A Program for the Estimated Standard Error of the Difference in Slopes from Separate Regressions

David A. Walker Northern Illinois University

The SPSS program provides an application for researchers and practitioners interested in two formulas for the standard error of the difference between regression slope coefficients per the discussion proffered recently in *Multiple Linear Regression Viewpoints* by Robinson, Tomek, and Schumacker (2013) and Hayes and Agler (2014).

The subsequent SPSS program (Walker, 2014) is intended to provide an application for researchers and practitioners interested in two formulas for the standard error of the difference between regression slope coefficients. In this particular area of methodology, described recently in *Multiple Linear Regression Viewpoints* by Robinson, Tomek, and Schumacker (2013) and Hayes and Agler (2014), a debate has ensued regarding which formula to employ when examining a regression research question such as "Is the relationship between X and Y (e.g., the relationship between risk of breast cancer and the intention to obtain breast cancer screening) the same or different between two groups (e.g., individuals at low risk versus high risk of breast cancer)?

The literature suggests that a specific formula (noted as Formula7 in part II of the subsequent SPSS program) for the standard error (SE) of the difference between two regression slopes from separate regressions (i.e., the SE of $b_2 - b_1$) advanced by studies such as Brame, Paternoster, Mazerolle, and Piquero (1998); Cohen (1983); Hayes and Agler (2014), and Paternoster, Brame, Mazerolle, and Piquero (1998) provides an unbiased estimate. Another formula (noted as Formula5 in part II of the following SPSS program) for the estimated standard error of the difference in slopes from separate regressions presented by Robinson et al. (2013), and based on work by Kleinbaum and Kupper (1978), facilitates a more powerful test of the difference in slopes, but has been noted in the literature as a biased estimate, for example, by Paternoster et al. who determined "... this to be an incorrect formula for the difference between two regression coefficients, because the estimated standard error of the difference is negatively biased" (p. 862).

Standard Error of the Difference in Slopes (SE of b2 - b1) from Separate Regressions Program

The heuristic example and data used in the current SPSS syntax program, and also employed in both the Robinson et al. (2013) and Hayes and Agler (2014) studies, provide results from the two formulas for the estimated standard error of the difference in slopes from separate regressions. The data were derived from Aiken (2006) (<u>http://www.public.asu.edu/~atlsa/PSY531/home7dat.txt</u>) and used to answer the previously-noted regression research question.

The SPSS program has two parts along with embedded instructions. Part I uses Aiken's (2006) raw data and produces results for the separate regression models fitted to each group separately. The first area of focus from part I are the sample sizes for the two groups, where the high risk group (coded as 1) had n = 91 and the low risk group (coded as 0) had n = 96. The second area of focus from the regression model results are the SEs for the slopes of each regression equation (SEb1 and SEb2), where SEb1 = 0.167 (group 1) and SEb2 = 0.141 (group 0). Additionally, for part II of the program, the user would enter the sample sizes for the two groups in the model as well as the SEs for b1 and b2. The results found in part II of the program show a comparison between the two formulas, where the estimated SE of b2 – b1 in separate regressions, per the Robinson et al. (2013) position, was 0.159 and the SE from the Hayes and Agler (2014) perspective was 0.221 as noted in Table 5 from the latter.

To restate, this SPSS program was presented as a readily-accessible and easily-implemented way, given a similar regression situation as described in this example, of determining the standard error of the difference between two slopes (SE of b2 - b1) from separate regressions. Of note, this program can be used with other raw data beyond the presented example.

DATA LIST LIST / Case Group Dummy (3F8.0) Risk Int2gr (2F9.4).

NOTE: Run the regression model first (PART I) to obtain samples sizes and standard errors for b1 and b2, which will then be entered into PART II of the program below

PART I: Between BEGIN DATA and END DATA below, data come from Aiken (2006) (http://www.public.asu.edu/~atlsa/PSY531/home7dat.txt), where Case are the participants, Group 1 (dummy coded as 1) are at high risk of breast cancer, Group 3 (dummy coded as 0) are at low risk for breast cancer (Note: Group 2 was removed from the data set), and

with the question "Is the relationship between X and Y (e.g., the relationship between risk of breast cancer and the intention to obtain breast cancer screening) the same or different between two groups (e.g., individuals at low risk versus high risk of breast cancer)?

BEGIN	DA	ТА		
6	1	1	5.8800	6.2723
7	1	1	5.0800	5.6331
8	1	1	5.6800	.1396
9	1	1	5.6000	2.4134
10	1	1	5.4000	4.9166
11	1	1	5.8400	3.7166
12	1	1	5.5200	5.8110
13	1	1	5.8800	3.1764
14	1	1	5.3200	6.0798
15	1	1	5.7600	4.4524
16	1	1	6.6400	3.8435
17	1	1	5.9600	7.7328
18	1	1	5.6800	2.8904
19	1	1	6.7200	2.5417
20	1	1	5.3200	5.6832
21	1	1	6.9600	3.2330
22	1	1	4.8800	5.9297
23	1	1	6.4000	.9472
24	1	1	6.0000	3.5944
25	1	1	3.9600	5.8155
26	1	1	5.5600	3.0541
27	1	1	6.8000	3.9284
28	1	1	5.8000	1.9755
29	1	1	6.6800	1.4138
30	1	1	6.8000	4.1887
31	1	1	6.2400	7.0136
32	1	1	5.1200	5.4981
33	1	1	4.9600	5.4932
34	1	1	5.6000	4.0277
35	1	1	6.2800	.0201
36	1	1	4.8000	4.8073

Walker

96	1	1	6.7600	1.5827
145	3	0	3.8000	6.9432
146	3	0	3.8100	3.8780
147	3	0	3.7000	5.0565
148	3	0	3.3300	6.8098
149	3	0	4.2300	6.8058
150	3	0	3.5000	7.1364
151 152	3 3 3	0 0	3.7500 3.1300	5.7816 3.1689
153 154	3	0 0	3.7400 3.1300	7.4606
155	3	0	3.9700	8.5968
156	3	0	2.2500	7.8598
157	3	0	3.0900	5.0652
158	3	0	2.8100	2.0038
159	3	0	3.9100	6.1994
160	3	0	3.7100	7.9174
161	3	0	3.6300	7.7204
162 163	3 3 3	0 0 0	3.1000 3.3300	5.0996 2.6029
164	3	0	4.0700	7.5854
165	3	0	3.9400	
166	3	0	3.7400	5.3863
167	3	0	3.2900	4.2541
168 169	3 3 2	0 0	3.3900 3.8100	2.4164 7.7362
170	3	0	3.7000	7.8777
171	3	0	2.3300	6.5961
172	3	0	2.9600	4.5304
173 174	3 3	0 0	4.3700	5.8116
175	3	0	3.6800	5.9279
176	3	0	3.9300	5.3928
177 178 179	3 3 2	0 0	3.5900 3.1000	8.5000 3.7551
179	3	0	3.1800	5.9669
180	3	0	3.8700	6.2055
181	3	0	3.6200	7.6674
182	3	0	3.2000	7.1059
183	3	0	2.6800	
184	3	0	3.7800	6.6490
185	3	0	3.5400	3.9620
186	3	0	2.4800	2.8027
187	3	0	4.0600	7.3543
188	3	0	4.5600	4.0663
189	3	0	4.6700	4.3458
190	3	0	3.2500	4.5636
191	3	0	3.7400	5.7331
192	3	0	3.9700	
193	3	0	3.6500	5.7024
194	3	0	3.6800	5.0748
195	3	0	3.5800	4.0923
196	3	0	5.0000	6.8036
197	3	0	4.7200	5.9993
197 198 199	3 3 3	0 0 0	4.1400 3.9600	4.2794 8.8474
200	3	0	1.7500	5.7036
201	3	0	5.4300	8.2242
202	3	0	3.1200	5.7957
203	3	0	4.1200	7.8698

Walker

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		2.83 3.66 2.44 3.99 4.07 3.19 4.43 3.41 3.80 4.50 3.92 3.44 4.37 5.19 5.40 4.37 5.40 4.57 5.41 5.41 5.41 5.42 4.57 3.37 4.57 5.77 3.37 4.57 5.77 3.37 4.57 5.77 3.37	300 400 900 700 900 300 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 700 500 400 500 400 700 200 900	3.1160 6.0828 6.4699 5.2653 6.3213 5.2002 6.8410 7.0056 6.8389 6.6359 7.7443 6.5655 7.4891 6.1449 5.7520 4.4224 9.0037 6.2479 7.7820 8.0749 9.8735 8.3291 5.7143 3.8664 6.1701
232 233	3 3	0 0	4.08 3.6		7.7898 5.9753
234	3	0	3.69		5.7857
235	3	0	5.0		6.0894
236	3	0	6.1		10.2023
237 238	3 3	0	4.10 5.65		6.3574
238 239	3	0 0	5.63 7.4		7.4785 8.6647
239	з З	0	7.4 9.9		11.8612
	JATA	-	9.9.	900	11.0012
SPLIT		LE	By Du	mmy	
REGRESSION					
			VES M	ᠮ᠕ᢂ	STDDEV
					עייעעדט
/DEPENDENT Int2gr					
/ 1415	/METHOD=ENTER Risk.				
			Descr	iptiv	e Statistics

Descriptive Statistics						
Dumr	ny	Mean	Std. Deviation	Ν		
4	Int2gr	3.779842	1.9673414	91		
1	Risk	5.970989	1.0709923	91		
0	Int2gr	6.195198	1.8233778	96		
0	Risk	3.861875	1.1099742	96		

Model Summary

Dummy	Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	1	.518 ^ª	.268	.260	1.6923175
0	1	.553 ^a	.306	.298	1.5275103

a. Predictors: (Constant), Risk

Dummy	Model		Sum of	df	Mean		
			Squares		Square	F	Sig.
		Regression	93.448	1	93.448	32.629	.000 ^b
1	1	Residual	254.891	89	2.864		
		Total	348.339	90			
		Regression	96.518	1	96.518	41.366	.000 ^b
0	1	Residual	219.329	94	2.333		
		Total	315.847	95			

ΔΝΟΥΔα

a. Dependent Variable: Int2gr

b. Predictors: (Constant), Risk

Coefficients^a

Dummy	Model			andardized efficients	Standardized Coefficients		
			В	Std. Error	Beta	t	Sig.
1	1	(Constant)	9.461	1.010		9.365	.000
	I	Risk	951	.167	518	-5.712	.000
0	1	(Constant)	2.688	.567		4.740	.000
0	I	Risk	.908	.141	.553	6.432	.000

a. Dependent Variable: Int2gr

SPLIT FILE OFF.

DATA LIST LIST / N1 N2 (2F8.0) SEb1 SEb2 (2F9.3).

PART II: Below are the samples sizes from the example (N1 and N2) and the standard errors for b1 (SEb1) and b2 (SEb2), which are entered below between BEGIN DATA and END DATA for the second part of the program

```
BEGIN DATA
91 96 .167 .141
END DATA.
COMPUTE Formula5 = SQRT(((N1*SEb1**2+N2*SEb2**2)/((N1+N2)-2))).
COMPUTE Formula7 = SQRT((SEb1**2+SEb2**2)).
FORMAT Formula5 TO Formula7 (F8.3).
VARIABLE LABEL Formula5 'Estimated SE of the Difference in Slopes (Robinson
et al) '/Formula7 'Estimated SE of the Difference in Slopes (Hayes & Agler)'.
REPORT FORMAT=LIST AUTOMATIC ALIGN (CENTER)
 /VARIABLES= Formula5 Formula7
 /TITLE "Standard Error of the Difference in Slopes from Separate
Regressions".
Standard Error of the Difference in Slopes from Separate Regressions
                                                  Estimated SE
                     Estimated SE
                     of the
                                                   of the
                     Difference in
                                                   Difference in
                     Slopes (Robinson et al)
                                                   Slopes (Hayes & Agler)
```

```
.155
```

References

- Aiken, L. (2006). *PSY 531 multiple regression in psychological research*. Retrieved from http://www.public.asu.edu/~atlsa/PSY531/home7dat.txt
- Brame, R., Paternoster, R., Mazerolle, P., & Piquero, A. (1998). Testing the equality of maximumlikelihood regression coefficients between two independent equations. *Journal of Quantitative Criminology, 14*, 245-261.
- Cohen, A. (1983). Comparing regression coefficients across subsamples: A study of the statistical test. *Sociological Methods & Research*, *12*, 77-94.
- Hayes, A. F., & Agler, R. A. (2014). On the standard error of the difference between two independent regression coefficients in moderation analysis: A commentary on Robinson, Tomek, and Schumacker (2013). *Multiple Linear Regression Viewpoints*, 40(2), 16-27.
- Kleinbaum, D. G., & Kupper, L. L. (1978). Applied regression analysis and other multivariable *methods*. North Scituate, MA: Duxbury Press.
- Paternoster, R., Brame, R., Mazerolle, P., Piquero, A. (1998). Using the correct statistical test for the equality of regression coefficients. *Criminology*, *36*, 859-866.
- Robinson, C. D., Tomek, S., & Schumacker, R. E. (2013). Tests of moderation effects: Difference in simple slopes versus the interaction term. *Multiple Linear Regression Viewpoints*, 39(1), 16-24.
- Walker, D. A. (2014). Standard error of the difference in slopes from separate regressions. [Computer program]. DeKalb, IL: Author.

Send correspondence to:	David A. Walker
	Northern Illinois University
	Email: <u>dawalker@uniu.edu</u>