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This article presents a framework for two common hierarchical linear models (HLM), instructions to run 

them in Statistical Package for the Social Sciences (SPSS), and a comparison between SPSS 21.0 linear 

mixed models (LMM) and HLM 7.0 output. Discussions topics include centering in hierarchical 

modeling, a comparison of SPSS output for the default restricted maximum likelihood and maximum 

likelihood solutions, a comparison of SPSS output for HLM and ordinary least squares (OLS) multiple 

linear regression (MLR) with person vectors output on mean square errors and R
2
, and a comparison of R

2
 

and R
2
 changes. Correlated residuals between SPSS LMM and OLS MLR provide a context for 

considering hypothesis testing, research questions, and the choice of statistical tests. Finally, this article 

addresses the complexity of developing multi-level linear research questions and determining which 

statistical techniques are appropriate for answering those questions so Type VI errors can be avoided. 

 hile much research in education and the social sciences is conducted on individuals, in many 

cases, individuals exist within larger contextual systems. For example, Jessor (1993) discusses 

adolescents living within the family, the school, and the neighborhood, and each of these 

systems exerts influences on individuals. Additional systems are numerous and varied, and other 

examples include students within classrooms, classrooms within schools, patients within hospitals, 

workers within employment settings, to name a few (Bickel, 2007; Newman & Newman, 2012; 

Radenbush & Bryk, 2002).  Situating an individual within a larger context or group is called “nesting.” 

Nesting affects outcomes in unique ways, and the variation due to nesting must be incorporated into 

statistical models used to examine outcomes.   

 When recognized, nesting had been previously addressed with disaggregation and aggregation, which 

are various methods for assigning the same value to all individuals within a group, for example, the same 

value on teacher self-efficacy to all students within a class. This approach violates the assumption of 

independence, inflates the Type I error rate, and results in correlated residuals, which generally lead to 

lower standard errors, higher probabilities of rejecting null hypotheses, and inflated R
2
s (Bickel, 2007). 

Also, results were often interpreted on the individual level even though group level data were analyzed. 

This is referred to as an ecological fallacy or the Robinson (1950) effect, which is a logical fallacy that 

occurs when statistical outcomes for groups are attributed to specific individuals of that group, under the 

assumption that all members of the group are identical or have the same attributes. 

  As can be seen, when data are nested and are not analyzed appropriately, numerous problems arise. 

Most prominent among these is the violation of the assumption of independence. Independence can be 

defined in three ways. First, in repeated measures analyses, the multiple measures, or scores for 

individuals, are not independent of each other, but are correlated to each other (Cohen & Cohen, 1983: 

Pedhazer, 1982). Second, independent variables within statistical analyses are often related or correlated 

to each other, which is called multicollinearity (Cohen & Cohen; Pedhazer). Finally, independence is 

related to the sampling of individuals from populations for participation in research studies, which utilize 

statistical analyses that have assumptions that must be adhered to (McNeil, Newman, & Frass, 2012; 

McNeil, Newman & Kelly, 1996). Each individual in a population who is sampled for participation in a 

study should have an equal probability of being chosen. However, when those individuals are chosen in 

groups or clusters, such as members within families or students within classrooms, the assumption of 

independence is violated. This is the type of non-independence that is the focus of this article. 

 When data are nested and are not analyzed appropriately, an even more basic problem can occur. 

Researchers often do not know what research questions they are asking or do not know that they are not 

using the appropriate statistical analyses to answer their questions (Clason & Mundfrom, 2012; Nimon & 

Henson, 2010; Tracz, Nelson, Newman & Beltran, 2005). In these cases, misinterpretations are likely or 

even inevitable. The problem of utilizing models or statistical analyses, which do not address the research 

questions of interest, has been labeled a “Type VI error” (Newman, Frass, Newman, & Brown, 2002). It 

is obvious that meaningful interpretations will be precluded in these cases. 
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In his aptly titled book, Multilevel Analysis for Applied Research: It’s Just Regression, Bickel 

(2007) notes that the 

development of regression analysis over the last 100 years consists largely of efforts to find ways 

to make OLS multiple regression applicable to increasingly complex questions, even when its basic 

assumptions have been violated . . . Moreover, whatever adjustments are made to accommodate 

violations of well-known regression assumptions, analysts know that they are still doing regression 

analysis. (p. 4) 

  Hierarchical linear modeling (HLM) is one statistical advance created to rectify the problems 

associated with nested data. Radenbush and Bryk (2002) use the term HLM to describe models used for 

data having specific nested structures. Their work builds on that of Lindley and Smith (1972) and Smith 

(1973) who proposed linear models using Bayesian estimation methods for nested data with complex 

patterns of errors. Difficulties in estimating covariance components with unbalanced data were addressed 

by Dempster, Laird, and Rubin (1977) who developed an approach for covariance component estimation 

that was more widely applicable. Additional methods, including hierarchical linear modeling (Burk, 

Raudenbush, Seltzer, & Congdon, 1988), were possible due to these advances.   

  HLM models are referred to as multi-level linear models, mixed-effects models, random-effects 

models, and covariance components models in various disciplines (Radenbush & Bryk, 2002). Many 

researchers (Field, 2009; Kreft, 1996; Morris, 1995; Mundfrom & Schultz, 2002; Raudenbush & Bryk; 

Tabachnick & Fidell, 2007) believe that HLM is superior to ordinary least squares (OLS) multiple linear 

regression (MLR).  Newman and Newman (2012) define HLM as “the general case of multiple linear 

regression [italics added] and a preferred statistical method for analyzing complex nested data structures” 

(p. 1); however, the HLM terminology does not parallel regression terminology. These differences in the 

conceptualization of research questions and the use of statistical terminology can be confusing to students 

in graduate programs in the U.S. who take initial statistics courses, which cover correlation, regression, t-

tests, analysis of variance (ANOVA), and chi-square, and that teach classical hypothesis testing and the 

formulation of classical research questions. Many have difficulty jumping to advanced HLM models and 

generally consider them to be a completely different class of analyses (Mundfrom & Schults, 2001, 2002). 

In fact, “failure to draw all but the most abstract parallels between multi-level analysis and conventional 

regression analysis” fosters this confusion (Bickel, 2007, p. 4), and many do not realize that HLM is a 

type of regression. Not understanding the relationship between regression models and hierarchical linear 

models also contributes to difficulty in formulating appropriate research questions. Many researchers 

retain their classical training in developing research questions; though, they are using HLM. 

  Confusion about what research questions are addressed with HLM and the resulting Type VI errors 

are widespread (Newman et al., 2002). This uncertainty is compounded as the straightforward 

terminology used with classical regression, such as estimating beta weights; mean differences; and 

interaction, is substituted with new language and terms including means as outcomes, intercepts as 

outcomes, slopes as outcomes, and centering (Newman, Newman, & Salzman, 2010).   

  Despite the generation of new statistical methods to deal with violations of assumptions with 

OLS/MLR techniques (Bickel, 2007), in practice, the general populace typically uses the same questions 

that fall into ANOVA-type questions about group differences, regression questions about continuous IVs, 

and questions of interaction. This is true whether analyses are conducted between categorical and 

categorical variables, categorical and continuous variables, or continuous and continuous variables 

(Newman & Newman, 2012). However, classical OLS questions may not be the same questions as those 

answered with HLM models. In fact, the danger of making a Type VI error (Newman, et al., 2010) may 

be great. 

Purpose 
  The purposes of this article are to present a framework of HLM models with instructions in Statistical 

Package for the Social Sciences (SPSS) and a comparison HLM 7.0 and SPSS 21.0 linear mixed models 

(LMM) output. Information on centering in hierarchical modeling, a comparison of the default restricted 

maximum likelihood (REML) and maximum likelihood (ML) solutions in SPSS, a comparison of SPSS 

HLM and OLS MLR with person vectors output on mean square errors and R
2
, R

2
 and R

2
 changes, and 

correlated residuals between SPSS LMM and OLS MLR are also discussed.   Finally, this paper addresses 
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the complexity of developing multi-level linear research questions and determining which statistical 

techniques are appropriate for answering those questions so that Type VI errors can be avoided. 
 

Data Set 
  This article uses the High School and Beyond Data set that was collected to examine the effects of 

socioeconomic status, school and school type, and other variables on high school student math 

achievement (Bryk, Holland, Lee, & Carriedo, 1984). The variables selected here for use in the HLM and 

SPSS analyses are defined below.  Examples of values for these variables appear in Table 1. 

  Stud ID = A consecutive number assigned to each student within each school. 

  SCHOOL = A unique number assigned to each school. 

  MATHACH = Individual math achievement score for each student. 

  SES = Individual socio-economic status for each student. 

  SCH1 – SCH160 = Dummy coded vectors for each school which act as person vectors. 

  SES_SCH1 – SES_SCH160 = Individual SES multiplied by the dummy coded vectors for each 

school. 
 

Models 
 Two sets of HLM and OLS/MLR models will be used in this study. They include a null model, which 

is used to calculate the interclass correlation coefficient (ICC), and a second model that has one variable, 

SES, added to level one. The formula for the ICC, which is the proportion of total variance in the 

dependent variable that is attributable to the context or nested variable (Field, 2013), is: 

           ICC =  τ00/(τ00  + σ
2
) 

  For these data, the ICC is .82, which indicates dependency among the scores and a strong influence of 

the nested school variable. These models in HLM and MLR, along with the research questions, are given 

below. Instructions to run HLM in SPSS 21.0 appear in Appendix A, SPSS 21.0 output appears in 

Appendix B, and the HLM Version 7.0 output appears in Appendix C. 

Model 1: 

HLM   Level 1:    MATHACH  =  β0j  +  rij 

     Level 2:    β0j  =  γ00 + u0j 

     Combined:    MATHACH  =  γ00 +  u0j  +  rij 

 

OLS/MLR   Full Model:   Math = a0U + b1SCH1 +. . . + bnSCHn + e 

    Restricted Model: Math = a0U + e 
 

Research Question: Are there school differences in math achievement? This is a simple, straight 

forward research questions with a single model that aligns with classical hypothesis testing.  

Model 2: 

HLM    Level 1:    Math  =  β0j  +  β1jSES  +  rij 

     Level 2:    β0j  =  γ00 + u0j 

         β1j  =  γ10 + u1j                       (SES is group centered) 

    Combined :     Math  =  γ00 +  γ10 SES  +  u0j  +  uijSES  +  rij 
 

OLS/MLR 

     Full Model:   Math = a0U + b1SCH1 +. . . + bnSCHn + c1SES_SCH1  +  

                     SES_SCHn  +  e 

    Restricted Model: Math = a0U + b1SCH1 +. . . + bnSCHn +  e 
 

  Research Questions: The research question for the OLS regression test is: Does the school * SES 

interaction account for a significant proportion of unique variance in math achievement over and above 

the main effects of SES and school? This is the classical definition of interaction (Hayes & Matthers, 

2009). However, HLM is testing whether there is a significant main effect for SES, and whether there are 

significant slope differences for SES by schools. The HLM test of multiplicative variables representing 

slope differences is not interaction in the classical sense since it does not test for variance over and above 

the variance accounted for by the main effects. In the literature, this is a common Type VI Error that 

occurs when people use HLM. It is possible to test the same classical research question as OLS 

regression, but this can only be done with sets of models that are further explained later in this paper.   
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Table 1. Data Examples for the Variables for this Study  

StudID SCH MATHACH SES SCH1 SCH 2 SES_SCH1 SES_SCH2 

1 1 6.5 -.12 1 0 -.12 0 

2 1 9.2 .14 1 0 .14 0 

3 1 4.5 -.12 1 0 -.12 0 

4 1 11.9 1.12 1 0 1.12 0 

5 1 16.8 .02 1 0 .02 0 

1 2 23.1 .78 0 1 0 .78 

2 2 11.5 .32 0 1 0 .32 

3 2 7.5 -.25 0 1 0 -.25 

4 2 13.2 -.98 0 1 0 -.98 

5 2 5.5 .48 0 1 0 .48 

6 2 5.8 .22 0 1 0 .22 
 

Table 2. Model 1 - One-way Random Effects ANOVA Model using REML Using SPSS and HLM 

Fixed Effects Coefficients (SE) t(df) p 

Model for mean school math achievement (β0) 

     Intercept (γ00) SPSS 

HLM 

12.64 (.24) 

12.64 (.24) 

    51.71 (156.65) 

    51.87 (159) 

 <.001 

 <.001 

Random Effects  

(Variance Components) 
Variance 

Wald 

χ
2
(df) 

p 

     Variance in school means (τ00) SPSS 

HLM 

8.61 

8.61 

59.26 

1660.23 (159) 

<.001 

<.001 

     Variance within schools (σ
2
) SPSS 

HLM 

39.15 

39.15 

  

 

Table 3. Model 2 – Random Coefficients Model with REML (Group-mean centering) between SPSS and 

HLM Output 

Fixed Effects Coefficients (SE) t(df) p 

Model for mean school math achievement (β0) 

     Intercept (γ00) SPSS 

HLM 

12.64 (.24) 

12.66 (.19) 

   51.68 (156.75) 

   66.92 (159) 

  <.001 

  <.001 

Model for SES slope (β1) 

     Intercept (γ10) SPSS 

HLM 

2.19 (.13) 

2.39 (.11) 

   17.10 (155.22) 

   20.34 (159) 

  <.001 

  <.008 

Random Effects  

(Variance Components) 
Variance 

Wald 

χ
2
(df) 

p 

     Variance in school means (τ00) SPSS 

HLM 
 

8.04 

905.26 (159) 

<.001 

<.001 

     Variance in SES slopes (τ11) SPSS 

HLM 

.69 

.65 

2.47 

216.21 (159) 

    .03 

 .002 

     Variance within schools (σ
2
) SPSS 

HLM 

36.70 

36.83 
  

 

Comparison of HLM and SPSS Output for Models 1 and 2 

 Tables 2 and 3 present the output using REML estimation for models 1 and 2; employing the 

Radenbusch and Bryk (2002) HLM program (v. 7.0) and SPSS (v. 21.0). For model 2, the random 

coefficients model with REML is also called the unconditional model and has no level 2 predictors. As 

can be seen, the output for the intercept (γ00), variance in school means (τ00), variance within schools (σ
2
), 

t and p values for models 1 and 2 are nearly identical. Only the test of variance in school means (τ00), 

where SPSS reports the Wald statistic and HLM reports a χ
2
, are different; though, the p values are the 

same. 
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Centering 
  Many, if not most, linear mixed models use centering of predictors in level-1 and level-2. Centering is 

done by subtracting the mean from each score so that the distribution of the resulting difference scores is 

centered on zero and those centered scores represent the distance above or below the average score. 

However, the decision to center should not be done by default, but instead should be based upon the 

researcher’s specific questions of interest (Newman & Newman, 2012), which again reinforces the 

concept that Type VI errors should be avoided. There are two types of centering that should be aligned 

with two decisions that need to be made. The first type is group mean centering where each score is 

centered in relationship to the higher-order structure. In this study, one option would be to group mean 

center with each of the students’ SES scores centered within one of the 160 schools they attend.  The 

second type is grand mean centering, which would center the students’ SES in relation to the average SES 

of all of the students within all of the schools. So the two decisions are: 1). should centering be done? and 

2). if yes, should group mean or grand mean centering be done?   

  Many people prefer grand mean centering over group mean centering (Burton, 1993; Hoffman & 

Gavin, 1998; Kreft, de Leeuw, & Aiken, 1995). Sarkisian (2007) suggests the original scores should not 

be used if zero is not a meaningful value. Despite these findings, Field (2009, 2013) suggests that 

centering is not an easy issue to decide and requires that the researcher have a solid understanding of the 

data and the analyses being conducted. Field does suggest that centering is a useful method of reducing 

the problem of multicollinearity between independent variables, especially if the predictor does not have 

an interpretable zero. Therefore, if the question of interest is what variance is accounted for by the relative 

position of that subject within the group, then group mean centering should be used. However, if the 

researcher is interested in the absolute value of the predictor, then grand mean centering should be used. 

If grand mean centering is used, then the intercepts become adjusted grand means and have no effects on 

the slopes. On the other hand, if group mean centering is used, the intercepts are the means of each group 

and may change the meaning of the coefficients, making them difficult to interpret since the values 

obtained vary across groups. It must be remembered that if one uses group mean centering, it is only the 

person level variables that are of interest. It is also important to remember that if one does decide to use 

group mean centering instead of grand mean centering, the group centered variable should be assigned at 

level-2 as long as one is not interested in testing the unique variance accounted for by the group effects.   

  As stated earlier, this complicated decision of whether to center using groups or grand mean centering 

is not a statistical issue, but one that is determined by the research questions of interest in each particular 

study. Failing to align specific questions of interest to the centering choice many very well lead to a Type 

VI error (Newman & Newman 2012).  
 

Comparisons of REML and ML SPSS Output for Model 2 

A comparison of the REML and ML estimates in SPSS are exactly the same for some parameters 

including as the intercept, γ00, which is the mean for all schools on math achievement, for the SES slope 

(β1), and for the variance within schools (σ
2
).  There are minor differences in the results for the variances  

 

Table 4. Model 2 – Random Coefficients Model using SPSS with REML and with ML 

Fixed Effects Coefficients (SE) t(df) p 

Model for mean school math achievement (β0) 

     Intercept (γ00) REML 

ML 

12.64 (.24) 

12.64 (.24) 

51.68 (156.75) 

51.85 (157.73) 

<.001 

<.001 

Model for SES slope (β1) 

     Intercept (γ10) REML 

ML 

2.19 (.13) 

2.19 (.13) 

17.10 (155.22) 

17.15 (156.15) 

<.001 

<.001 

Random Effects (Variance Components) Variance Wald p 

     Variance in school means (τ00) REML 

ML 

8.68 

8.62 

8.04 

8.06 

<.001 

<.001 

     Variance in SES slopes (τ11) REML 

ML 

   .69 

   .68 

2.47 

2.44 

   .03 

   .02 

     Variance within schools (σ
2
) REML 

ML 

36.70 

36.70 
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Table 5. Model 1 SPSS MLR Results 

Model Summaryb 

Model R R Square Adjusted R 
Square 

Std. Error of 
the Estimate 

1 .437a .191 .173 6.2563275 

a. Predictors: (Constant), School_160, . . ., School_1 
b. Dependent Variable: mathach 

ANOVAa 

Model Sum of 
Squares 

df Mean 
Square 

F Sig. 

1 

Regression 64906.957 159 408.220 10.429 .000b 

Residual 274969.977 7025 39.142   

Total 339876.934 7184    

a. Dependent Variable: mathach 
b. Predictors: (Constant), School_160,  . . . , School_81 

 

Table 6. Model 2 SPSS MLR Results 

Model Summaryc 

Mode
l 

R R 
Square 

Adjusted 
R Square 

Std. Error of 
the Estimate 

Change Statistics 

R Square 
Change 

F 
Chang

e 

df1 df2 
Sig. F 
Change 

1 .437a .191 .173 6.2563275 .191 10.429 159 7025 .000 
2 .508b .258 .224 6.0597238 .067 3.895 160 6865 .000 

a. Predictors: (Constant), School_160, . . ., School_1 
b. Predictors: (Constant), School_160, . . ., SES_School_87 
c. Dependent Variable: mathach 

ANOVAa 

Model Sum of 
Squares 

df Mean 
Square 

F Sig. 

1 
Regression 64906.957 159 408.220 10.429 .000b 
Residual 274969.977 7025 39.142   

Total 339876.934 7184    

2 

Regression 87792.398 319 275.211 7.495 .000c 

Residual 252084.537 6865 36.720   

Total 339876.934 7184    

a. Dependent Variable: mathach 
b. Predictors: (Constant), School_160, . . ., School_81 
  c. Predictors: (Constant), School_160,. . . , SES_School_87 
 

for school means (τ00) and SES slopes (τ11) with the ML solution giving a slightly smaller value. For all of 

the t-values, their degrees of freedom and the Wald statistics, except for the Wald for variance in school 

means, the ML solution again provides smaller values. As Table 4 indicates, these differences are quite 

small.  
 

Comparison of SPSS HLM and SPSS OLS MLR with Person Vector Models 

One way models can be compared is to see if those models produce the same results. This section 

compares the results for the first model, using HLM generated from SPSS and OLS multiple linear 

regression, with person vectors using SPSS. The results will consist of the mean square residuals and the 

R
2
s. The correlations between the residuals between the models will also be reported. The SPSS HLM 

results have already been provided in Tables 2 and 3, and the OLS MLR SPSS for models 1 and 2 are 

provided above in Tables 5 and 6, respectively.  
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 The mean square residual from the MLR Model 1 results of 39.142 in Table 5 is nearly identical to 

the variance within schools, 39.15, presented in Table 2. Again for model 2, the mean square residual 

from the MLR results of 36.720 in Table 6 is nearly identical to the variance within schools of 36.70 

presented in Table 3. These values summarized in Table 7 are essentially equal; thus, demonstrating with 

person vectors how very comparable are HLM and OLS MLR. 
 

R
2
 and R

2
 Changes 

In regression, the R
2
 and R

2
 changes are easy ways for researchers to quickly assess the overall 

variance accounted for in different models. Unlike traditional OLS regression, HLM does not produce an 

R
2
. However, by using the following formulas, it is possible to calculate an R

2
 for each of the two levels 

in an HLM model:  

    Level 1: R
2
 at Level 1=  1-(σ

2
cond-τ cond)/ -(σ

2
uncond-τ uncond) 

    Level 2: R
2
 at Level 2=  1-[(σ

2
cond/nh)+ τ cond] / [(σ

2
uncond/nh)+ τ unccond] 

 Where nh = the harmonic mean of n for the level 2 units 

Given these formulae, the question shifts from whether the R
2
 can be calculated, to whether it 

should be calculated? Snijders and Bosker (1994) and Recchia (2010) found that the individual R
2
 

obtained from each level is often misleading, and as he stated, it “does not behave as one would expect” 

(p. 3). There is a simple reason for this. The reason is that the variance accounted for at the first level is 

being moderated or mediated by the Level-2 variables. This concept is similar to the possibility of making 

a Type VI error when using analysis of covariance (Nimon & Henson, 2010; Tracz et al., 2005). Since the 

total variance in the dependent variable is being reduced by the covariates, the construct might change, 

and in all likelihood, will change. In this case, the coefficients of the level-1 predictors, and therefore, the 

variance they account for, are being modified by the level-2 variables. Recchia and others suggest only 

looking at R
2
s for the combined model. The following equation can be used to obtain the R

2
 of the 

combined linear mixed model. 

    Combined Model: R
2
= (σ

2
baseling-τ cond)/ τ baseline 

 

Hypotheses Testing, Research Questions and Choices of Statistical Tests 

  OLR regression and most other GLM tests of significance are designed to answer specific research 

questions. Usually these tests of significance address the findings of the research question within a single 

analysis. Sometimes, this initial analysis is conducted in hierarchical blocks, but it is still conducted 

within a single analysis. In contrast, with HLM, this process is conducted in sets of analyses. Raudenbush 

and Bryk (2002) and Field (2009, 2013) discuss hypotheses testing using LMM. In LMM one has to hand 

calculate the differences statistic from the baseline or unconditioned model and the conditioned model. 

Field refers to this as conducting a χ
2
 difference test using the 2-log likelihood estimates and the number 

of parameters. Using the HLM software, Raudenbush and Bryk suggest using the covariance deviance 

component and the number of estimated parameters in the first model and then test the χ
2 
change with the 

deviance component and the number of parameters in the second model. This χ
2
 difference test can then 

be converted into a R
2
 change that can be compared to the R

2
 change in the OLS regression or LMM. To 

convert the χ
2
 to an R

2
, one can use an effect size converter or the following formula: 

           R
2 
= (χ

2
/(χ

2
+N))

1/2
. 

When doing hypothesis testing with the HLM software or the SPSS LMM, one has to remember 

to change the default estimation settings from REML to ML estimates. This is because the χ
2
 difference 

test is comparing the variance accounted for with the fixed effects models. REML is best suited for testing 

the random effects parameters while ML should be used when testing the fixed effects parameters (Field, 

2013; Raudenbush & Bryk, 2002). Even though our comparisons between the REML and ML variance 

estimates produced similar results, it is suggested that ML are still used for hypothesis testing.     

 Six models were run in SPSS for this study:  the HLM null models using REML and ML, the HLM 

models with SES using REML and ML, the null model with person vectors in MLR, and the MLR model 

with SES and person vectors. Residuals were computed for each of these six models and the correlation 

matrix is presented in Table 8.  The correlation coefficients between the residuals for Model 1 using 

REML and ML and for Model 2 using REML and ML are both 1.00. This is further information 

supporting the similarities reported above. SPSS uses REML as the default, but the perfect correlation 

between the errors for these two methods provides evidence that these are virtually identical techniques.   
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Table 7. Comparison of Mean Square Residual and R
2 

Results for SPSS HLM and SPSS OLS 

MLR for Models 1 and 2 

Statistic and Model of Interest SPSS HLM Results SPSS OLS MLR Results 

     Mean Square Residual    

          Model 1 39.15 39.142 

          Model 2 36.70 36.720 

     R
2
   

          Model 1 * * 

          Model 2 .0665 .067 

Note. * The R
2
 at Level-1 is being moderated or mediated by the Level-2 variables and can be 

misleading so it is not calculated or presented here. The R
2
 for Level-2 was calculated using 

Hypothesis Testing in HLM 7.0. The basic formula is reported in the next section. 
 

Table 8. Correlations Among Residuals for Varying HLM and MLR Models 

Residuals 1 2 3 4 5 6 

1) Model 1: HLM/ REML -      

2) Model 1: HLM/ ML 1.000
**

 -     

3) Model 2: HLM/ REML .971
**

 .971
**

 -    

4) Model 2: HLM/ML .971
**

 .971
**

 1.000
**

 -   

5)  Model 1: MLR  .999
**

 .999
**

 .970
**

 .970
**

 -  

6)  Model 2: MLR .956
**

 .956
**

 .991
**

 .991
**

 .957
**

 - 

Note. For all Correlation N = 7185 and p < .001.  
 

 Further support that HLM and MLR with person vectors provide the same results is found when 

examining the correlations among these residuals. The correlation between the HLM – REML residuals 

and the MLR residuals for model 1 is .999, and the correlation between the HLM – ML residuals and the 

MLR residuals for model 1 is also .999.  The correlation between the HLM – REML residuals and the 

MLR residuals for model 2 is .991, and the correlation between the HLM – ML residuals and the MLR 

residuals for model 1 is also .991. This is, again, support that these two statistical methods are providing 

the same results in response to the same questions. These results are similar to those of Mundfrom and 

Schults (2002). 

Conclusions 

  This study compared multi-level linear models with HLM and SPSS output and found them to be 

very similar; though, there appear to be some differences in algorithms or rounding because the values are 

not always exact. A comparison of the default REML and ML solutions in SPSS found these results to be 

very similar as well, and the errors for these two methods were perfectly correlated. A comparison of 

SPSS HLM and MLR with person vectors also found the output to be very similar on mean square 

residuals, R
2
s, and correlated errors. If the errors between different models are correlated in excess of .99, 

it is reasonable to conclude that those models are addressing the same research questions with the same 

variables. What seems to be different between HLM and MLR with person vectors is not only the 

terminology and vocabulary of the research questions, but the basic process of conducting research. In the 

classical hypothesis testing procedures for regression and ANOVAs, a research questions was asked, a 

model developed, a statistical analysis performed, and the questions were considered answered either in 

the affirmative or not. However, the HLM process seems to be more fluid with variables being added and 

deleted until significance is found and R
2
s are reported for models instead of variables. At any rate, 

researchers need to exert care so that their statistical analyses match their research questions and they 

avoid making Type VI errors.   
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APPENDIX A 

SPSS Programming Instructions for HLM 
 

To create variable for group centered means SES means 

Data 

 Sort cases 

  Move school to box labeled “sort by” 

 OK 

Data 

 Aggregate 

  Move school to box labeled “break variables” 

  Move ses to box labeled “summaries of variables” 

  C on box labeled “number of cases” 

  C on box labeled “add aggregate variables to active data base” 

  C on options for “file is already sorted on break variables” 

 OK 

 

To create SESdev  

Transform 

 Compute variable 

  Type SESdev in boy labeled “Target Variable” 

Move variable labeled SES to box labeled “Numeric Expression”  

   Type * after SES 

   Move variable labeled SES_mean to box labeled “Numeric  

   Expression” 

  C on OK 

 

To run Model 1 

Analyze 

 Mixed Models 

  Linear 

 

Since school is the level 2 model in which individuals are nested, move school into the “Subjects” box 

 C on continue 

  Move mathach into the box labeled “Dependent variable” 

   C on the box on the left labeled “Fixed” 

    In the dropdown box in the center change “Factorial” to  

    “Main Effects” 

   Continue 

C on the box on the left labeled “Random” 

- Move school from the box labeled “subjects” to “combinations” 
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    - In the dropdown box in the center change “Factorial” to  

    “Main Effects” 

    - C to check the box labeled “include intercept” 

    -In the dropdown box near the top change “Variance  

    Components” to “Unstructured” 

   Continue 

   C on the box labeled “Statistics” 

    - C on “parameter estimates” 

    - C on “tests for covariance parameters” 

   Continue 

  OK 

 

To run Model 2 

 

Analyze 

 Mixed Models 

  Linear 

 

Since school is the level 2 model in which individuals are nested, move school into the “Subjects” box 

 C on continue 

  Move mathach into the box labeled “Dependent variable” 

  Move SESdev into the box labeled “Covariates” 

   C on the box on the left labeled “Fixed” 

    - In the dropdown box in the center change “Factorial” to  

    “Main Effects” 

- Move SESdev from the box labeled “factors and 

covariates” to “Model” 

   Continue 

C on the box on the left labeled “Random” 

- Move school from the box labeled “subjects” to “combinations” 

    - In the dropdown box in the center change “Factorial” to  

    “Main Effects” 

- Move SESdev from the box labeled “factors and 

covariates” to “Model” 

    - C to check the box labeled “include intercept” 

    -In the dropdown box near the top change “Variance  

    Components” to “Unstructured” 

   Continue 

   C on the box labeled “Statistics” 

    - C on “parameter estimates” 

    - C on “tests for covariance parameters” 

   Continue 

  OK 
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APPENDIX B 

SPSS REML Multilevel Modeling Output for Models 1 and 2 

 

Model 1: SPSS Output and Tabled Values 
 

Type III Tests of Fixed Effects
a
 

Source Numerator df Denominator df F Sig. 

Intercept 1 156.647 2673.663 .000 

a. Dependent Variable: MATHACH. 
 

Estimates of Fixed Effects
a
 

Parameter Estimate Std. Error df t Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

Intercept 
(γ00) 

12.636974 
.244394 156.647 51.707 .000 12.154242 13.119706 

a. Dependent Variable: MATHACH. 
 

Estimates of Covariance Parameters
a
 

Parameter Estimate Std. Error Wald Z Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

Residual 
(σ

2
) 

39.148322 
.660645 59.258 .000 37.874662 40.464813 

Intercept [subject = 
school] 

Variance 
(τ00) 

8.614025 
1.078804 7.985 .000 6.739122 11.010548 

 

Model 2: SPSS Output and Tabled Values  

 
Type III Tests of Fixed Effects

a
 

Source Numerator df Denominator df F Sig. 

Intercept 1 156.753 2670.923 .000 
SESdev 1 155.217 292.403 .000 

a. Dependent Variable: mathach. 

 
Estimates of Fixed Effects

a
 

Paramet
er 

Estimate Std. Error df t Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

Intercept 
γ00 

12.636193 
.244504 156.753 51.681 .000 12.153246 13.119140 

SESdev 
γ10 

2.193196 
.128259 155.217 17.100 .000 1.939839 2.446554 

a. Dependent Variable: mathach. 

 
Estimates of Covariance Parameters

a
 

Parameter Estimate Std. Error Wald Z Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

Residual 
(σ

2
) 

36.700200 
.625744 58.650 .000 35.494030 37.947358 

Intercept + SESdev 
[subject = school] 

UN (1,1) 
(τ00) 

8.680969 
1.079535 8.041 .000 6.803240 11.076961 

UN (2,1) 
(τ01) 

.046792 
.406372 .115 .908 -.749683 .843267 

UN (2,2) 
(τ11) 

.693989 
.280786 2.472 .013 .314021 1.533721 

a. Dependent Variable: mathach. 
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APPENDIX C 

HLM Multilevel Modeling Output for Models 1 and 2 

 

Model 1: HLM Output and Tabled Values  

σ
2
 = 39.14831       

τ       

INTRCPT1,β0   

   

 

 8.61431 

 

Random level-1 coefficient   Reliability estimate 

INTRCPT1,β0 0.901 

The value of the log-likelihood function at iteration 4 = -2.355840E+004 

Final estimation of fixed effects: 

Fixed Effect  Coefficient 
 Standard 

error 
 t-ratio 

 Approx. 

df 
 p-value 

For INTRCPT1, β0  

    INTRCPT2, γ00  12.636972 0.244412 51.704 159 <0.001 

Final estimation of fixed effects 

(with robust standard errors)  

Fixed Effect  Coefficient 
 Standard 

error 
 t-ratio 

 Approx. 

df 
 p-value 

For INTRCPT1, β0  

    INTRCPT2, γ00  12.636972 0.243628 51.870 159 <0.001 

Final estimation of variance components 

Random Effect 
Standard 

 Deviation 

Variance 

 Component 
  df χ

2
 p-value 

INTRCPT1, u0 2.93501 8.61431 159 1660.23259 <0.001 

level-1, r 6.25686 39.14831       

Statistics for current covariance components model 

Deviance = 47116.793469 

Number of estimated parameters = 2 
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APPENDIX C (continued) 

HLM Multilevel Modeling Output for Models 1 and 2 

Model 2: HLM Output and Tabled Values  

 

σ
2
 = 36.82835 

τ 

INTRCPT1,β0      4.82978    -0.15399 

SES,β1      -0.15399    0.41828 

 

τ (as correlations) 

INTRCPT1,β0      1.000   -0.108 

SES,β1     -0.108    1.000 

 

Random level-1 coefficient   Reliability estimate 

INTRCPT1,β0 0.797 

SES,β1 0.179 

The value of the log-likelihood function at iteration 21 = -2.331928E+004 

Final estimation of fixed effects: 

Fixed Effect  Coefficient 
 Standard 

error 
 t-ratio 

 Approx. 

df 
 p-value 

For INTRCPT1, β0  

    INTRCPT2, γ00  12.664935 0.189874 66.702 159 <0.001 

For SES slope, β1  

    INTRCPT2, γ10  2.393878 0.118278 20.240 159 <0.001 

Final estimation of fixed effects 

(with robust standard errors)  

Fixed Effect  Coefficient 
 Standard 

error 
 t-ratio 

 Approx. 

df 
 p-value 

For INTRCPT1, β0  

    INTRCPT2, γ00  12.664935 0.189251 66.921 159 <0.001 

For SES slope, β1  

    INTRCPT2, γ10  2.393878 0.117697 20.339 159 <0.001 

Final estimation of variance components 

Random Effect 
Standard 

 Deviation 

Variance 

 Component 
  df χ

2
 p-value 

INTRCPT1, u0 2.19768 4.82978 159 905.26472 <0.001 

SES slope, u1 0.64675 0.41828 159 216.21178 0.002 

level-1, r 6.06864 36.82835       

Statistics for current covariance components model 

Deviance = 46638.560919 

Number of estimated parameters = 4 

 


