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The present study examined seven distinct pseudo R
2
 indices used in logistic regression, how values of 

these indices compared to values of ordinary least squares (OLS) R
2
 obtained under similar conditions, 

and how values of these indices varied as a function of multicollinearity among predictors and base rate 

of the dependent variable. Monte Carlo simulation methods suggested that the Aldrich-Nelson pseudo R
2
 

index with Veall-Zimmermann correction resulted in values that most closely approximated the OLS R
2
 

values. Additionally, lower multicollinearity among predictors was associated with increased variability 

among the values resulting from the various indices. Changes in base rate had little effect on “corrected” 

versions of the indices, but did affect uncorrected versions of the indices. 

 inary logistic regression is a frequently applied procedure used to predict the probability of 

occurrence for some binary outcome, using one or more continuous or categorical variables as 

predictors. When the outcome is expressed as the log-odds of the event’s occurrence, the logistic 

regression equation is a linear combination of the predictors, where the regression parameters are 

typically obtained using maximum likelihood estimation, and where each regression weight indicates the 

change in the log-odds of the event’s occurrence per unit of change in its associated predictor.  

  Adequacy of fit for a logistic regression model is typically assessed by assessing (1) the significance 

of the omnibus chi-square test of the model coefficients, which assesses the incremental decrease in the 

log-likelihood (i.e., deviance) of the regression model containing the full set of predictors when it is 

compared to the model that contains only the intercept term, and determines whether the former 

significantly improves prediction over the latter; and (2) the Hosmer-Lemeshow goodness-of-fit test 

(Hosmer & Lemeshow, 2000), which groups cases into deciles based upon the predicted probability of 

each, then assesses the degree to which the observed frequencies match the expected frequencies using a 

chi-square goodness-of-fit test, and where a non-significant test result suggests a well-fitting model. 

Additionally, when examining individual predictors, the adjusted odds-ratio (i.e., the exponentiated 

regression coefficient) associated with each predictor can be evaluated as an effect size.  

  When the predicted probabilities resulting from logistic regression are used for classification 

purposes, additional indices of model fit are often employed. Simple proportions of correctly classified 

cases, both for the overall sample as well as for each of the groups in the sample provide one such index. 

Also, a Receiver Operator Characteristic (ROC) curve, which graphically represents “true positive” and 

“false positive” classification rates as a function of different classification cutoff values for the predicted 

probabilities resulting from the logistic regression provides another such index.  

  In addition, a number of goodness-of-fit indices exist to assess the predictive capacity of the logistic 

regression model. These “pseudo R
2
” indices have been developed that are intended as logistic regression 

analogs of R
2
 as used in ordinary least-squares (OLS) regression. One such index, outlined by Maddala 

(1983) and Cox and Snell (1989), is: 
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where L(Null) and L(Full) are the likelihood functions for the intercept-only model and full model, 

respectively. The 2

MCSR statistic is interpretable as the geometric mean square improvement. Because the 

value of 2

MCSR can potentially exceed 1.0, Cragg and Uhler (1970), Maddala (1983), and Nagelkerke 

(1991) describe a rescaling of this statistic,  
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where the rescaling is accomplished by dividing 2

MCSR by its maximum possible value. The resulting 

statistic then has a range that is identical to the range of OLS R
2
.  
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  McFadden (1974) outlines perhaps the most straightforward of such pseudo R
2
 indices, in the sense of 

reflecting both the criterion being minimized in logistic regression estimation and the variance-accounted-

for by the logistic regression model. This log likelihood ratio R
2
 (sometimes referred to as “deviance R

2
”) 

is one minus the ratio of the full-model log-likelihood to the intercept-only log-likelihood, 

 
 
 NullLL

FullLL
RMF 12 . 

This index can also be adjusted to penalize for the number of predictors (k) in the model, 
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(Mittlböck & Heinzl, 2004). Lave (1970) and Efron (1978) suggest a direct analog to R
2
 as used in OLS 

regression,  
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where ,, ii yy and ip̂ are the observed binary outcomes, mean outcome, and predicted probabilities, 

respectively. Finally, Adlrich and Nelson (1984) propose a variant of the contingency coefficient defined 

in Agresti and Finlay (1986),  
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where G(M) is the incremental change in the -2 log likelihood function when the full model and the 

intercept-only model are compared (i.e., the model chi-square statistic).  

  Menard (2000), in a study comparing five distinct pseudo R
2
 indices ( 22222  and ,,,, LENKMCSANMF RRRRR ) 

in a logistic regression context, concluded that McFadden’s index was preferred due to both its conceptual 

similarity to OLS R
2
 (as used in linear regression), and due its relative independence of the base rate of 

the binary outcome variable (i.e., the relative occurrence of a “positive/successful” outcome).  The author 

also suggests that additional study is necessary to discern the effects of varying base rates on these 

indices. Windmeijer (1995), in a comparison of seven pseudo R
2
 indices, concluded that an index 

proposed by McKelvey-Zavoina (1975), 
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which reflects decomposition of the variance of the estimated logits, provides the best estimate of the 

OLS estimator. This index can be difficult to compute, however, and Veall and Zimmermann (1994) 

propose a correction to the Aldrich-Nelson index that closely approximates its value, 
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where p̂ is the estimated base rate for the binary outcome, and where the maximum value of the index 

conditional on this base rate is  
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The purpose of the present study was to examine, compare, and classify seven distinct pseudo R
2
 indices (

2222222  and ,,,,,, VZANLEMFAMFNKMCS RRRRRRR ) used in binary logistic regression. Specifically, values for these 

indices were compared under varying correlational conditions and also under varying underlying base 

rates of the binary outcome, and these values were also compared to the R
2
 values resulting from OLS 

linear regression based on a continuous outcome. A hierarchical classification of these seven pseudo R
2
 

indices was then developed based on their pairwise similarity. 
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Table 1. Correlations among Variates for Simulated Regression Data 

 Condition 1 (r = .10) Condition 2 (r = .30) Condition 3 (r = .50) 

 IV1 IV2 IV3 IV4 DV IV1 IV2 IV3 IV4 DV IV1 IV2 IV3 IV4 DV 

IV1 1.0     1.0     1.0     

IV2 .1 1.0    .3 1.0    .5 1.0    

IV3 .1 .1 1.0   .3 .3 1.0   .5 .5 1.0   

IV4 .1 .1 .1 1.0  .3 .3 .3 1.0  .5 .5 .5 1.0  

DV .5 .5 .5 .5 1.0 .5 .5 .5 .5 1.0 .5 .5 .5 .5 1.0 

 Condition 4 (r = .70) Condition 5 (r = .90)  

IV1 1.0     1.0          

IV2 .7 1.0    .9 1.0         

IV3 .7 .7 1.0   .9 .9 1.0        

IV4 .7 .7 .7 1.0  .9 .9 .9 1.0       

DV .5 .5 .5 .5 1.0 .5 .5 .5 .5 1.0      
 

Method 

 The present study used Monte Carlo techniques to examine, compare, and classify seven pseudo R
2 

goodness-of-fit indices. Specifically, samples of size of n = 200 were randomly drawn from a multivariate 

normal parent population, where each sample consisted of five continuous variables with one of five 

specified correlational structures  representing five distinct multicollinearity conditions. Four of these 

variables then served as predictors in a logistic regression. The fifth variable was transformed to a binary 

(0/1) outcome variable by carrying out a split of the cases. The cut point was specified as one five values 

(50
th
, 60

th
, 70

th
, 80

th
, or 90

th
 percentile), representing five underlying base rate conditions (p = .50, .40, 

.30, .20, and .10, respectively) for the “success” (coded as 1) outcome.  

  Binary logistic regression was carried out on each sample, and seven pseudo R
2
 indices were 

computed ( 2222222  and ,,,,,, VZANLEMFAMFNKMCS RRRRRRR ). Additionally, R
2 

and adjusted R
2
 were computed 

using OLS regression, where the predictors were the same predictors used in the logistic regression, and 

the outcome variable consisted of values for the fifth, original, continuous variable (prior to 

dichotomization).  

  Each simulation consisted of 500 randomly drawn samples, where each set of samples was drawn 

from one of five multicollinearity conditions (that represented low to high levels of multicollinearity and 

in which the outcome variable was moderately correlated with these predictors; see Table 1), and one of 

five split point conditions. We then examined how varying the correlational structure among the 

generated variables, as well as the split point for dichotomizing the outcome variable (i.e., the effective 

base rate for the dichotomous outcome) affected the resulting pseudo R
2
 values. We also compared the 

values of the pseudo R
2
 indices to the R

2
 values resulting from the corresponding OLS linear regression. 

All analyses were carried out using SPSS v.19. 
 

Results 

  Table 2 provides the mean goodness-of-fit indices (i.e., pseudo R
2
 values from the various indices, 

OLS R
2
, and OLS adjusted R

2
) for the complete set of 12,500 simulated samples. The mean values across 

all conditions are displayed in Figure 1. As can be seen, across all conditions, the values for the pseudo R
2
 

indices varied widely (from M = .23 to M = .44). These differences were statistically significant (p < 

.001), but significance here could easily be an artifact of the large number of simulated samples. 

However, the effect size for these differences was large (η
2
 = .79), suggesting meaningful differences 

existed. Interestingly, the lowest observed mean index values were for the Aldrich-Nelson index, while 

the highest mean values were for the corrected version of the Aldrich-Nelson index (the Veall-

Zimmermann corrected index). The Aldrich-Nelson index also showed the least variability in values (SD 

= .09), while the “corrected” indices (i.e., the Veall-Zimmerman and Nagelkerke indices) showed the 

greatest variability (SD = .17). The Veall-Zimmermann index provided the closest approximation to both 

the OLS R
2
 and OLS adjusted R

2
 (where the latter two values were based on the continuous outcome 

variable).   

  



Smith & McKenna 

 

20                                                                                           Multiple Linear Regression Viewpoints, 2013, Vol. 39(2) 

Table 2. Statistics for Goodness-of-Fit Indices 

 n M (SD) 

Maddala / Cox-Snell  12,500 .26 (.12) 

Nagelkerke  12,500 .40 (.17) 

McFadden  12,500 .29 (.15) 

McFadden adjusted  12,500 .25 (.15) 

Lave/Efron  12,500 .31 (.15) 

Aldrich-Nelson  12,500 .23 (.09) 

Veall-Zimmermann  12,500 .44 (.17) 

OLS R
2
* 12,500 .47 (.18) 

OLS adjusted R
2
* 12,500 .46 (.18) 

Note. *Based on continuous outcome. 

 

  Table 3 provides descriptive statistics for the 

seven pseudo R
2
 indices (in addition to OLS R

2
 and 

adjusted R
2
) by base rate of the binary dependent 

variable, and Figure 2 displays the mean values of 

these indices. In each of the base rate conditions, the 

Veall-Zimmermann index again most closely 

approximated the OLS R
2
 statistic. Across base rate 

conditions, the Aldrich-Nelson pseudo adjusted R
2
 

index was the least variable, while the two 

“corrected” indices (Nagelkerke and Veall-

Zimmermann) appeared to show the greatest 

variability across base rate conditions. The main 

effect of base rate on the mean index (across index 

types) was statistically significant (p < .001), but the 

effect size was very small, with η
2
 < .01. However, 

the interactive effect of base rate × index type was 

moderate in size (η
2
 = .09), suggesting that the effect of base rate on the index values differed by index 

type. Specifically, base rate had the largest effect on the Maddala / Cox-Snell and Aldrich-Nelson 

(uncorrected) indices, with low base rates associated with lower pseudo R
2
 values. Interestingly, the 

lowest base rate (p = .10) actually increased the value of McFadden’s (unadjusted) index.  
 

 
Figure 1. Mean values of regression goodness-of-fit indices for simulated regression data based on 

12,500 sample replications.  

 

  Table 4 provides descriptive statistics for the indices by multicollinearity condition, and 

Figure 3 displays these mean values. Here, again, the multicollinarity condition × index type   
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 Figure 2. Mean values of regression goodness-of-fit indices by base rate for  

  simulated regression data based on 2500 sample replications per base rate level. 

Table 3. Descriptive Statistics for Regression Goodness-of-Fit Indices by Base Rate  

 Base rate 

 p = .10 p = .20 p = .30 p = .40 p = .50 Total 

Index M (SD) M (SD) M (SD) M (SD) M (SD) M (SD) 

Maddala / Cox-Snell  .18 (.08) .24 (.10) .28 (.12) .30 (.12) .31 (.13) .26 (.12) 

Nagelkerke .38 (.17) .38 (.16) .40 (.17) .41 (.16) .41 (.17) .40 (.17) 

McFadden  .32 (.16) .29 (.15) .28 (.14) .28 (.14) .28 (.14) .29 (.15) 

McFadden adjusted  .25 (.16) .25 (.15) .25 (.14) .25 (.14) .25 (.14) .25 (.15) 

Lave/Efron  .27 (.17) .29 (.15) .31 (.15) .33 (.15) .33 (.15) .31 (.15) 

Aldrich-Nelson  .16 (.07) .21 (.08) .24 (.09) .26 (.09) .27 (.10) .23 (.09) 

Veall-Zimmermann  .42 (.18) .43 (.17) .44 (.17) .45 (.16) .46 (.17) .44 (.17) 

OLS R
2
* .47 (.18) .47 (.18) .47 (.18) .47 (.18) .47 (.18) .47 (.18) 

OLS adjusted R
2
* .46 (.18) .46 (.18) .46 (.18) .46 (.18) .46 (.18) .46 (.18) 

Note. *Based on continuous outcome. n = 2500 for each Condition. 
 

interactive effect was 

statistically significant 

(p < .001), but the 

effect size was small 

(η2
 = .03). Results 

indicated that the 

Veall-Zimmermann 

index once again most 

closely approximated 

the OLS R
2
 values 

under each multi-

collinearity condition. 

As would be expected, 

lower levels of 

multicollinearity (e.g., 

r = .10) among the 

predictors resulted in 

higher pseudo R
2
 

values. However, as 

Figure 3 indicates, 

lower levels of 

multicollinearity 

resulted in greater variability among the mean values of the various pseudo R
2
 indices. At the 

lowest multicollinearity level (r = .10), the mean values of the indices ranged from .37 (Aldrich 

Nelson index) to .67 (Nagelkerke corrected index).  
  Finally, Figure 4 displays the mean R

2
 indices by both base rate and multicollinearity condition. 

Although the three-way base rate × multicollinearity condition × index type interaction effect was 

statistically significant (p < .001), this was an artifact of the large number of simulations (500), as the 

observed effect size was very small (η
2
 = .005). That is, and as can be observed in these means plots, the 

two-way base rate × multicollinearity interaction effect was similar across index types.  

  We next attempted to develop a hierarchical classification of these seven pseudo
2R  indices. To this 

end, we first computed the correlations among the indices (see upper diagonal of Table 5). These 

correlations served as input measures of similarity for complete linkage cluster analysis (McQuitty, 

1960). Figure 5 shows the resulting dendrogram. As Figure 5 illustrates, two primary clusters of pseudo 
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 Figure 3. Mean values of regression goodness-of-fit indices by multi- 

     collinearity condition for simulated regression data based on 2500 sample  

      replications per multicollinearity level. 

 

Table 4. Descriptive Statistics for Regression Goodness-of-Fit Indices by Multicollinearity  

 Multicollinearity Level 

 Condition 1 

(r = .10) 

Condition 2 

(r = .30) 

Condition 3 

(r = .50) 

Condition 4 

(r = .70) 

Condition 5 

(r = .90) Total 

Index M (SD) M (SD) M (SD) M (SD) M (SD) M (SD) 

Maddala / Cox-Snell  .44 (.09) .30 (.07) .23 (.06) .19 (.06) .16 (.05) .26 (.12) 

Nagelkerke  .67 (.06) .45 (.07) .34 (.07) .28 (.07) .24 (.07) .40 (.17) 

McFadden  .54 (.07) .32 (.06) .24 (.06) .19 (.06) .16 (.05) .29 (.15) 

McFadden adjusted  .50 (.07) .28 (.06) .20 (.06) .15 (.05) .12 (.05) .25 (.15) 

Lave/Efron  .56 (.07) .34 (.07) .25 (.07) .20 (.06) .17 (.06) .31 (.15) 

Aldrich-Nelson  .37 (.06) .26 (.06) .20 (.05) .17 (.05) .15 (.04) .23 (.09) 

Veall-Zimmermann .70 (.07) .50 (.08) .39 (.08) .32 (.08) .28 (.08) .44 (.17) 

OLS R
2
* .77 (.03) .53 (.05) .41 (.05) .33 (.06) .28 (.05) .47 (.18) 

OLS adjusted R
2
* .77 (.03) .52 (.05) .40 (.05) .32 (.06) .27 (.05) .46 (.18) 

Note. *Based on continuous outcome. Level. n = 2500 for each Condition. 
 

R
2
 indices are apparent. 

The first cluster consists 

of the Maddala / Cox-

Snell and Aldrich-

Nelson indices—both of 

which are log-likelihood 

based. The second 

cluster consists of the 

remaining indices. 

Within this second 

cluster, two secondary 

clusters emerge, 

consisting of (1) the 

McFadden and 

McFadden adjusted 

indices, and (2) the 

Lave/Efron, Veall-

Zimmermann, and 

Nagelkerke indices.    

  It is important to 

note that the 

correlations among the 

pseudo R
2 

indices, and 

thus the resultant 

hierarchical cluster 

analysis of the indices based on these correlations, are based on the profile similarity of the indices. That 

is, a particular pair of indices is considered to be similar if, for a series of regression analyses, their values 

closely profile or “track” one another (i.e., when the value of one index increases/decreases, the value of 

the other index also increases/decreases). A pair of indices may correlate very strongly, however, and yet 

be quite distinct in magnitude. Therefore, an alternate indicator of (dis)similarity that might be considered 

is the Euclidean distance between all pairs of indices. Figure 6 shows a complete linkage clustering of the 

indices using Euclidean distance values (lower diagonal of Table 5) as measures of proximity. As can be   
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    Cox & Snell     Nagelkerke    McFadden  

   

 

    McFadden Adjusted    Lave / Efron    Aldrich-Nelson  

   

 

 

Veall-Zimmermann OLS R
2
 OLS Adjusted R

2
  

   

 

Figure 4. Mean values of regression goodness-of-fit indices by multicollinearity condition and base rate 

for simulated regression data for Cox & Snell, Nagelkerke, McFadden, McFadden Adjusted, Lave/Efron, 

and Aldrich-Nelson, Veall-Zimmerman pseudo R
2
 index, OLS R

2
 , and OLS Adjusted R

2
. 
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Table 5. Correlations (Upper Diagonal) and Euclidean Distances (Lower Diagonal) among Pseudo R
2
s 

 Maddala / 

Cox-Snell 

 

Nagelkerke McFadden 

McFadden 

adjusted 

Lave / 

Efron 

Aldrich- 

Nelson 

Veall-

Zimmermann 

Maddala / 

Cox-Snell  
 0.93 0.85 0.89 0.94 0.99 0.94 

 

Nagelkerke 

 
16.92 

 
0.98 0.99 0.99 0.93 0.99 

 

McFadden  9.16 12.60  0.99 0.96 0.85 0.96  

McFadden 

adjusted  
7.63 16.61 4.62 

 
0.98 0.89 0.98 

 

Lave/Efron  7.97 10.55 4.84 7.00  0.94 0.98  

Aldrich-

Nelson  
4.77 21.03 11.53 8.83 11.73 

 
0.94 

 

Veall-

Zimmermann 
21.21 5.43 17.60 21.58 15.38 25.35 

  

 

seen in this dendrogram, two primary clusters emerge that are distinct from the primary clusters observed 

in Figure 5. The first cluster consists of the Nagelkerke and Veall-Zimmerman indices, while the second 

cluster consists of the remaining indices. Within this second cluster, the Lave/Efron and McFadden 

indices form one subcluster, while the Aldrich-Nelson and Maddala / Cox-Snell indices form a second 

subcluster.   

 
                    0         5        10        15        20        25 

                    +---------+---------+---------+---------+---------+ 

 

  Maddala/Cox-Snell  ─┬───────────────────────────────────────────────┐ 

  Aldrich-Nelson     ─┘                                               │ 

  McFadden           ─┬───────────┐                                   │ 

  McFadden Adj.      ─┘           ├───────────────────────────────────┘ 

  Nagelkerke         ─────┬─┐     │ 

  Veall-Zimmermann   ─────┘ ├─────┘ 

  Lave/Efron         ───────┘ 
 

Figure 5. Complete-Linkage Hierarchical Clustering of Pseudo R
2 
Indices based on Correlations. 

 

                   0         5        10        15        20        25 

                   +---------+---------+---------+---------+---------+ 

 

  McFadden          ─┬─┐ 

  McFadden Adj.     ─┘ ├─────┐ 

  Lave/Efron        ───┘     ├───────────────────────────────────────┐ 

  Maddala/Cox-Snell ─┬───────┘                                       │ 

  Aldrich-Nelson    ─┘                                               │ 

  Nagelkerke        ─┬───────────────────────────────────────────────┘ 

  Veall-Zimmermann  ─┘ 

  

Figure 6. Complete-Linkage Hierarchical Clustering of Pseudo R
2 
Indices based on Euclidean Distances. 

 

Discussion 

  Although pseudo R
2
 values for logistic regression are available as output in most statistical packages 

and are often reported in practice, few if any guidelines exist for their interpretation. The present study 

suggested that the most commonly used pseudo R
2
 indices (e.g., McFadden’s index, Maddala / Cox-Snell 

index with or without Nagelkerke correction) yield lower estimates than their OLS R
2
 counterparts, 
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evidence that is consistent with prior simulation studies (e.g., Hagle & Mitchell, 1992; Veall & 

Zimmermann, 1994). This suggests that the use of guidelines intended for interpretation of the latter (e.g., 

Cohen, 1988) may not be appropriate for interpreting pseudo 
2R  values. One pseudo R

2
 index, the 

Aldrich-Nelson index with Veall-Zimmermann correction resulted in values that most closely 

approximated the OLS R
2
 values, which is consistent with the findings of Veall and Zimmermann. In 

comparison, values of Nagelkerke’s index were somewhat lower, but nearly as close to the OLS R
2
 

values. It is difficult to assert, however, that the ability to closely mirror the value that an OLS R
2
 estimate 

is necessarily a desirable quality of a particular pseudo R
2
 index. That is, OLS linear regression minimizes 

a least-squares criterion, and the OLS R
2
 and adjusted R

2
 indices are thus both intended to reflect this 

optimization. Holding this optimization choice up as the “gold standard” for pseudo R
2
 index to emulate 

may be misguided, particularly when logistic regression parameter estimates are typically not estimated 

using a least-squares optimization procedure. Instead, perhaps a unique (and less stringent) set of 

guidelines may be appropriate for the interpretation of pseudo R
2
 values.  

  The present study also found that, as would be expected, increased levels of multicollinearity resulted 

in decreased values for all pseudo R
2
 indices. However, at the lowest levels of multicollinearity, the 

variability among values produced by the various indices increased. This suggests that, even when 

optimal conditions exist for predictors in a logistic regression (i.e., situations involve relatively 

independent predictors), and when typical guidelines for interpretation of OLS R
2
 values are used to 

interpret pseudo R
2
 values, widely disparate interpretations may result depending upon which index is 

chosen.   

  Although the observed base rate of the binary dependent variable did not substantially affect the 

values of the indices when the indices were considered collectively, it did affect particular indices. This 

suggests that a consideration of base rate may be important, particularly when uncorrected pseudo R
2
 

values are being interpreted.  

  It is important to consider that there are other conditions that might affect the resultant values of these 

pseudo R
2
 values. Due to the necessity to restrict experimental conditions to a manageable number, the 

present study, for example, did not vary the sample size, nor did it consider other patterns of 

multicollinearity, or combinations of predictor variable types (i.e., continuous vs. categorical).  
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