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The importance of taking both β weights and structure coefficients in interpreting regression studies, 

especially in applied linguistics papers, has often been ignored. The purpose of the present study was to 

explain both the regression coefficient and the structure coefficient to support the view that the inclusion 

of these two coefficients will augment the interpretation of results. Some examples of misinterpretations 

in regression studies were provided. Then the author applied both β weights and structure coefficients in 

interpreting the results of an experimental study in applied linguistics. β weights and structure coefficients 

were applied to investigate the predictive power of three predictors on the grammatical acquisition of a 

pair of twins. The results highlighted the importance of both coefficients in multiple regression studies. 

 here are multiple reasons why graduate students need to use regression over traditional univariate 

analysis. Roughly 25 years ago, Thompson (1989) in one of his seminal papers addressed the 

superiority of regression analysis to ANOVA. Regression analysis as an important general linear 

model can be used both in experimental and non-experimental research study without mutilating 

independent variables into nominal scale –– preventing the inflation of type II errors (Thompson & 

Borrello, 1985; Thompson, in press; Zientek & Thompson, 2009). Regression analysis can also be 

conducted for both continuous and categorical variables (Thompson, 1989), and it can do everything 

ANOVA can do, and more (Kerlinger & Pedhazur, 1973). Cohen (1968) also argued using ANOVA to 

analyze experimental data reduces the reliability of most variables, and obliterates the most important 

information regarding the relationship among variables. Furthermore, Cohen noted that because all 

univariate parametric methods (i.e., ANOVA) are subsumed under the node of regression, they can be 

analyzed using regression. Moreover, Kieffer and Thompson (1999) criticized the significance of 

ANOVA by proposing a new method called “what if” analysis. What-if is a process through which the 

researcher can prospectively determine the sample size to obtain a statistically significant effect. Thus, the 

above-mentioned reasons are enough to motivate every graduate student to be curious about regression 

analysis, how it is implemented and interpreted.  

  The present study aimed to define and explain both β weights and structure coefficients in 

interpreting multiple regression studies. As a graduate student, I found that researchers in applied 

linguistics (i.e., my field) infrequently reported β weight and structure coefficients in their studies. A few 

others (e.g., Iwashita, 2003) only took β weights and ignored structure coefficients. Two research 

questions were the focus of the current study: 

  1. What are β weights and how are they interpreted? 

  2. What are structure coefficients and how are they interpreted? 
 

Literature Review 

Multiple Regression and Collinearity 

 Notwithstanding the above-mentioned reasons to advocate the multiple regression analysis in 

research, there is a condition of “collinearity” which makes interpreting regression results difficult 

(Kraha, Turner, Nimon, Zientek., & Henson, 2012; Thompson, 2006a; Zientek & Thompson, 2006). 

Collinearity is a condition in which “predictor variables have nonzero correlations with each other” 

(Thompson, 2006a, p. 236). Such a condition can “substantially affect the accuracy of interpretation of 

results” (Thompson & Borrello, 1985, p. 204), and lead to “distortions in the estimations of regression 

coefficient or even to reversals in their signs” (Pedhazur, 1982, p.246). However, Thompson (2006a) does 

not consider collinearity a bad practice. Instead, he argues that such a complex model reflects the model 

of reality in that predictor variables coexist and affect outcome variables. Therefore, graduate students 

who are curious about linking their data analysis with the realistic models (Thompson, in press) should 

report statistic values for collinearity conditions in their research study.  

  Table 1 presents collinearity by invoking correlations among three predictors (X1, X2, X3). The 

result shows that the variables are collinear, and accordingly the amount of R
2 

obtained (i.e., shared 

T 
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variance) might be attributed to more than one predictor. However, Kraha, et al. (2012) noted that the 

correlation coefficient does not yield information about the shared explained variance.  

  As shown in Table 1, X1 has the strongest correlation with Y (r= 0.500) compared to X2 and X3. The 

squared correlation yields information that 25% (r
2
= 0.25) of the outcome variance was explained by X1 

(Kraha, et al., 2012). Also, 6.25% (r
2
= 0.062) of the outcome variance was explained by X3 and no 

variance was explained by X2. In the following paragraph, two critical ways to interpret the strongest 

predictor compared to bivariate correlations have been provided.  

 

Critical Components in Multiple Regression Analysis 

  It is critical to understand which coefficient (i.e., structure coefficient or regression coefficient) 

should be consulted in multiple regression analysis as an indicator “to determine the contribution of a 

variable to prediction” (Thompson & Borrello, 1985, p. 207). Thompson and Borrello thoroughly 

explained the importance of structure coefficients compared to beta weight analysis (β) after an effect size 

(R
2
) is obtained.  

  R
2
 as a symbol of effect size in multiple regression studies addresses the question, “with knowledge 

of scores on the predictor variables, what proportion (or percentage) of the variability in individual 

differences on the outcome variable can we predict?” (Thompson, in press).  

 

Beta Weight in Regression Analysis 

  There are two essential concepts about the importance of reporting beta weight in regression research 

analyses. First, regression is the univariate case of general linear model (GLM) (Cohen, 1968; Thompson 

& Borrello, 1985; Zientek & Thompson, 2009). Second, GLM means that all parametric analyses (a) are 

correlational, (b) apply weights to the measured variables to estimate score on synthetic variables, and (c) 

yield effect size analogous to r
2
 values (e.g., Cohen; Thompson, 2006a). Keeping these two factors in 

mind, it is critical for the regression researchers not only to report the effect size value (R
2
) and β weights 

in their paper, but also thoroughly understand the meaning and conceptual logic behind them.  

In this paragraph, the meaning and utility of the β weight are explained. The beta weight (β) means “given 

one unit of change in ZX1, how much Y-HAT will change” (Courville & Thompson, 2001, p. 241). 

Explaining further, beta weights yield information about the extent to which a predictor is receiving credit 

for predicting the outcome variable in the regression equation, assuming other predictor variables held 

constant (e.g., Kraha, et al., 2012; Thompson, 2006a). Weights in regression are used to make Y and Y-

HAT (predicted score) scores within a study match as closely as possible (Thompson, 2006a). They do 

this by making either means or standard deviations of two scores (Y, Y-HAT) match. Beta (β) weights 

can be computed using the following formula (Thompson, 2006a, p. 235):  

        β1 = [rYxX1-{(rYxX2 ) ( rX1xX2 )}] / [1- rXx1X2
2
]                 (1) 

For instance, β1 can be computed as follows using the correlation matrix in Table 1: 

        β1= [0.500-{(0.000) (0.300}] / [1- 0.300
2
]  

        β1= 0.517 

  Kraha, et al. (2012) provided a summary table for multiple regression results using the correlation 

matrix in Table 1. The result was rendered in Table 2: 

 

Table 1. Correlation matrix for  

   classical suppression example 

 Y X1 X2 

Y 1.000   

X1 0.500 1.000  

X2 0.000 0.300 1.000 

X3 0.250 0.250 0.250 

 

 

 

 

  

Table 2. Multiple Regression Results 

Predictor β rs r
2
s r R

2 
Unique Common 

X1 0.517 0.911 0.830 0.500 0.250 0.234 0.016 

X2 -0.198 0.000 0.000 0.000 0.000 0.034 -0.034 

X3 0.170 0.455 0.207 0.250 0.063 0.026 0.037 
Note: R

2
= 0.301.  rs = structure coefficient= r

/
R ; r

2
s= r

2
/ R

2
; unique= 

proportion of criterion variance explained uniquely by the predictor; 

common= proportion of criterion variance explained by the predictor 

that is also explained by one/more other predictors. 

This table was adapted from Kraha et al. (2012). 
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  Given the formula of R
2 

(Thompson, 2006a), I calculated the squared multiple correlation coefficient 

using the β weight and bivariate correlations in Tables 1 and 2.  
 

         R
2
 = β1 (rYX1) + β2 (rYX2) + …… βp (rYXP).                (2) 

         R
2
 = β1 (rYX1) + β2 (rYX2) + β3 (rYX3) 

         R
2
 = 0.517 (0.500) + -0.196 (0.000) + 0.170 (0.250) 

         R
2
 = 0.2585+0.000+0.0420 

         R
2
 = 0.301 

 

  R
2
 yields information about the explained variance of outcome variable (Y). However, this amount 

might be attributed differently to different predictors. The β weight yields information about the amount 

of credit each predictor received from R
2
. Predictor X1 received more credit (β 1=0.517) compared to X2 

(β 2= -0.198) and X3 (β3=0.170). Moreover, although X2 had a zero correlation with Y, it received an 

amount of credit. It clearly shows that β weights are not the same as correlation coefficient.  

  However, beta weight may be erroneously interpreted in regression studies. To interpret the result 

using β weight, when predictors are perfectly uncorrelated, the β weight yields the same information as 

the correlation coefficient (r) does (Thompson, 1992b, 2006a). However, it might be mistakenly 

interpreted that near-zero beta weight does not have a predictive power because the pertinent product in 

R
2 

formula (i.e., formula 2) will be zero (Kraha et al., 2012) and therefore, it does not affect R
2
. 

Conversely, in collinearity conditions, the β weight is not the same as correlation coefficient. Rather, it 

means how much credit each predictor is receiving in predicting outcome variable. It might be the case 

that the credit for shared or common explained variability in outcome variable was assigned to other 

predictors than to the predictor with near-zero β weight.  

  In the light of foregoing, although β weight is one of the tools that yields information about the 

predictive credit of each predictor, it has some features that affects the accuracy of interpretation. These 

features need to be considered in interpreting regression results: a) β weight is not a sign of correlation 

coefficient, when predictors are correlated with each other (e.g., Thompson, 1992b, 2006a); b) beta 

weight equals each predictor’s correlation with Y, if predictors are perfectly uncorrelated (Thompson, 

2006a); c) a near-zero beta weight might have a high correlation with outcome variable, but the credit for 

the shared variance may have been assigned to other predictors (Zientek & Thompson, 2006) (in this case, 

the variable with near-zero β weight might be the single best predictor (e.g., Thompson, 1992b; 

Thompson & Borrello, 1985)); and d) beta weight is context-dependent in that it is easily fluctuated as the 

correlation coefficient changes (Thompson, 1992b, 2006a), especially when sample size is small (Cooley 

& Lohnes, 1971). Furthermore, adding or deleting a predictor variable will change the beta weight’s value 

and thus all the subsequent interpretations (Thompson, 1999b). Therefore, β weights do not have 

generalizability power because they are context-dependent and; therefore, they are sample-specific 

weights (Cohen, 1968; Thompson, 2006a).  

  In sum, researchers need to conceptually understand both the meaning and interpretation of the β 

weights. Such an understanding helps them know that even beta weights (β) are not enough (Courville & 

Thompson, 2001), and one needs to go further and reports structure coefficients (rs) as well (Thompson & 

Borrello, 1985). 

 

Structure Coefficient (rs) 

  There are two essential reasons for the importance of structure coefficient in regression studies. A 

structure coefficient, as defined by Cooley and Lohnes (1971, p.55), “equals the bivariate correlation 

between the predictor and the criterion variable divided by the multiple correlation.” Thompson (1999a) 

in one of his seminal papers stated that structure coefficients give much more insight regarding the nature 

of data dynamics. First, a structure coefficient is defined as the correlation between each predictor (i.e., 

X1) and Y-HAT (i.e., synthetic variable) or between each predictor and the whole eaten pie (Thompson, 

1988, 2006a) –– giving more insight into the synthetic variable. Second, structure coefficients give us 

better understanding about the predictive utility of the predictors (Courville & Thompson, 2001; 

Thompson, 1988). Squared structure coefficient (rs
2
) gives us information about how much variance of R

2
 

effect, the predictor can explain (Thompson, 1988, 1992b, 2006; Zientek & Thompson, 2006). To put it 

another way, the squared structure coefficient yields the proportion of explained variance that each  
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Table 3. Structure coefficient computation  

              for X1, X2, X3 

         X1      X2        X3 

  rs= rYX1/R rs= rYX2/R rs= rYX3/R 

  rs= 0.500/0.548 rs= 0/0.548 rs= 0.250/0.548 

  rs= 0.912 rs= 0.000 rs= 0.456 

  r
2

s = 0.831% r
2

s= 0.000 r
2

s= 0.207 

Note: R = 0.548; R
2
 = 0.301 

 

predictor alone explains (Kraha, et al., 2012). 

Therefore, the sum of squares of Y-HAT scores 

equals the regression or explained sum of squares 

(Thompson, in press).  

  Structure coefficients can be computed either 

using formula rs= rYX1/R or rs= rX1Y-HAT (Thompson, 

2006a). Structure coefficients cannot be obtained 

through SPSS and can be calculated using Excel. In 

Table 3, I have provided the computation of 

structure coefficients and squared structure coefficients for three predictors X1, X2, and X3 using 

correlation matrix in Table 1.  

  As you see in Table 3, structure coefficient of X1 is represented as 0.912. Squared structure 

coefficient for X1 explains the amount of explained variance accounted for by X1 (i.e., 0.83% of 0.301= 

0.250). This example clearly shows that the structure coefficient relates to the explained variance, not to 

the outcome variable as a whole.  

  In order to interpret which predictor has the strongest predictive power, Table 2 was consulted. The 

results suggested that predictor X1 has the strongest predictive power with reference to both β weight and 

structure coefficient. X3 has the second strongest predictive power with structure coefficients of 0.455. It 

explains 20.7% (i.e., 0.455
2
)

 
of the explained variance (i.e., 0.301). On the other hand, although X2 has 

zero bivariate correlation (r) with Y and zero structure coefficient (rs), it has, nevertheless, received credit 

in β weight. This means that the given predictor has indirectly influenced other predictors in predicting 

the outcome variable. This is called a suppressor variable (Thompson, 2006a; Zientek & Thompson, 

2006). The present paper was not intended to explain suppresser variables, suffice it to say, that looking at 

both β weights and structure coefficients helps us understand which predictor has strong predictive power.  

  However, interpreting the structure coefficient is determined conditionally: a) if β weight and rs are 

both zero, the predictor variable is definitely useless; b) if β weight is near-zero, we need to consult with 

rs to determine the importance of predictor variables; c) if β weight and bivariate correlation are the same, 

the predictors are uncorrelated; therefore, β, rs and rs will lead us to the same interpretation regarding the 

importance of the predictor; d) if β weight is not the same as rs , predictors are correlated, and both β and 

rs, need to be interpreted; e) if rs and rs are both zero, one of the predictor variables is a suppressor 

variable (Zientek & Thompson, 2006). A Suppressor variable is a predictor that has a large β weight, but 

a zero correlation with the outcome variable. This affects the size of R
2
 by making β weights of other 

predictors deviate from the mathematical limit of +1. In this case, β does not represent the correlation 

coefficient because predictors are correlated with each other (i.e., collinearity). This condition is called 

the “suppressor effect” (e.g., Courville & Thompson, 2001; Thompson, in press) 

  Notwithstanding the importance of structure coefficient, some researchers (e.g., Pedhazur, 1997) 

objected to using structure coefficients as the second tool in interpreting regression results. Pedhazur 

(1997) argued that large structure coefficients can also be obtained even when variables have near-zero R
2
 

(i.e., results are meaningless). Thompson (1997a) explained: 
 

When interpreting results in the context of this model, researchers should generally approach 

the analysis hierarchically, by asking two questions: 

Do I have anything? (Researchers decide this question by looking at some combination of 

statistical significance tests, effect sizes, … and replicability evidence. 

If I have something, where do my effects originate? (researchers often consult both the 

standardized weights implicit in all analyses and structure coefficient to decide this 

question). (p.31) 

 However, it might be argued that structure coefficient, unlike β weight, is not context-dependent and 

is not affected by collinearity. Thompson (1988, 2006) argued that context-independency of structure 

coefficients make them have generalizability power compared to β weights. Therefore, in regression 

studies, both β weights and structure coefficients need to be consulted for interpretation. In interpreting 

the results, β weights are the credits given to each predictor for creating the predicted score, whereas 

structure coefficients are the bivariate correlation between each predictor and the effect observed 

(Burdenski, 2000; Kraha, et al., 2012).   
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Sample 

  The current research investigation was a case study in that a sample of spontaneous language from 

twins’ first language (L1) was video-taped. Data were elicited through interaction with a pair of 3-4 year 

old twin for a period of one year. The present study was aimed to examine the predictive power of 

positive and negative evidence of adult’s talk on the grammatical correctness of subject-verb agreement in 

children’s language acquisition. I used multiple regression analysis and interpreted the results by invoking 

both β weights and structure coefficients.  
 

Method 

Adult-child interactions were videotaped and then, they were coded and transcribed by chat program 

available in CHILDES. Predictor variables were positive evidence and negative evidence. Positive 

evidence is when an adult (here, researcher) models the language on child’s language production (e.g., 

simple model), whereas negative evidence is when adult corrects the child’s grammatical error (Saxton, 

2000). I categorized negative evidence into two types of clarification request and expansion, and I 

considered simple model as a type of positive evidence. 
 

Procedure 

The first step in the study of child language acquisition is collecting data and transcribing them. This 

brought about the problem that each researcher used an idiosyncratic coding system to transcribe data and 

the results could not be generalizable. The most powerful computational tool in this regard is CHILDES. 

CHILDES is a system through which language researchers can use or create the digitized data to study 

syntactic or morpho-syntactic development. MacWhinney and Snow (1985) created the CHILDES. I 

learned how to computerize my corpus data (i.e., transcribe, digitize, and analyze) under the supervision 

of Dr. Brian MacWhinney at Carnegie Melon University.  
 

CHILDES 

CHILDES is a system of computational tools for transcribing and analyzing data in language studies 

(MacWhinney, 2012). It was designed to automate the process of data analysis and increase the 

consistency of the transcription system. Although language acquisition research is grounded on the data 

collected from spontaneous interactions in naturally occurring situations, these descriptive data do not 

give us much information unless they are put into the process of transcribing and analyzing scientifically 

(MacWhinney). CHILDES as a computational process consists of CHAT, CLAN, and database. CHAT 

includes transcription and coding format, and describes the principles and conventions of transcription; 

CLAN includes analytic command to transcribe and analyze the interactions, and explains how to link 

digital audio or video files to transcripts (i.e. text); Database represents the accumulation of dozens of 

data files. It is worth mentioning to say that CHILDES system has wide applicability and is not 

necessarily limited to the first language acquisition field. A sample of the CHAT file is represented in the 

following (MacWhinney, p. 21). 
 

@Begin 

@Languages: eng 

@Participants: CHI Ross Child, FAT Brian Father  

@ID:  eng|macwhinney|CHI|2;10.10||||Target_Child||| 

@ID:  eng|macwhinney|FAT|35;2.||||Target_Child||| 

*ROS:  why isn't Mommy coming? 

%com: Mother usually picks Ross up around 4 PM. 

*FAT:  don't worry. 

*FAT:  she'll be here soon. 

*CHI:  good. 

@End 
 

  As shown in the above figure, this short dialogue was transcribed based on the CHAT principles in 

CHILDES system. Then, the researcher can obtain a command from CLAN program and run an analysis 

on this short dialogue. I transcribed all my data collection through CHAT program and obtained the 

frequency regarding the type of feedback the children received (i.e., positive evidence, negative evidence) 

in their language. I did this by invoking CLAN program. My corpus is available in CHILDES system for 

language researchers who need a corpus from adult-child interaction in Persian language. This corpus has 
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made the job of future researchers easy. The researchers can use a few commands of CLAN program and 

analyze their research questions from a database that are already systematically transcribed and 

computerized into the CHILDES system. 

 The following clan commands were used in the present study of which their symbols are written as 

follows (MacWhinney, 2012): 
 

a. CHECK  Esc-L 

b. CHIP Run  chip +bMOT +cCHI chip.cha 

c. FREQ Run  freq +t*CHI 0042.cha 

d. MLU Run MLU +t*FAT 0042.cha 
 

  For instance, by typing item d, the researcher gives a command to the CLAN program to find Mean 

Length of utterance (i.e., MLU) of Fatima’s speech in session 42 (i.e., 0042) among all utterances that 

Fatima spoke (i.e., +t*FAT), excluding all other participants. Accordingly, the bold words in each 

command can vary based on the target that the researcher wanted to investigate (i.e., linguistic feature, 

session, and participant).  

Results 

 Multiple regression analysis is part of the GLM (Thompson, 2006a; Zientek & Thompson, 2009), in 

that “all analytic methods are correlational…and yield variance-accounted-for effect sizes analogous to r
2 

(e.g. R
2
, ŋ

2
, ω

2
)” (Thompson, 2000, p. 263). Therefore, researchers are required to include correlation 

matrices, standard deviations, group means, and sample size in their report so that the interested readers 

can conduct secondary analysis using available information (Zientek & Thompson, 2009). Keeping this in 

mind, and with respect to the first research question, descriptive statistics rendered in Tables 4 and 5. 

Research question 1 asked what are beta weights and how are they interpreted? 

  A multiple regression analysis was used to obtain the amount of β weight and R
2 
in the present study. 

I already showed how β weight is computed using correlation matrix in Table 1 (i.e., Formula 1). In this 

paragraph, I explained about the context-dependency of β weights that makes the interpretation of results 

complex. Table 6 represents the summary of multiple regression analysis to interpret the results. 

 In order to interpret the β weight, the researcher has to take the effect size into consideration. As 

shown in Table 6, the effect size value was 21.2%. In order to find the origin of the effect for each 

predictor variable, β weight was consulted. The results of β weight were obtained by using a multiple 

regression analysis. According to Table 6, simple model that was a type of positive evidence had the 

highest β weight compared to other predictors, meaning it received more credit for predicting 

grammatical correctness. 

   As it was already noted, the β weight is context-dependent and is easily affected by adding or 

deleting predictors. In order to clearly show this feature, I deleted one predictor from the set of predictors 

three times and each time, the amount of β altered. Table 7 clearly represents different amounts of β 

weight with reference to adding or deleting the predictors.  

  Although the amount of β weight did not dramatically change, it might be due to the small number of 

data used in the present study. However, the sign of β weight changed when expansion predictor was 

deleted from the set of predictors. According to Dr. Bruce Thompson (personal communication, April 27, 

2015), it might be due to a suppresser effect. However, because the amount of R
2 

for the 3rd set of 

variables was only 14.6%, the negative sign of β weight is not a big challenge. Based on the above-

mentioned evidence, β weight is not enough in interpreting multiple regression studies, and we need to 

consult structure coefficient as well.  

  The computation of structure coefficients helps us understand the meaning and interpretation behind 

them. Structure coefficients and squared structure coefficients are not obtained by using SPSS. In Table 3, 

I showed the computation of rs and r
2
s using correlation matrix. The amount of the structure coefficient 

and squared structure coefficient for each predictor was presented in Table 6. The result of summary 

Table 6, supports the view that structure coefficient yields information about the data dynamics.  

As shown in Table 6, the amount of β weight for predictor “simple model” was 0.364. It means that 

36.4% credit this predictor received from 21.2% of R
2
. The amount of structure coefficient for the same 

predictor was 0.826, and the pertinent squared structure coefficient was 0.682. The amount of 0.682 

informs us that 68.2% of 21.2% predictor “simple model” alone explains. With regard to the predictor   
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Table 4. Descriptive Statistics 

Variables Mean SD 

Number of 

Sessions 

Grammatical 

Correctness 

47.60 6.998 100 

Simple Models 34.63 7.884 100 

Confirmation 16.24 3.082 100 

Expansion 25.56 6.793 100 

Note. Number of children= 2 
 

“confirmation”, the r
2
s was 0.013. This 

predictor had both near-zero B weight 

and near-zero structure coefficient, it 

might be considered a “useless 

predictor”. However, it cannot be 

strongly judged as a useless predictor, 

because the amount of R
2
 effect was 

only 21.2%. With regard to the 

predictor “expansion” the β weight 

received 0.271 credit in predicting the 

grammatical correctness. By looking 

at the structure coefficient, expansion 

predictor explained 37.3% of the 

21.2%. Therefore, taking both β 

weight and rs into account, the simple 

models predictor (e.g., positive 

evidence) was the strongest predictor 

compared to the expansion predictor 

(e.g., negative evidence), and confirmation was a useless predictor. However, because the size of R
2 
in the 

present study was only 21.2%, it cannot be strongly interpreted that negative evidence was a useless 

predictor. I used this analysis to inform researchers in applied linguistics about the importance of both β 

weights and structure coefficients in interpreting the multiple regression results.  
 

Discussion and Conclusion 

  The present study was about the importance of both B weights and structure coefficients in 

interpreting multiple regression results. Analyzing and interpreting quantitative studies is “a critical 

acquired knowledge” for doctoral students. According to Thompson (1999b), doctoral curricula 

‘‘seemingly have less and less room for quantitative statistics and measurement content, even while our 

knowledge base in these areas is burgeoning’’ (p. 24). Definitely, no thoughtful researcher wants to spend 

a considerable amount of time bearing all the tensions and challenges of carrying out a research project 

either financially or academically, and then come up with reporting the results using a statistic that does 

not contain a substantially significant value (i.e., p-value) (Thompson, 1992a). Many researchers in 

applied linguistics infrequently report the amount of both β weights and structure coefficients in their 

regression studies, or they do not interpret the results correctly (e.g., Iwashita, 2003). The purpose of the 

current study was to answer two critical questions: 
 

a. What are β weights and how are they interpreted? 

b. What are structure coefficients and how are they interpreted? 
c.  

  I explained that due to the “collinearity” condition among variables, correlation coefficient does not 

yield information about the predictive power of the predictor variables in multiple regression studies. On 

the other hand, R
2
 gives information about the explained variance of outcome variable. However, this 

amount might be attributed differently to different independent variables. Two tools help researchers 

obtain information about the origin of the effect. These are called β weights and structure coefficients. 

However, β weights are context-dependent and are easily affected by adding or deleting predictors. 

Structure coefficient, on the other hand, are not sensitive to the collinearity. Taken together, β weights 

Table 5. Bivariate Correlation between Variables 

Adult’s talk Grammatical 

Correctness 

 Simple   

  Models 

ConConfirmation    

Grammatical 

Correctness 

 1.000   

 

Simple Models  

Confirmation 

 0.381
** 

-0.054 

 1.000 

-0.540 

 

 1.000 

Expansion   0.282
**

  0.075 -0.319
**

 

Note. * p < 0.05, ** p < 0.01. 

Table 6. Summary of Multiple Regression Analysis for  

                       3 Types of Input 

Grammatical Correctness  

Variables β rs r
2
s R R

2
 

Simple Models 0.364 0.826 0.682 0.461 0.212 

Confirmation 0.052 0.171 0.013   

Expansion 0.271 0.611 0.373   

Note. R
2
= 21.2%. 

 

Table 7. Amount of β Weight with Reference  

                       to Adding or Deleting Predictors 

 Simple Models 

Expansion 

Confirmation 

Expansion 

Simple Models 

Confirmation 

β weight 0.362 0.255 0.040 .295 0.379 -.033 

       

Note: R
2 
for the 1st set of variables= 21.0%, R

2 
for the 2nd set of  

variables= 8.1%. R
2 
for the 3rd set of variables= 14.6%. 
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and structure coefficients give information about the data dynamics. I provided some examples to clearly 

show the importance of both β weights and structure coefficients in interpreting regression results. Then I 

analyzed my own research data from a paper that I presented at SERA conference in 2015, taking into 

account both β weights and structure coefficients.  

  I did this analysis focusing on the importance of both regression coefficients and structure 

coefficients with the hope that language researchers will come to understand that reporting these two 

statistic values would give them more information about the data dynamics. In the next paragraph, I 

provided some suggestions in using multiple regression studies. 
 

Suggestions 

  In this paragraph, I have listed some suggestions in running regression studies.  
 

1. Regression analysis has nothing to do with causal inferences; rather, it is the research 

design that makes causal inferences (Thompson, 1981). Therefore, multiple regression 

analysis can be used both in experimental and non-experimental research designs. 

2. Regression analysis gives us better insight into the data dynamics by reporting both beta 

weights and structure coefficients. However, if researchers intend to only report multiple 

correlation coefficients in their studies, collinearity would not become a big challenge and 

they do not have to report the structure coefficient (Thompson & Borrello, 1985). 

3. Researchers are advised to gain more insight into standards of analyzing research data 

before publishing their papers by referring to seminal research resources and guidance 

(Skidmore & Thompson, 2010; Thompson, 1995, 1999b, 2006b, 2008; Wilson, 1980).  

4. Moreover, the way I analyzed my experimental research study (positive evidence vs. 

negative evidence) using β weights and structure coefficients in this paper, can encourage 

language acquisition researchers to apply meta-analysis thinking. They can use multiple 

regression analysis on various similar studies and compare the results with the findings of 

the present paper. 

5. Reporting correlation matrices, group means, standard deviations, and effect sizes in 

research studies would serve as building blocks for doing subsequent or secondary analysis, 

such as structural equation modeling or commonality analysis (Thompson, 1997b, 2006b; 

Zientek & Thompson, 2006, 2009). 

6. Results of secondary study would shed the light on replicability of the study, whereas 

statistical significance of ANOVA does not give us information about replicability of the 

results (Carver, 1978; Thompson, 2001, 2006a; Thompson & Kieffer, 2000).  

7. Whenever we run a meta-analysis or a secondary analysis to examine previous research 

studies, using innovative research analysis, we need to observe respectful criticism 

throughout our scholarly dialogue (Thompson, 2008).  
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