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This study examined how the values of three distinct R
2
 analogs used in ordinal regression vary as 

functions of number of predictors, choice of link function, and distribution type. Results indicated that 

Nagelkerke’s (1991) index most closely approximated OLS R
2
, and the use of a complementary log-log 

link function resulted in particularly variant values of the R
2
 analogs. 

regression is a procedure used in situations where one or more predictor variables are used to 

predict the probability of a particular outcome, and where that outcome variable of interest is 

manifest as a set of J ordered categories. Specifically, the most commonly-used application of 

ordinal regression, the cumulative odds model using a logit link, fits an equation of the form:  
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where x1 to xK are the K (continuous or categorical) predictor variables, and j̂  is the predicted 

probability of an outcome occurring at or below category j. This equation is sometimes rephrased as 
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so that the k (for k = 1, …, K)  parameter estimates (i.e., the “location” parameter estimates) reflect the 

subsequent increase in the predicted odds associated with each unit increase of each predictor, and i0

indicates the unique intercept (“threshold”) associated with each of the J-1 categories.     

  The ordinal regression model is typically assessed for a given data set to determine whether it predicts 

significantly better than the threshold-only model. This is carried out by comparing the significance of the 

omnibus chi-square test of the model coefficients, which assesses the incremental decrease in the log-

likelihood of the regression model containing the full set of predictor variables when it is compared to the 

model that contains only the intercept (threshold) terms, and determines whether the former significantly 

improves prediction over the latter. Although the omnibus chi-square statistic provides a formal test of 

whether the predictor variables add significant predictive capacity beyond the intercept-only model, it 

does not provide a true goodness-of-fit index, and spurious significance can result with large sample 

sizes. Goodness-of-fit of the ordinal regression model can be assessed using the Pearson statistic, 
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or the likelihood-ratio (i.e., “deviance”) statistic, 
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each of which is based on the discrepancies between the observed and expected frequencies at each 

combination of the ordinal outcome categories and predictor variable levels, and where non-statistically-

significant results on the residual degrees of freedom indicate adequacy of model fit. When computing 

either the Pearson or deviance goodness-of-fit statistic, if zero frequencies occur in a substantial number 

of cells—as can occur, for example, with multiple predictors or the use of continuous predictors—the 

Pearson and deviance statistics do not provide stable estimates of goodness-of-fit (Agresti, 1984). Lipsitz, 

Fitzmaurice, and Molenberghs (1996) describe an alternative goodness-of-fit test, which might be 

considered an extension of the Hosmer-Lemeshow (2000) binary logistic regression goodness-of-fit 

procedure to ordinal models, whereby scores (sj) are assigned to each of the J levels of the ordinal 

outcome (e.g., s1 = 1, s2 = 2, and s3 = 3 for ordinal outcomes of “Poor,” “Fair,” and “Good.”), and 
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ˆ̂ , computed for each case, where ijp̂  are the predicted probabilities 

from the ordinal regression for each of the J levels of the ordinal outcome. A set of G binary (0/1) 

indicators, Iig are then constructed that reflect the deciles of these predicted mean scores. A second ordinal 

regression model, 
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is then fitted. If the original regression model (2) is appropriately specified, then 0... 121  G , 

which can be tested via Wald statistics or likelihood ratio tests. 

  In addition, a number of “R
2
 analog” goodness-of-fit indices have been developed for ordinal and 

logistic regression models that are intended as analogs of R
2
 as used in ordinary least-squares (OLS) 

regression. McFadden (1974) proposed an index that is computed as one minus the ratio of the full-model 

log-likelihood to the intercept-only log-likelihood (1-[LLFull/LLNull]), and is considered perhaps the most 

direct analog to OLS R
2
, at least in a conceptual sense. Cox and Snell (1989) propose computing an R

2
 

analog as (1-[LNull/LFull]
2/n

), where LNull is the value of the likelihood function for the intercepts-only (i.e., 

thresholds-only) model, LFull is the corresponding value for the full model with all the predictors, and n is 

the sample size
†
. An issue with Cox and Snell’s R

2
 analog is that values can potentially exceed 1.0. 

Nagelkerke (1991), however, proposed a rescaling that divides this statistic by its maximum possible 

value (1-(LNull)
2/n

), which results in a statistic that has an identical range to OLS R
2
.  

 The goodness of fit for a specified regression model can be influenced by the specific link functions, 

and particular link functions may be preferred for specific distributional characteristics of the outcome 

variable. Norusis (2012) suggests that the choice of link function in an ordinal regression analysis should 

be driven by the distribution of the ordinal outcome. Specifically, the logit link is suggested for uniformly 

distributed outcomes, the complementary log-log link is suggested for distributions in which higher 

categories are more probable, the negative log-log link is suggested when smaller categories are more 

probable, the probit link is suggested when the underlying latent trait of the ordinal outcome is normally 

distributed, and the Cauchit link is suggested when many extreme values are present. Li and Duan (1989), 

however, suggest that the choice of link function has little effect on the estimated parameters. The IBM 

SPSS (Statistical Package for the Social Sciences) Statistics Information Center (2011) suggests that, in 

the absence of theoretical justification for a particular link function, model fit should be the guiding 

criterion. The purpose of the present study was to examine several goodness-of-fit indices used in ordinal 

regression under varying sample conditions and under the use of various, specified link functions. 

 

Method 

 The present study used Monte Carlo techniques to examine and compare several goodness-of-fit 

indices used in ordinal regression. To accomplish the goals of the study, multiple samples of size of n = 

200 were randomly drawn from a multivariate normal distribution, and where each sample consisted of 

five continuous variables with a specified correlational structure. One of these five variables was 

transformed to an ordinal outcome variable with four levels by binning the values using the procedures 

described below. We then carried out ordinal regression on each sample using this ordinal variable as the 

outcome measure and the remaining four continuous variables as predictors, and computed three distinct  

R
2
 analogs (Cox & Snell’s R

2
, Nagelkerke’s R

2
, and McFadden’s R

2
). In addition, R

2
 was computed using 

OLS regression, where the predictors were the same predictors used in the ordinal regression, and the 

outcome variable consisted of values for the original continuous variable generated in the simulation 

(prior to transformation to an ordinal outcome). We then examined how varying (1) the distribution of the 

ordinal outcome (i.e., uniform distribution, high categories more probable, or low categories more 

probable), as well as (2) the specified link function (i.e., logit, complementary log-log, negative log-log, 

probit, Cauchit) affected the resulting R
2
 analogs. These simulations were then repeated using either two 

or three predictors in the regression model.  

  The simulated data values for five continuous variables (four “predictors” and one “outcome”) were 

randomly generated from multivariate normal distribution with a specified correlational structure. 

Particularly, low correlation (r = .10) was specified among the predictors, and moderate correlation (r = 



Ordinal Regression Goodness-of-Fit 

Multiple Linear Regression Viewpoints, 2012, Vol. 38(1)                                                                                           3 

.50) was specified between each predictor and the outcome variable. An additional, ordinal outcome 

variable was then derived from fifth continuous “outcome” variable by binning this variable into four 

categories based on one of three experimental conditions: (1) specifying a uniform distribution (i.e., each 

category equally likely); (2) specifying a distribution in which lower categories were more probable (i.e., 

the categories, from low to high, contained 40%, 30%, 20%, and 10% of the data values, respectively); 

and (3) specifying a distribution in which higher categories were more probable (i.e., the categories, from 

low to high, contained 10%, 20%, 30%, and 40% of the data values, respectively). These data were then 

used as input for ordinal regression analyses with 1000 replications carried out for each condition. 

 

  Table 1. R
2
 Analog Values for Simulated Data by Link Function: Ordinal Regression  

   with Four Uniformly-Distributed Categorical Outcomes. 

  Two predictors Three predictors Four predictors 

Statistic Link Function M SD M SD M SD 

Cox & Snell   Logit .3942 .0494 .5490 .0421 .6803 .0317 

Cox & Snell   Comp. Log-Log .4043 .0910 .7557 .1350 .9335 .0148 

Cox & Snell   Neg. Log-Log .3749 .0525 .5296 .0483 .6650 .0334 

Cox & Snell   Probit .3957 .0492 .5490 .0424 .6860 .0410 

Cox & Snell   Cauchit .3563 .0522 .5060 .0471 .6509 .0368 

McFadden   Logit .1830 .0296 .2904 .0340 .4153 .0358 

McFadden   Comp. Log-Log .1934 .0684 .5739 .2244 .9881 .0522 

McFadden   Neg. Log-Log .1717 .0305 .2755 .0373 .3985 .0353 

McFadden   Probit .1839 .0296 .2904 .0345 .4236 .0518 

McFadden   Cauchit .1610 .0296 .2574 .0346 .3837 .0379 

Nagelkerke  Logit .4209 .0527 .5862 .0491 .7264 .0338 

Nagelkerke  Comp. Log-Log .4317 .0971 .8069 .1442 .9968 .0158 

Nagelkerke  Neg. Log-Log .4003 .0561 .5655 .0516 .7101 .0357 

Nagelkerke  Probit .4226 .0525 .5862 .0453 .7325 .0438 

Nagelkerke Cauchit .3804 .0557 .5402 .0503 .6951 .0392 

OLS R
2
 (None) .4563 .0522 .6288 .0414 .7725 .0277 

 

   Table 2. R
2
 Analog Values for Simulated Data by Link Function: Ordinal Regression  

   with Four Positively Skewed Categorical Outcomes.  

  Two predictors Three predictors Four predictors 

Statistic Link Function M SD M SD M SD 

Cox & Snell   Logit .3823 .0508 .5282 .0433 .6573 .0349 

Cox & Snell   Comp. Log-Log .4960 .1703 .8856 .0752 .9213 .0052 

Cox & Snell   Neg. Log-Log .3636 .0528 .5120 .0461 .6450 .0380 

Cox & Snell   Probit .3854 .0506 .5312 .0437 .6942 .0744 

Cox & Snell   Cauchit .3296 .0550 .4825 .0482 .6177 .0401 

McFadden   Logit .1904 .0317 .2966 .0347 .4228 .0377 

McFadden   Comp. Log-Log .3013 .1778 .9008 .1734 .9998 .0044 

McFadden   Neg. Log-Log .1788 .0322 .2834 .0360 .4901 .0401 

McFadden   Probit .1924 .0317 .2992 .0355 .4812 .1204 

McFadden   Cauchit .1582 .0316 .2603 .0354 .3801 .0393 

Nagelkerke  Logit .4148 .0547 .5732 .0461 .7133 .0366 

Nagelkerke  Comp. Log-Log .5382 .1849 .9611 .0816 .9999 .0011 

Nagelkerke  Neg. Log-Log .3945 .0569 .5556 .0493 .7000 .0402 

Nagelkerke  Probit .4182 .0544 .5764 .0466 .7535 .0807 

Nagelkerke Cauchit .3576 .0592 .5235 .0515 .6704 .0424 

OLS R
2
 (None) .4563 .0522 .6288 .0414 .7725 .0277 
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   Table 3. R
2
 Analog Values for Simulated Data by Link Function: Ordinal Regression  

   with Four Negatively Skewed Categorical Outcomes.  

  Two predictors Three predictors Four predictors 

Statistic Link Function M SD M SD M SD 

Cox & Snell   Logit .3858 .0502 .5369 .0446 .6637 .0343 

Cox & Snell   Comp. Log-Log .3840 .0699 .6420 .1207 .8833 .0604 

Cox & Snell   Neg. Log-Log .3632 .0533 .5192 .0475 .6508 .0373 

Cox & Snell   Probit .3872 .0502 .5387 .0444 .6675 .0377 

Cox & Snell   Cauchit .3389 .0539 .4922 .0501 .6270 .0398 

McFadden   Logit .1929 .0321 .3043 .0368 .4303 .0384 

McFadden   Comp. Log-Log .1932 .0491 .4303 .1534 .8818 .1568 

McFadden   Neg. Log-Log .1787 .0330 .2897 .0381 .4156 .0406 

McFadden   Probit .1938 .0322 .3058 .0367 .4353 .0448 

McFadden   Cauchit .1639 .0319 .2681 .0379 .3898 .0404 

Nagelkerke  Logit .4188 .0542 .5827 .0478 .7203 .0364 

Nagelkerke  Comp. Log-Log .4167 .0757 .6967 .1301 .9587 .0643 

Nagelkerke  Neg. Log-Log .3941 .0577 .5635 .0509 .7063 .0397 

Nagelkerke  Probit .4203 .0543 .5846 .0475 .7244 .0401 

Nagelkerke Cauchit .3677 .0582 .5341 .0538 .6805 .0423 

OLS R
2
 (None) .4563 .0522 .6288 .0414 .7725 .0277 

Note: Simulations based on 1000 sample replications, with n = 200 for each sample.  

OLS R
2
 based on continuous, normally-distributed outcome. 

 

Results 

 Table 1 shows descriptive statistics for each of three R
2
 analog statistics (Cox & Snell’s R

2
, 

Nagelkerke’s R
2
, and McFadden’s R

2
) based on ordinal regression models with two, three, and four 

predictors and a uniformly-distributed ordinal outcome, and using each of five distinct link functions 

(logit, complementary log-log, negative log-log, probit, and Cauchit). 

  Tables 2 and 3 show descriptive statistics for R
2
 analog values resulting from ordinal regression 

models fitted to asymmetric distributions (either positively or negatively skewed).   

 Figure 1 shows variation in the mean R
2
 analog values for each of the three indices by number of 

predictors and aggregated across link function and distribution type.  As these tables and figure indicate, 

values of McFadden’s index were generally lower in value than corresponding values of Cox & Snell’s or 

Nagelkerke’s indices, as has consistently been observed for other generalized linear models (Menard, 

2000). This observation was consistent across variation in the 

number of predictor variables. Nagelkerke’s index appeared to 

most closely approximate the OLS R
2
 estimate, and this 

approximation became closer as the number of predictors in 

the model increased.  

 Figures 2, 3, and 4 show how the   analog values vary by 

distribution type and link function (aggregating across number 

of predictors) for each of the index types, respectively. Once 

again, values of McFadden’s index were generally lower in 

value than corresponding values of the Cox & Snell’s or 

Nagelkerke’s indices, and this observation was consistent 

across distribution type and link function. However, as can be 

seen for each of the three R
2
 analogs, the complementary log-

log function consistently resulted in larger R
2
 analog values 

than the other four link functions. Also, greater variability in 

the R
2
 analog values by distribution type (i.e., uniform, 

positively skewed, or negatively skewed) was evident when 

the complementary log-log link function was employed than 

when the other link functions were used. Lastly, for two of the 

 
Figure 1. Mean R

2
 analog values for  

simulated samples by index type and 

number of predictors. 
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R
2
 analogs (Cox & Snell’s and Nagelkerke’s), the 

complementary log-log link function resulted in larger R
2
 

analog values for the positively skewed distribution than for 

uniformly or negatively distributed outcomes; whereas for the 

other link functions this effect was reversed (i.e., R
2
 analog 

values were smallest under the positively skewed 

distribution). 

  We next examined the mean R
2
 analog values by link 

function and distribution type, aggregating across index type. 

As Figure 5 indicates, mean R
2
 analog values (as expected) for 

ordinal regression with a uniformly distributed outcome 

increased as the number of predictors increased. However, 

although the mean R
2
 analog values resulting from each link 

function were relatively equal when two predictors were used, 

as the number of predictors increased, the value of R
2
 analog 

increased at a much more rapid rate when the complementary 

log-log link function was used compared to when the other 

link functions (logit, negative log-log, probit, and Cauchit) 

were employed. Similar patterns of R
2
 analog values were 

evident when the effect of link function and number of 

predictors was observed for each distinct distribution type 

(Figure 6).  

  McCullagh (1978, 1980) indicates that, with respect to 

estimated regression parameters and model fit, an ordinal 

regression model should preferably be “palindromic-

invariant”—that is, invariant to a reversal of the outcome 

categories. One might infer, then, that this invariance should 

also be a desirable property of a R
2
 analog. In the present 

study, when goodness of fit for the palindromic (i.e., 

positively vs. negatively skewed) distributions were 

compared, (1) Nagelkerke’s R
2 

analog resulted in the least 

variant values among the three R
2 

analogs (see Figures 2, 3, 

and 4), and (2) estimation using any link function, other than 

the complementary log-log link function, resulted in relatively 

invariant values (see Figures 5 and 6 - Uniform and Positively 

Skewed panels). 
 

Discussion 

Although R
2
 analog values for ordinal regression are widely 

reported and available in most statistical packages, few if any 

guidelines exist for their interpretation. The present study 

found that, compared to several other commonly-used indices, 

Nagelkerke’s index consistently resulted in the highest R
2 

analog values, and appeared to most closely approximate the 

OLS estimate of R
2
. McFadden’s index generally showed the 

smallest values. However, the OLS R
2
 estimate cannot 

necessarily be held as a “gold standard” (any more than a 

particular R
2 

analog might be held as a gold standard for OLS 

regression). It can validly be argued that particular R
2 

analogs 

that result in lower values simply require their own set of 

interpretational guidelines. Nonetheless, most interpretations 

of R
2 
analog values, for lack of explicit guidance, use OLS R

2
-

based guidelines (e.g., effect sizes such as f 
2
). The present 

study suggests that such interpretations may not be adequate.   

  

 
Figure 2. Mean Cox & Snell R

2
 analog 

values by link function and distribution  

 
Figure 3. Mean McFadden R

2
 analog 

values by link function and distribution  

 
Figure 4. Mean Nagelkerke R

2
 analog 

values by link function and distribution  
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  Further, ordinal regression can be implemented using a 

variety of link functions and , although Norusis (2012) 

provides guidelines for the choice of link function, few 

studies investigate their comparative use in practice. 

Oftentimes, researchers will choose a link function based 

on the relative magnitude of the resulting R
2
 analog values. 

As the present study indicates, use of the complementary 

log-log link function resulted in larger R
2
 analog values 

than did the use of other link functions (and increased more 

markedly than other indices as the number of predictors 

was increased), and these values were also more variable. 

Moreover, the R
2
 analog values resulting from the 

complementary log-log link function were so discrepant 

from those observed with other link functions that it 

appears a completely distinct set of interpretational 

guidelines might be necessary when this link function is 

used.  Further, use of the complementary log-log link 

function appears to result in R
2
 analog values that do not 

have the desirable attribute of palindromic invariance, and 

other link functions would be better choices in this regard. It also appears that, among the R
2
 analogs, the 

Nagelkerke index appears to best exhibit palindromic invariance.  

  Research that examines the effects of varying link functions and distributional variability in the 

ordinal outcome is important to an increased understanding of how these R
2
 analogs should be used and 

interpreted. Continued research on this topic will help to guide interpretation in substantive studies. 

Footnote 
†
 A number of published sources mistakenly define this statistic as 1 – [LLNull/LLFull]

2/n
. The Cox and Snell 

(1989) statistic may be phrased using log-likelihoods as  1 – e
[-2/n(LL(Full))-(LL(Null))]

. 
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Figure 5 Mean R

2
 analog by link function and 

number of predictors for all distributions. 
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Figure 6. Mean R
2
 analog values by link function and number of predictors for Uniform, Positvely-skewed, and Negatively-skewed outcomes. Simulations 

are based on 1000 sample replications, with n = 200 for each sample. 

 

 

  


