality both above and below the number recommended by any criteria used 

to look for the most theoretically defensible factor results. For example, if the criterion recommends 3 

dimensions, then the researcher should examine both the 2 dimensional and 4 dimensional solutions to see 

if one makes more sense theoretically.  

  Fourth, one relatively unknown approach, IND, and one new approach, MAR1.6, performed admirably 

across many conditions. Indeed, MAR1.6 worked well enough that we would recommend that 1.6 become 

the default eigenvalue for comparison in statistical programs (e.g., SPSS, where eigenvalues greater than 1 

is the default). MAR1.6 is easy to perform by changing a default eigenvalue of 1.0 (i.e., K1) to 1.6 as a 

minimum eigenvalue to determine a factor, and IND formula is not terribly complicated to calculate. 

  Fifth, a general conclusion about sample size is that determining the number of dimensions for EFA 

may require larger sample sizes than most scholars have recommended for EFA itself. We found that N ≥ 

300 is a desired minimum for correctness in most conditions and most criteria. No criteria performed well  

across conditions with N = 100. Unlike many EFA sample size recommendations, we found that a minimum 

of N = 300 is more important than a cases-per-variable rule (e.g., 10 or 20 cases per variable or item). 

Furthermore, we also found that sample sizes must be larger when the structure in the variables is more 

diffuse. Nevertheless, no criteria performed well across conditions with a variable-to-dimension ratio of 2:1 

(e.g., 6 items and 3 factors). Applied researchers cannot know true structure from sample data, but if the 

researchers decide on several dimensions for a smaller number of variables, they should have a large 

number of cases to have more confidence in their decision. 
 

Figure 5. Correctness of Criteria for V=12 Variables across All Sample Sizes and Number of Dimensions 

(D) for the Relatively Orthogonal Conditions.  

(a) V-to-D Ratio = 12:1 

 

(b) V-to-D Ratio = 6:1 

 

(c) V-to-D Ratio = 4:1 

 
(d) V-to-D Ratio = 3:1 

 

(e) V-to-D Ratio = 2:1 
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Figure 6. Correctness of Criteria for V = 24 Variables across All Sample Sizes and Number of 

Dimensions (D) for the Relatively Orthogonal Conditions 

(a) V-to-D Ratio = 24:1 

 

(b) V-to-D Ratio = 12:1 

 

(c) V-to-D Ratio = 8:1 

 
(d) V-to-D Ratio = 6:1 

 

(e) V-to-D Ratio = 4:1 

 

 

 

Table 8. Proportion of 120 Sample Size, Number of Variable, and Number of Dimensions Conditions, 

where N ≥ 200 and Variable-to-Dimension Ratio ≥ 3, and where Average Bias Less than 0.5 Reached 

90% (out of 2,000 Samples for Each Condition) Sorted by Total Percentage 

 Orthogonal Relatively Orthogonal Oblique Total 

Parallel Analysis (PACOR95) .917 .842 .842 .867 

Modified Average Root (MAR1.6) .750 .708 .742 .733 

Minimum Average Partial .608 .683 .667 .653 

Indicator Function .750 .583 .567 .633 

Parallel Analysis (PASMC95) .917 .117 .258 .431 

Broken Stick .258 .358 .442 .353 

Imbedded Error .250 .250 .250 .250 

Kaiser's Criterion .167 .142 .183 .164 
 

Table 9. Proportion of 120 Sample Size, Number of Variable, and Number of Dimensions Conditions, 

where N ≥ 200 and Variable-to-Dimension Ratio ≥ 3, and where Average RMSE Less than 0.5 Reached 

90% (out of 2,000 Samples for Each Condition) Sorted by Total Percentage 

 Orthogonal Relatively Orthogonal Oblique Total 

Parallel Analysis (PACOR95) .967 .842 .725 .845 

Modified Average Root (MAR1.6) .750 .683 .725 .719 

Minimum Average Partial .583 .658 .650 .630 

Indicator Function .750 .583 .508 .614 

Parallel Analysis (PASMC95) .900 .075 .192 .389 

Broken Stick .225 .333 .375 .311 

Imbedded Error .250 .250 .250 .250 

Kaiser's Criterion .133 .108 .158 .133 
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Figure 7. Correctness of Criteria for V = 36 Variables across All Sample Sizes and Number of 

Dimensions (D) for the Relatively Orthogonal Conditions. 

(a) V-to-D Ratio = 36:1 

 

(b) V-to-D Ratio = 18:1 

 

(c) V-to-D Ratio = 12:1 

 
(d) V-to-D Ratio = 9:1 

 

(e) V-to-D Ratio = 6:1 

 

 

 
Table 10. Percentage of the Best Combination Criteria across Conditions where the Agreement of 

Criteria Reached 95% Correctness 

 When N ≥ 300 When N ≥ 200 Total 

PACOR95 & MAP & MAR1.6 73 of 86 (85%) 90 of 111 (81%) 97 of 136 (71%) 

PACOR95 & MAP 73 of 87 (84%) 91 of 112 (81%) 101 of 138 (73%) 

PACOR95 & MAP & IND 72 of 86 (84%) 89 of 110 (81%) 97 of 127 (76%) 

MAP & MAR1.6 71 of 100 (71%) 86 of 126 (68%) 92 of 151 (61%) 

MAP & IND 71 of 102 (70%) 88 of 127 (69%) 95 of 144 (66%) 

Note. First number represents the number of conditions where agreement was at least 90% correct; second 

number represents the total number of conditions with non-zero agreement; number in parentheses 

represents the percentage of conditions with non-zero agreement that resulted in at least 90% correctness. 
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