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This article follows a recommendation from the regression literature to help regression learners become 

more experienced with residual plots for identifying assumption violations in linear regression. The article 

goes beyond the usual approach to residual displays in standard regression texts by taking a model-based 

simulation perspective: simulating the data from a generating model and using them to estimate an 

analytical model. The analytical model is a first order linear regression model; whereas the generating 

model violates the assumptions of the analytical model. The residuals from the analytical model are 

plotted to demonstrate assumption violations to provide experience for regression learners with 

characterized residual patterns. The article also briefly discusses remedial measures.  

 ultiple regression models answer questions about the relationship between a response variable 

and one or more predictors. Such models start with a collection of potential predictors. Some of 

these predictors may be continuous measurements, like miles traveled or salary. Some may be 

discrete, but ordered, such as the number of employees in a company. Other potential predictors can be 

categorical, like gender or hair color. All these types of potential predictors can be useful in a multiple 

regression model.  

  From the pool of potential predictors, terms, or model effects, can be created. The terms are the x  

variables that appear in the multiple regression model in Equation 1  
 

        0 1 1 2 2 ,i i i k ik iy x x x         
 ,        

(1) 

where β1, β2, . . ., βk are model parameters, x1, x2, . . ., xk are terms or model effects, and εi ~ N(0,σ2) are 

conditional on all predictors with 
2  being an unknown, but with common variance i = 1, 2, . . ., n. The 

relationship is stochastic in the sense that the model is not exact, but subject to random variation, as 

expressed in the error term . In a stochastic relationship, the values of one set of variables (predictors) 

determine the (conditional) probability distribution of another variable (response) (Goldberger, 1968). 

The part of the model without the random error is its deterministic component, which is also known as the 

mean function, as it describes the mean of y  conditional on values of all predictors. 

In Equation 1, each term xi, i = 1, 2, . . ., k, could be one of the followings: 1) a  quantitative predictor in 

its original or transformed metric, 2) an interaction of two or more predictors, 3) a higher order term of a 

predictor, and 4) a dummy indicator for a qualitative predictor. A regression with k predictors may 

combine to give fewer than k terms or expand to require more than k terms (Weisberg, 2005).  

Despite the fact that the number of terms in Equation 1 could be either greater than or smaller than the 

number of predictors, a commonly used type of model is one where the former equals the latter and each 

predictor is a term and vice versa. This type of model usually features the absence of such terms as 

interactions or polynomials because the principle of hierarchy requires that a polynomial term of a given 

order and/or an interaction term not be retained in the model unless all related terms also stay in the 

model; thus, leading to more terms than predictors. Because the functional form of Equation 1 is already 

linear in parameters, the absence of both interactive and polynomial terms causes the model to be also 

linear in terms and their effects to be additive. Thus, making this type of model a first-order regression 

model where the response is linearly related to each parameter and each term (predictor) and the effects of 

all terms (predictors) are additive.  

  A first order regression model as described above can be estimated using the method of ordinary least 

squares (OLS), given that the underlying model assumptions are satisfied to an acceptable level. The OLS 

method is a model fitting mechanism that is based on minimizing the residual sum of squares (RSS), and 

it is capable of estimating the (linear-in-parameter) model as described by Equation 1 regardless of 

whether or not the model is first order. That is, even when the model by Equation 1 stops being first order 

by containing polynomial (nonlinear) and/or interaction (non-additive) terms like in the case of general 

linear models, the OLS method can also serve as its estimator.  

  How well the ordinary least squares method performs in estimating an applicable linear regression 
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model largely counts on the extent to which the assumptions of the model are satisfied. However, 

although linear regression is widely used, research has indicated it is also probably the most abused in 

terms of ignoring the underlying assumptions of the model (Berry, 1993). Usually without being certain 

in advance that a regression model is appropriate for an application, the model is considered for that 

application anyway. This is usually at the cost of one, or several, of the assumptions of the model such as 

the normality assumption for the error term being violated or being inappropriate for the particular data at 

hand. Then, after the model is estimated using the data from the application, people fail to test whether 

the underlying assumptions are reasonably satisfied, which renders the final results questionable. After 

that, despite likely assumption violations, results from the regression analysis are still interpreted, 

reported, and published. This is one of many types of common scenario regression abuse that is rooted in 

failure to attend to regression assumptions.  

  Therefore, a correct understanding of regression assumptions is critical for regression learners to 

appreciate weaknesses and strengths of his or her estimates from a regression model. These assumptions 

need to be checked using regression diagnostics. Diagnostic techniques can be graphical, which are more 

flexible, but harder to definitely interpret or numerical (statistical tests), which are narrower in scope, but 

require no intuition (Faraway, 2004). Both types of diagnostic techniques are usually based on an analysis 

of residuals because their analysis is an effective way to discover several types of model inadequacies 

including assumption violations (Montgomery, Peck, & Vining, 2001). In the literature, some argue the 

final judgment on model adequacy should be based on statistical tests of residuals, instead of their 

graphical displays (Mendenhall & Sincich, 2003); whereas others insist residual plots are much more 

useful than formal testing procedures when assessing model adequacy (Chatterjee & Hadi, 1988). Despite 

the difference in opinions, both approaches remain the most commonly used regression diagnostic tools. 

This article primarily examines basic residual plotting for checking model assumptions.  

  With that said, it is important to train regression learners to effectively judge plots of residuals to 

properly evaluate the validity of assumptions for a fitted regression model. To that end, the article resorts 

to computer simulation. This is because simulation is widely recognized as a useful tool for teaching 

statistics and an aid to learning statistical methods (Burton, Altman, Royston, & Holder, 2006; Hodgson 

& Burke, 2000; Mooney, 1995). Particularly, simulating data can help people visualize abstract statistical 

concepts, and to see dynamic processes, rather than statistic figures and illustrations (Dupuis & Garfield, 

2010). On the other hand, it has long been recognized that there can be a lot of slippage between the 

model assumed and the right/true model (Berk, 2004). With real world applications, the right model 

underlying the data is almost never known. So, given a mismatch between the assumed model and the 

true model that is evidenced by characterized residual patterns, even experienced regression experts may 

find it difficult to properly bridge the gap between the pattern of residuals and the remedial measures to 

take, not to mention inexperienced regression learners.  

  Therefore, Faraway (2004) recommends that artificial plots, where the true relationship is known, be 

generated using computer simulation to help regression learners gain some prior experience in judging 

residual plots. That way, when a characterized shape in a residual plot indicates a problem (i.e., 

assumption violation), the cause of that problem can be easily spotted; thus, providing experience for 

regression learners. Unfortunately, although artificial generation of plots is a good way to help people 

become experienced in judging residual plots, a review of literature indicates that standard regression 

texts seldom bother to cover this topic (Belsley, Kuh, & Welsch, 1980; Berk, 2004; Chatterjee & Hadi, 

1988; Chatterjee & Price, 1991; Cook, 1998; Draper & Smith, 1998; Fox, 2008; Gelman & Hill, 2007; 

Goldberger, 1968; Kutner, Nachtsheim, Neter, & Li, 2005; Mendenhall & Sincich, 2003; Montgomery et 

al., 2001; Rao & Toutenburg, 1999; Weisberg, 2005; Yan & Su, 2009). Almost always, standard 

regression texts just use residuals from real world applications where the true model is unknown and/or 

present prototype residual plots with no information provided regarding the structure of the data (the true 

model) and the assumed model to which the data are fitted. In the absence of the true relationship between 

the two models, such plots are limited in providing regression learners with the type of experience that 

they will need for properly calibrating residual patterns. Fortunately, there are exceptions. Faraway (2004) 

and Grob (2003) go beyond those usual approaches to displaying residuals. They computer-simulate the 

data to make available the information about both the assumed model and the true model to help people 

obtain a better feel for characterized residual behaviors. Even so, their simulation is limited mainly in two 

aspects: 1) restricted to only one or two assumptions and 2) without presenting the characterized pattern 
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in a dynamic process or as a function of other critical factors (e.g., level of autocorrelation, etc.). Such 

limitations are disappointing, so this article aims to extend their works by improving on those aspects.  

  In sum, this article revisits the topic of residual analysis in assessing regression model assumptions 

through a model-based simulation perspective. This simulation approach supplements the existing 

literature that primarily uses real world applications and/or prototype plots for demonstrating residual 

pattern as a function of assumption violation. A primary goal of this article is to help regression learners 

become more experienced in judging the shape of a residual plot. To that end, the article proposes that the 

data be simulated with a known structure from a generating model (GM) and then fitted to an analytical 

model (AM) that differs from the generating model in various aspects: distribution of the error, the 

relationship between the response and each predictor, and the relationship between predictors. With the 

residuals obtained from the analytical model, which is mis-specified relative to the generating model; 

thus, making the former model inappropriate for the data produced by the latter model, it becomes 

possible to pin-point the effect of the violation of one or more assumptions (of the analytical model) on 

the tendency exhibited in the residuals of the analytical model.  

  The article is organized as follows. The section that immediately follows provides an overview of 

statistical assumptions that are considered to be critical in the literature for the model described by 

Equation 1 when it is first-order and is estimated using ordinary least squares. Next, this section also 

presents the generating model for simulating the data with a given structure along with the analytical 

model that produces the residuals. The residuals are plotted accordingly in certain basic, but common 

ways (i.e., against predicted values, each predictor) to produce characterized patterns of assumption 

violations and a discussion of the patterns as a function of assumption violations is provided. Given this 

for each assumption, the article proceeds to another section that discusses more issues pertaining to 

residual analysis including remedial measures. The article concludes with a summary of the study. 
 

Critical Assumptions and Assessment Under Simulations 

  In this section, the article examines several assumptions considered to be critical for the model 

described by Equation 1 when it is first-order, where there is a one-to-one correspondence between terms 

and predictors (i.e., each term is a predictor and vice versa), and when it is the ordinary least squares 

method that is used as its estimator. This article discusses each assumption before providing a generating 

model for simulating the data with a known structure and fitting the data to a first-order, analytical model 

from Equation 1 to produce residuals. The residuals are next presented graphically to demonstrate 

characterized patterns from each assumption violation. This process is performed separately for each 

critical assumption to be examined. 

  In Gelman and Hill (2007), several of the most critical assumptions are presented in order of 

importance for the model described by Equation 1 when it is first order: 1) validity, 2) additivity and 

linearity (i.e., two assumptions counted as one), 3) independence of errors, 4) equal variance of errors, 

and 5) normality of errors. The article examines all these statistical assumptions using Monte Carlo 

simulations with the exception of the first one that focuses on validity of the data. The validity assumption 

usually includes three aspects: 1) the response should accurately reflect the phenomenon of interest, 2) the 

model should include all relevant predictors, and 3) the model should generalize to the case to which it 

will be applied. Clearly, this is a very important assumption. However, it is so broad that it cannot be 

practically demonstrated and tested using the available data alone. Therefore, the validity assumption is 

omitted from this article due to its great breadth, but not because it is unimportant. Then, this article is left 

with the remaining four critical assumptions. That they are critical is also endorsed by other works in the 

literature (Kutner et al., 2005; Tamhane & Dunlop, 1999). 

  The entire analysis is coded in R. The R code is available upon request. In all simulations, the sample 

size is fixed at 2000, or 2000n  . The random seed that the simulation process begins with is randomly 

set at 1024. During the process, the random seed for assessing the independence of errors assumption is 

set at 12345. Finally, coefficients for all generating models are all randomly picked up.  
 

Assumptions of Linearity and Additivity 

  Before proceeding to the main argument, it is worthwhile to clarify a few mathematical concepts 

(Goldberger, 1968). Consider first the function of one variable: y = f(x). We say that it is linear in x if and 

only if d(y)/dx does not involve x. That is, if and only if d(d(y)/dx)/x = 0, and if and only if the effect of a 
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given change in x does not depend on the level of x itself. Consider next the function of two independent 

variables: y = f(x1,x2). We say that it is linear in x1 if and only if ∂(y)/∂x1 does not involve x1. That is, if 

and only if ∂(∂(y)/∂x1)/∂x1 = 0, and if and only if the effect of a given change in x1 does not depend on the 

level of x1 itself. Similarly, we say that it is linear in x2 if and only if ∂(y)/∂x2 does not involve x2. That is, 

if and only if ∂(∂(y)/∂x2)/∂x2 = 0, and if and only if the effect of a given change in x2 does not depend on 

the level of x2 itself. Thus, essentially the same concept of linearity applies whether there are one or more 

independent variables. But, a new concept also applies. We can say that y = f(x1,x2) is additive in x1 and x2 

if and only if ∂(y)/∂x1 does not involve x2 and ∂(y)/∂x2 does not involve x1. That is, if and only if 

∂(∂(y)/∂x1)/∂x2 = 0 = ∂(∂(y)/∂x2)/∂x1, and if and only if the effect of a given change in each of the 

independent variables does not depend upon the level of the other. Additivity is an appropriate name for 

this feature since it means that the combined effect of given changes in both variables can be obtained by 

adding together the separately computed effects of the given changes in each of them. Also, the extension 

to the case of a function of many variables is straightforward. The concepts can be formulated in terms of 

finite changes to cover the case where derivatives are not defined. 

  Based on the above description regarding linearity and additivity, it is clear that a first order model 

described by Equation 1 is both linear and additive when it comes to the relationship between the 

response and each predictor. In such a model, two things are true, respectively for linearity and additivity: 

1) the expected change in the response associated with a one-unit increase in a predictor when holding 

constant the values of all other predictors, is the same regardless of the value of that predictor (i.e., a 

property of linearity) and 2) the expected change in the response associated with a one-unit increase in a 

predictor when holding constant all other predictors, remains the same regardless of the values of the 

other predictors that are being held constant (i.e., a property of additivity). That the first order model is 

linear in each predictor is due to the fact that each and every predictor is included in the model as a first-

order term. However, linearity between the response and a predictor xi, i = 1, 2, . . ., k, may be violated if 

at least one term in the model involves a transformation of the predictor, such as   
 , 1/xi, log(xi), etc. By 

contrast, that the first order model is additive in the effects of the k predictors is due to the fact that no 

term in the model is in the form of an interaction between two or more of those predictors. However, the 

effects of two or more predictors may no longer be additive if at least one term in the model is the product 

(or some other functions like ratio) of two or more of those predictors. 

  Since a first order model in Equation 1 is assumed to be both linear and additive, after it is fitted to a 

data set with a certain structure using ordinary least squares, what should be done to evaluate the extent to 

which the two assumptions are satisfied? An assessment of the two assumptions involves multiple scatter 

plots of residuals in two categories: 1) residuals against each predictor and 2) residuals against the fitted 

values.  

  To assess the linearity assumption, the residuals are to be plotted against each predictor to determine 

whether or not the corresponding relationship is linear. In each plot, randomness of residuals over the 

range of the observed predictor values is needed to support a linear relationship between the response and 

the corresponding predictor. Any systematic pattern of the residuals, particularly a parabolic-shape or 

bow-shape pattern, is a clear indicator of nonlinearity. Usually, given a violation of the linearity 

assumption, the residual-versus-predicted plot tends to exhibit similar patterns as each residual-versus-

predictor plot. This is due in part to the fact that the predicted values are themselves a linear combination 

of all involved predictors when the data are fitted to the linear-in-parameter model by Equation 1.  

 

Linearity Assumption 

  To show how a violation of the linearity assumption renders the residual plots nonrandom/systematic, 

the article proposes the generating model in Equation 2 to simulate data with a known nonlinear 

relationship between y and x1.  

        y = 0.5179 + [-0.0040(x1 -  ̅1)] ±0.4184(x1 -  ̅1)
2 + ε ,          (2) 

where x1 ~ N(2,32) and ε ~ N(0,32). In Equation 2, the response is simulated from a model establishing a 

nonlinear relationship between y and x1 under two cases: 1) a positive   
  coefficient, or (+)  

 , and 2) a 

negative   
  coefficient or (-)  

 . That the relationship is nonlinear is because Equation 2 is a 2nd order 

polynomial allowing curvature in the change of y as a function of x1. The x1 data are mean-centered to 

avoid potentially strong correlation between the 1st order and the 2nd order model effects.   
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  Next, the data are fitted to an analytical model that assumes a linear relationship between y and x1 as 

described by Equation 3: 

          y =  β0 + β1(x1 -  ̅1) + ε ,              (3) 

where ε follows a conditional 

normal distribution with the mean 

being zero and the variance being 

unknown, but constant over all 

settings of the only predictor: x1. 

Then, the residuals from the fitted 

analytical model are plotted against 

the centered predictor (x1 -  ̅1). 

Additionally, they are also plotted 

against the predicted values from 

the model. The resulting graphical 

outputs are found in Figure 1. 

  As is indicated in Figure 1, 

fitting the data with a nonlinear 

relationship between y and x1 to a 

model assuming a linear 

relationship between the two 

variables, causes both the residual-

versus-predictor and the residual-

versus-predicted plots to show 

systematic patterns in the shape of 

bows. Given (+)  
 , both plots open 

upward whereas with (-)  
 , they 

open downward. Regardless of the 

sign of the   
  term, such bow-

shape patterns in both plots indicate 

there is additional variability in the 

response that cannot be sufficiently explained by the fitted analytical model that assumes a linear 

relationship between y and x1. This is not surprising because the data are simulated with curvature in it 

whereas the analytical model assumes no curvature at all. Therefore, fitting such curvature-present data to 

this curvature-absent model violates the linearity assumption of the model, thus leading to systematic 

patterns in both residual plots. 
 

Additivity Assumption 

To show how a violation of the additivity assumption causes the Residual plots to be of systematic 

patterns, the article proposes the generating model in Equation 4 to simulate data with known non-

additive (interactive) effects of predictors: 
 

      y = -0.0814 + (-0.4927)x1 + (0.4946)x2 + (-0.0776)x1x2  + ε ,         (4) 
 

where x1 ~ N(2,32), x2 ~ N(0,0.32)  and ε ~ N(0,σ2) with σ2 = 12 for large error variability, σ2 = 0.082 for 

medium error variability, and σ2 = 0.012 for small error variability. In Equation 4, the response data are 

simulated from an interactive (non-additive) model where the effect of x1(x2) on the response depends on 

the value of x2(x1); hence, the effects of the two predictors are not additive, but are interactive. The 

interactive effect is presented in the form of a product of x1 and x2. This simulation is performed for the 

three different values of the error variance; hence, leading to three sets of simulated data. 

  Each set of data simulated from the non-additive model is fitted to an analytical model in Equation 5 

where the effects of the two predictors on the response are additive:  
 

          y =  β0 + β1x1 + β2x2 + ε ,              (5) 
 

where ε follows a conditional normal distribution with the mean being zero and the variance being 

unknown, but constant over all settings of the two predictors: x1 and x2. Next, the residuals from the fitted 

 
 Figure 1. Linearity violated under differing nonlinear terms 
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model are plotted against each 

of the two predictors, x1 and x2. 

They are also plotted against 

the predicted values from the 

fitted model. This is done for 

all three sets of simulated data. 

The resulting graphical outputs 

are in Figure 2. The residual 

plots against x2 are omitted due 

to their high similarity to those 

against x1. 

  As is indicated in Figure 2, 

fitting the data simulated from 

a non-additive (interactive) 

model to an additive model, 

results in systematic patterns in 

both the residual-versus-

predictor and the residual-

versus-predicted plots. Such 

patterns are more pronounced 

under small variability of the 

error than under large 

variability of the error. Under 

Figures 2a and 2b, the patterns 

in the two residual plots are 

hard to detect, despite a clear 

violation of the additive 

assumption for Equation 5. 

This indicates that residual 

plots are not always effective 

in identifying interaction 

effects. As the error variance 

decreases from 12 to 0.082, and 

further down to 0.012, the 

transition from less-marked to 

more-marked systematic 

patterns is evidently observed 

in both residual plots.  
 

Assumption of Independence of Errors 

  The independence of observations assumption for Equation 1 requires that the error terms for any two 

observations be uncorrelated. A typical scenario where this assumption is likely to be violated is when 

data are obtained at successive time points for the same sampling unit(s) or time-series data (Tamhane & 

Dunlop, 1999). According to Mendenhall and Sincich (2003), because time series data tend to follow 

economic trends and seasonal cycles, the value of a time series at time t  is usually indicative of its value 

at time (t+1) and values at time points that are even farther away. Therefore, the value of a time series at 

time t is correlated with its value at time (t+1) and values at other further apart time points. If such a 

series is used to estimate the model in Equation 1 assuming independence of errors under ordinary least 

squares, the result is that the residuals tend to exhibit long term trends over extended periods of time.  

Error terms correlated over time are said to be autocorrelated, and usually measured by ρ, with the 

autocorrelation parameter ranging from (−1) to (+1). That the residuals are correlated over time is just one 

of a number of problems derived from fitting time series data set to the model in Equation 1 that assumes 

independence of errors. Among other problematic issues are misleading statistical test results that lead to 

overoptimistic evaluations of a model’s predictive ability and underestimates of standard errors of 

Figure 2. Additivity violated under differing amount of error variability 
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regression coefficients. To more appropriately model time series data and avoid the stated problems, 

Equation 1 has to be extended to account for a different, usually more complex, structure of the random 

errors. This extension of the random error structure is typically in the form of a separate equation for 

errors that is known as the autoregressive error equation involving the use of the autocorrelation 

parameter ρ to allow for correlated errors over time. 

  In view of the problems from ignoring autocorrelated errors, it is important that their presence be 

detected so that an extension of the random error term of Equation 1 for properly modeling a time series 

is justified and; thus, implemented. To that end, a plot of residuals against time is an effective, though 

subjective, way of detecting autocorrelated errors. This plot is known as a run chart. Because a run chart 

of residuals takes into account the time sequence, it is able to make visible time-related patterns if any. 

  Next, the article proposes a generating model that simulates a time-series data set under first-order 

autocorrelation measured by  . The simulated data are fitted under Equation 1 without extending the 

random error term to account for such autocorrelation. Residuals from the fitted model are then plotted 

against time to examine the pattern of residuals as a function of time under a given level of 

autocorrelation. This process is repeated for six different values of ρ to assess the effect of ρ on the 

pattern of residuals as a function of time. The six selected values for ρ are 0.00, 0.30, 0.50, 0.90, 0.99, and 

1.00, which represent a wide range of levels of autocorrelation from non-existent, to weak, to moderate, 

to strong, to very strong, and to perfect, respectively. Next, the generating model for simulating the time 

series data is given by Equations 6 and 7: 

          yt = 0.2345 + 0.5911xt + εt ,             (6) 
 

          εt =   ρεt-1 + ut ,              (7) 
 

where xt ~ Uniform(0,10), ut ~ N(0,1), and ρ is an autocorrelation parameter. For each of the six selected 

values of ρ, a set of 2000 observations is simulated from 2000 time points. Next, each simulated data set 

is fitted to an analytical model from Equation 1 that assumes error independence. Specifically, the 

analytical model used here is in Equation 8: 

           yt =  β0 + β1xt + εt ,              (8) 

where εt follows a conditional normal distribution with the mean being zero and the variance being 

unknown, but constant over all settings of the only predictor: xt. 

 The graphical results are in Figure 3. Each subplot in Figure 3 represents the pattern of residuals from 

using ordinary least squares to fit the data simulated given a certain level of autocorrelation to Equation 1 

that does not assume any autocorrelation. When ρ = 0, or no autocorrelation between consecutive time 

points is indicated, the residuals do not show any systematic patterns. That is, adjacent error terms do not 

tend to be of the same sign or of the same magnitude causing the pattern plot to be heavily dense around 

the zero line, which is the mean of the residuals from the ordinary least squares method. In other words, 

the residuals are not consistently above or below the zero line for extended periods; rather, they fluctuate 

very rapidly around that line during the entire 2000 time points. Such a non-systematic pattern of 

residuals becomes less and less obvious as the autocorrelation parameter ρ keeps increasing. Stated 

differently, the higher the absolute value of the ρ parameter, the more systematic the pattern of residuals 

will become: Residuals are more and more likely to stay consistently above or below the zero line for 

longer periods of time. Although such a change from ρ = 0 to 0.3 is not quite noticeable, the change from  

ρ= 0.3 to 0.5 is much more phenomenal; where residuals become more and more clustered consistently 

above/below the mean and the pattern plot becomes gradually less dense around the zero line. However, 

at this point, it is still difficult to distinguish the periods when the residuals are consistently above the zero 

line from those when the residuals are consistently below the zero line. Then, when the ρ parameter jumps 

from 0.50 to 0.90, such a distinction between those two types of patterns (above/below the zero line) 

could already be made; though, with some efforts. When ρ increases to as high as 0.99, it is easy to tell 

that from the very beginning up to the 900th time point, the residuals are almost always consistently above 

the zero line with some exceptions at around the 500th time point; whereas most of the remaining 

residuals during the remaining time periods are consistently below the zero line. For the case of ρ = 1, the 

residuals remain consistently negative from the beginning up to about the 250
th
 time point. Then, from the 

250th time point up to the 1250th time point, almost all residuals are consistently positive and during the 

remaining period, all residuals are again consistently negative. 
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  Therefore, the autocorrelation 

parameter controls the pattern of 

residuals in the residual-against-time 

plot. The higher the absolute value of 

the ρ parameter, the more systematic 

the residual plot will become either 

consistently positive or consistently 

negative or a combination of both 

over extended periods of time. Such 

observed time trends of residuals that 

come from the fitted analytical model 

in Equation 1, assuming independence 

of errors, indicate that this assumption 

is violated. So, this analytical model 

does not provide a valid 

representation of the autocorrelated 

data in terms of the problems 

previously described such as 

misleading statistical test results of 

regression coefficients. Therefore, an 

extension of the random error term of 

Equation 1 is needed to better account 

for the correlation of errors over time. 

  In the end, it should be noted that 

time order is not the only factor likely 

to cause the assumption of 

independence of observations to be 

violated. According to Tamhane and 

Dunlop (1999), even cross-sectional 

data (i.e., data collected on different 

units at about the same time) may be 

correlated because of spatial 

proximity, family relationships, or 

other reasons. Such autocorrelation, 

due to spatial clustering of sampling 

units, needs also to be taken into 

account appropriately when building 

the model. 

 
Assumption of Constant Variance of Errors 
  The constant variance assumption is also called the assumption of homoscedasticity. Under Equation 

1, it is related to the normality assumption because it deals with the unknown variance parameter, σ2, 

parameter for ε in Equation 1, shared by the conditional normal distribution of the response and that of the 

error. The assumption states that the conditional variance of the error term in Equation 1 remains constant 

over the range of all predictor values. In other words, the constant variance assumption requires that the 

unknown σ2 parameter for ε remain invariant under any set of predictor characteristics. 

  The opposite of homoscedasticity is called heteroscedasticity or unequal variances for different 

settings of predictors. Among the many underlying reasons for heteroscedasticity is one where the 

response variable follows a distribution in which the variance is functionally-related to the mean. In most 

such cases, significant non-normality in the response is observed as well. A typical scenario here is when 

the response is a count/frequency variable that follows a Poisson distribution where the variance of the 

response equals its mean. Under such a distribution, the mean of the response, E(y), changes with a 

change in one or more predictors. Therefore, the conditional distribution of the response cannot have 

 
Figure 3. Independence of errors violated under differing degree of 

autocorrelation 
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constant variance at all levels of the predictors because the variance of a Poisson distribution equals its 

mean, which is changing with changing values of the predictors.  

 An assessment of the homoscedasticity assumption could be based on a plot of residuals against the 

model-predicted values for the response, which are estimates of its means conditional on levels of the 

predictors. If the dispersion of the residuals is approximately constant around zero with respect to the 

predicted values of the response, the assumption of homoscedasticity is supported. Otherwise, the 

assumption is questionable. Finally, residuals are also plotted against each predictor to assess if the 

constant variance assumption holds reasonably.  

  Next, the article proposes a generating model that simulates a data set where the variance of the error 

is decided by the square of a linear function of three predictors. In this model, any change in one or more 

of the three predictors usually causes this linear function to change as well, which in turn changes the 

variance of the response. In other words, the variance of the response cannot remain constant over the 

range of levels of all predictors due to the mathematical expression that determines how the former is 

related to the latter. With that said, the generating model used here is: 
 

      y = -0.0764 + (-0.2124)x1 + (-0.4998)x2 + (-0.4463)x3 + ε ,          (9) 
 

where x1 ~ N(2,32), x2 ~ N(0,0.32), x3 ~ N(5,22) and ε ~ N(0,[1+2x1+3x2+4x3]
2). In Equation 9, the variance 

of the error equals the square of a linear function of the three predictors: ,[1+2x1+3x2+4x3]
2. So, the error 

variance changes as a function of one or more predictors. The simulated data are fitted using ordinary 

least squares to an analytical model from Equation 1 that assumes constant variance over levels of all 

predictors. So, the analytical model used here is Equation 10: 
 

          y =  β0 + β1x1 + β2x2 + β3x3 + ε ,                (10) 
 

where ε follows a conditional normal distribution with the mean being zero and the variance being 

unknown, but constant over all settings of the three predictors: x1, x2, and x3. The residuals from the fitted 

analytical model are plotted against the model predicted values of the response and each predictor. The 

resulting graphical outputs are in 

Figure 4. As is indicated in Figure 4, 

fitting the data with an un-constant 

variance structure using ordinary least 

squares to a model that assumes 

constant variance, results in 

systematic patterns in both the 

residual-versus-predicted and the 

residual-versus-predictor plots. Under 

Figure 4a, when plotted against the 

predicted values, the residuals are in 

the shape of a right cone with the 

circular base pointing to the lower 

end of the predicted values and the 

apex to the higher end of the 

predicted values, which indicates that 

the variability of the residuals tends 

to decrease with increasing predicted 

values. Figures 4b and 4d also show a 

cone shape of residuals, but in the 

opposite direction. Variability of the 

residuals is smaller at the lower end 

of x1 and x3, but larger at the higher 

end of the two predictors. By 

contrast, the residuals in Figure 4c do 

not tend to exhibit any systematic 

patterns despite a violation of the Figure 4. Constant Variance Violated 
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constant variance assumption. This observation indicates that residual plots are not always effective in 

identifying assumption violations. Often, their use may have to be supplemented by statistical tests. 
 

Assumption of Normality of Errors 

  The normality assumption states that given any characteristics of all predictors, the random error is 

assumed to be normally distributed with the mean being zero and variance being a constant σ2, which is 

usually unknown. Of the four critical assumptions examined in this article, the normality assumption is 

the least critical one. Many times, regression analysis is robust with respect to non-normal errors. By 

robust, this means that inferences from regression analysis tend to remain valid when the assumption of 

normal errors is not quite satisfied. It is only when the errors come from a heavy-tailed, or highly skewed, 

distribution that a violation of the normality assumption of errors becomes a concern.  

  An examination of the normality assumption under residual analysis is usually based on one or more 

of the three types of plots: 1) a histogram of residuals, 2) a normal QQ plot of residuals, and 3) a stem-

and-leaf plot of residuals. But, these graphical means are not without problems. A criticism of the three 

plots is that each one lumps the residuals 

together from multiple settings of the 

predictors for a test of normality, when 

regression theory states that it is conditional on 

each possible setting of all predictors that the 

errors are normally distributed, which indicates 

that a check of the normality assumption 

should be done separately conditional on each 

possible setting of all predictors; a task 

practically impossible to accomplish. Lumping 

together residuals from multiple settings of all 

predictors, and performing a single check of 

the normality assumption using all residuals, 

could cause some non-normal patterns to be 

hidden or become invisible. This is particularly 

true when the distribution of residuals is 

skewed to one direction for some values of all 

predictors, but skewed to the other direction for 

other values of all predictors. In such a case, 

combining these residuals and examining them 

in a single plot could produce a distribution 

that is relatively symmetric (Mendenhall & 

Sincich, 2003). Despite such criticism, the 

above plots are still commonly used for 

checking normality. 

  With that description concerning one 

problem associated with the three graphical 

means, this article implements the first two 

types of plots to demonstrate departures from 

normality for the residuals from a fitted 

regression model; namely 1) a histogram and 2) 

a normal QQ plot of residuals. In order to 

support normality, the histogram needs to be 

reasonably symmetric and the QQ plot 

approximately linear with data points falling 

almost along a straight line. 

  Next, the article presents a generating model that simulates data with a non-normal distribution for 

the response. The data are then fitted to an analytical model from Equation 1 assuming normality of 

errors. The choice of the non-normal distribution here is a Poisson distribution for modeling count data. 

The rationale for such a choice is that count data, typically treated as interval/ratio variables, are analyzed 

 
 Figure 5. Normality violated under differing skewness  

  in predictor 
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frequently under Equation 1 assuming normal errors using ordinary least squares (Nussbaum, Elsadat, & 

Khago, 2007). Such a practice is questionable because count data are not interval/ratio and the correct 

choice for a count response should be either the Poisson or the negative binomial model. With that said, 

the generating model here is Equation 11, a Poisson regression model. Therefore, the response follows a 

Poisson distribution with the mean being exp[(0.2)+(0.3)x1+(0.9)x2+(0.5)x3] conditional on the values of 

the predictors: 

       y = Poisson(exp[(0.2)+(0.3)x1+(0.9)x2+(0.5)x3]) ,             (11) 
where x1 ~ N(2,32) and x2 ~ N(0,0.32). x3 is simulated separately under three cases: 1) N(5,22), 2) F(5,100), 

and 3) F(1,20). Clearly, from case 1 to case 3, the skewness of x3 data is anticipated to keep increasing: 

For case 1, skewness of x3 data is computed to be 0.0811; for case 2, 1.2374; and for case 3, 3.4359. 

  The simulated data containing y (count data), x1, x2, and x3 from the Poisson model are fitted to an 

analytical model from Equation 1 assuming normality of the random errors. Therefore, the analytical 

model used here is Equation 12: 
 

          y =  β0 + β1x1 + β2x2 + β3x3 + ε ,                (12) 
 

where ε follows a conditional normal distribution with the mean being zero and the variance being 

unknown, but constant over all settings of the three predictors: x1, x2, and x3. In such a case, the normality 

assumption of the analytical model is violated. To demonstrate the assumption violation, residuals from 

the fitted analytical model are plotted in a histogram and in a normal QQ plot, respectively. The results 

are in Figure 5. 

  As is indicated in Figure 5, the normality assumption of Equation 1 is not even close to being 

reasonably satisfied. In all three residual histograms, they are strongly positively skewed, which 

contradicts normality. Such an observation is further supported by all three normal QQ plots where the 

data points deviate substantially from being linear. Therefore, both plots indicate the common practice of 

treating a count response as interval/ratio and analyzing it using a linear model as Equation 1 under 

ordinary least squares could lead to a serious violation of the normality assumption of the model. Finally, 

from case 1 to case 3, the skewness of x3 keeps increasing with everything else held constant. However, 

there does not seem to be a clear, monotonic pattern for change in residual skewness as a function of 

monotonic increase in predictor skewness: From case 1 to case 2, the predictor skewness increases 

substantially by about 15 times (from 0.0811 to 1.2374) and the residual skewness by contrast drops from 

6.9626 to 5.0638. From case 2 to case 3, the former skewness increases by only about 2 times (from 

1.2374 to 3.4359) and the latter skewness sharply increases from 5.0638 to as high as 40.9812. 

 

Discussion 

  So far, this article has discussed four assumptions for the regression model in Equation 1 when it is 

first order that is considered to be critical in the literature. For each assumption, this article first presents a 

generating model simulating the data violating one or more assumptions of Equation 1. Then, the 

simulated data are fitted to the corresponding analytical model from Equation 1 to obtain the residuals. 

Finally, several basic residual plots are utilized to graphically present the effect of assumption violations 

on the pattern of residuals to help regression learners gain experience with residual plots. 

  With that said, the article proceeds to provide some additional discussion regarding the issue of 

regression assumption violations and that of residual analysis. Three topics are briefly discussed here: 1) 

likely inclusiveness of assumption violations, 2) alternatives to basic residual plots such as statistical tests 

and partial residual plots, and 3) remedial measures given one or more assumption violations. Although 

each of the three topics is broad enough to deserve an individual article on its own merits, the scope of 

this study limits their discussion to a brief overview. 

 Many times, one regression assumption violation is usually coupled by one or more other 

assumption violations. That is, assumption violations are usually not exclusive of each other; 

rather, they are inclusive of each other. This indicates that when one type of residual plot 

indicates a violation of one assumption, another type of residual plot may likely indicate a 

violation of another assumption at the same time. For example, a violation of the normality 

assumption is often accompanied by a violation of the constant variance assumption. This could 

happen when the variance of the response is a function of its mean conditional on the settings of 
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all predictors; such as in the case of a count response that has a Poisson distribution. Many times, 

though, when appropriate remedial measures are taken to address one assumption violation, 

another assumption violation is likely to be addressed simultaneously. Back to the case when the 

response y  is a count variable following a Poisson distribution where non-normality is coupled 

by heteroscedasticity, both assumption violations frequently can be rectified by applying certain 

variance-stabilizing transformations to the response (Mendenhall & Sincich, 2003) via the square 

root transformation √ . 

 Two alternatives to basic residual plots exist as aids to residual interpretation and as indicators of 

potential model improvements: 1) formal statistical tests and 2) partial residual plots. These are 

in addition to any sensible way that residuals may be plotted for the particular problem under 

consideration (Draper & Smith, 1998). 

 For the alternative of statistical tests, many of them are conducted to assess the significance of 

model terms. For example, given a quadratic relationship between y and x1, such as the one in 

Equation 2, a plot of residuals obtained from the first order model by Equation 3 may clearly 

indicate a lack of fit of the model to the data. But, equivalently, a partial t-test of whether the 

second order term   
  contributes to the model may serve the same purpose. Besides, decisions 

based on residual plots are subjective, and possibly even more subjective than statistical tests, so 

it is recommended that statistical tests be used to help decide if residual plots are really 

suggesting any assumption violations (Weisberg, 2005). However, these tests are often subject to 

spurious statistical significance due to large sample sizes. Therefore, it would not always be wise 

to make decisions solely on the basis of such tests. 

 For the alternative of partial residual plots, they are used when the model contains more than one 

predictor. A partial residual plot measures the influence of one predictor on the response after the 

effects of all other predictors have been removed or considered. Often, by indicating more 

precisely how to modify the model, a plot of the partial residuals against a predictor reveals more 

information about the relationship between the response and the predictor than do those basic 

residual plots. 

 Given one or more assumption violations for the regression model by Equation 1 when it is first 

order, it is recommended that remedial measures be taken to rectify model deficiencies. To that 

end, there are two basic choices (Kutner et al., 2005): 1) abandon the regression model in 

Equation 1 and search for a more appropriate model (e.g., using a Poisson (generalized linear) 

model rather than a linear model for modeling count data) and 2) employ some transformation 

on the data so that the model in Equation 1 is appropriate for the transformed data. Each 

approach has advantages and disadvantages. The first approach may entail a complex model that 

could nevertheless yield better insights; whereas the second approach usually leads to a simple 

model, but at the likely cost of obscuring the fundamental interconnections between the variables 

through transformations. Because it is linear regression that this article primarily discusses, the 

focus is next on how to conduct transformations on the data so that the linear model becomes 

appropriate in the transformed scale. Here, transformation refers to changing the form of the data 

using a mathematical function applied to each point in the data set. Or, equivalently, 

transformation means the application of a mathematical function to the model hypothesized to be 

a good approximation to the underlying one that generates the data (i.e., the generating model). 

 Transformations could be done on the response y and/or one or more of the predictors’ x’s. A 

transformation of x’s is sometimes preferred over that of y. This is because the predictors are 

assumed to be measured perfectly ( i.e., they are not subject to measurement error or an 

additional assumption of many regression models). Thus, there is little problem in transforming 

them. However, for transformations of y, which is assumed to be subject to measurement error, 

extra care should be taken. This is because a transformation of the response is likely to affect the 

distribution of errors. Therefore, it is important to examine the residuals for the model finally 

fitted (i.e., the transformed model) to see if relevant assumptions appear to be violated. On the 

other hand, transformations of y can also lead to difficulties with interpretation. For example, 

given heteroscedasticity, a transformation of y (e.g., logarithm or square root) may lead to a 

constant variance model. The difficulty here is that while the original scale y may be meaningful 
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or make easy and intuitive sense, log(y) or √  may not; thus, making it difficult to give a simple 

interpretation of the regression coefficients with the transformed y Therefore, transforming y 

should generally be applied with care and should even be avoided whenever a suitable 

transformation of the x’s is available (Draper & Smith, 1998; Faraway, 2006). 

 A critical principle shared by most transformations is to reduce a complicated (i.e., usually 

nonlinear and/or higher-order) model to a simple, lower-order model whose mean function is 

linear in the transformed scale; thus, satisfying the assumptions studied in this article for the 

linear model in Equation 1. For example, it is very common that a linear regression model, as 

described by Equation 1, is inappropriate for the collected data in their raw form because 

additivity and/or linearity are not reasonable assumptions for them such as data with the structure 

y = x1x2x3 in the original scale. In this case, nonlinear transformations of the data can sometimes 

remedy the situation by making the data in the transformed scale more closely satisfy those 

assumptions (Gelman & Hill, 2007) such as data with the structure log(y) = 

log(x1)+log(x2)+log(x3) in the transformed scale. However, note that not all nonlinear models can 

be transformed to be a linear model, and those that can be transformed to be linear are called 

intrinsically linear; whereas those that cannot be transformed are called intrinsically nonlinear. 

 As far as the type of transformations is concerned, the family of power transformation is 

commonly used that creates a rank-preserving transformation of the original data using power 

functions. A power transformation is usually conducted on the response variable y and is of the 

form: 

 when 0,

 when 0,

y' y ,

y' log( y ),

 



  


 
 

where λ is a transformation parameter to be determined from the data. Some commonly used 

power transformations include y2 when λ = 2, √  when λ = 0.5, and log(y) when λ = 0 (by 

definition). The power transformation can be effective in correcting several assumption 

violations discussed in this article (Kutner et al., 2005): 1) skewed (non-normal) distribution of 

error terms, 2) unequal error variances, and 3) nonlinearity of the regression function. With the 

aid of the Box-Cox procedure (Box & Cox, 1964), many computer programs are able to 

automatically identify a maximum likelihood estimate of the transformation parameter λ; thus, 

making it easier for people to take advantage of the power transformation to remedy assumption 

violations. However, despite the availability of such automatic transformation search algorithms, 

it may still be difficult to identify an appropriate transformation on the response and/or 

predictors. Many times, several alternative transformations on the response may be tried, as well 

as some simultaneous transformations on one or more of the predictors. In the end, it is 

important to note that the effectiveness of a transformation is best assessed by trying it on the 

data and then checking the fit of the finally fitted model and the pattern of the resultant residuals 

(Draper & Smith, 1998). Therefore, residual plots and other graphical/non-graphical means 

should be prepared to determine the most effective transformations. 
 

Conclusion 

  This article supplements the existing regression literature by taking a model-based simulation 

perspective to help regression learners gain some experience in judging residual plots for identifying 

regression assumption violations. Four critical assumptions for a multiple linear regression model are 

examined in this study: 1) linearity and additivity (i.e., two assumptions counted as one), 2) independence 

of errors, 3) constant variance of errors, and 4) normality of errors. The approach that the article follows 

is to generate and graphically demonstrate the pattern of residuals from estimating a first-order linear 

regression model using a data set simulated with one or more assumptions of the said model violated. In 

the end, the article also discusses other related issues and possible remedial measures for assumption 

violations with a focus on data transformations. 
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